tailscale/types/key/node_test.go

183 lines
4.6 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package key
import (
"bufio"
"bytes"
"encoding/json"
"strings"
"testing"
)
func TestNodeKey(t *testing.T) {
k := NewNode()
if k.IsZero() {
t.Fatal("NodePrivate should not be zero")
}
p := k.Public()
if p.IsZero() {
t.Fatal("NodePublic should not be zero")
}
bs, err := p.MarshalText()
if err != nil {
t.Fatal(err)
}
if full, got := string(bs), ":"+p.UntypedHexString(); !strings.HasSuffix(full, got) {
t.Fatalf("NodePublic.UntypedHexString is not a suffix of the typed serialization, got %q want suffix of %q", got, full)
}
bs, err = p.MarshalBinary()
if err != nil {
t.Fatal(err)
}
if got, want := bs, append([]byte(nodePublicBinaryPrefix), p.k[:]...); !bytes.Equal(got, want) {
t.Fatalf("Binary-encoded NodePublic = %x, want %x", got, want)
}
var decoded NodePublic
if err := decoded.UnmarshalBinary(bs); err != nil {
t.Fatalf("NodePublic.UnmarshalBinary(%x) failed: %v", bs, err)
}
if decoded != p {
t.Errorf("unmarshaled and original NodePublic differ:\noriginal = %v\ndecoded = %v", p, decoded)
}
z := NodePublic{}
if !z.IsZero() {
t.Fatal("IsZero(NodePublic{}) is false")
}
if s := z.ShortString(); s != "" {
t.Fatalf("NodePublic{}.ShortString() is %q, want \"\"", s)
}
}
func TestNodeSerialization(t *testing.T) {
serialized := `{
"Priv": "privkey:40ab1b58e9076c7a4d9d07291f5edf9d1aa017eb949624ba683317f48a640369",
"Pub":"nodekey:50d20b455ecf12bc453f83c2cfdb2a24925d06cf2598dcaa54e91af82ce9f765"
}`
// Carefully check that the expected serialized data decodes and
// re-encodes to the expected keys. These types are serialized to
// disk all over the place and need to be stable.
priv := NodePrivate{
k: [32]uint8{
0x40, 0xab, 0x1b, 0x58, 0xe9, 0x7, 0x6c, 0x7a, 0x4d, 0x9d, 0x7,
0x29, 0x1f, 0x5e, 0xdf, 0x9d, 0x1a, 0xa0, 0x17, 0xeb, 0x94,
0x96, 0x24, 0xba, 0x68, 0x33, 0x17, 0xf4, 0x8a, 0x64, 0x3, 0x69,
},
}
pub := NodePublic{
k: [32]uint8{
0x50, 0xd2, 0xb, 0x45, 0x5e, 0xcf, 0x12, 0xbc, 0x45, 0x3f, 0x83,
0xc2, 0xcf, 0xdb, 0x2a, 0x24, 0x92, 0x5d, 0x6, 0xcf, 0x25, 0x98,
0xdc, 0xaa, 0x54, 0xe9, 0x1a, 0xf8, 0x2c, 0xe9, 0xf7, 0x65,
},
}
type keypair struct {
Priv NodePrivate
Pub NodePublic
}
var a keypair
if err := json.Unmarshal([]byte(serialized), &a); err != nil {
t.Fatal(err)
}
if !a.Priv.Equal(priv) {
t.Errorf("wrong deserialization of private key, got %#v want %#v", a.Priv, priv)
}
if a.Pub != pub {
t.Errorf("wrong deserialization of public key, got %#v want %#v", a.Pub, pub)
}
bs, err := json.MarshalIndent(a, "", " ")
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
json.Indent(&b, []byte(serialized), "", " ")
if got, want := string(bs), b.String(); got != want {
t.Error("json serialization doesn't roundtrip")
}
}
func TestNodeReadRawWithoutAllocating(t *testing.T) {
buf := make([]byte, 32)
for i := range buf {
buf[i] = 0x42
}
r := bytes.NewReader(buf)
br := bufio.NewReader(r)
got := testing.AllocsPerRun(1000, func() {
r.Reset(buf)
br.Reset(r)
var k NodePublic
if err := k.ReadRawWithoutAllocating(br); err != nil {
t.Fatalf("ReadRawWithoutAllocating: %v", err)
}
})
if want := 0.0; got != want {
t.Fatalf("ReadRawWithoutAllocating got %f allocs, want %f", got, want)
}
}
func TestNodeWriteRawWithoutAllocating(t *testing.T) {
buf := make([]byte, 0, 32)
w := bytes.NewBuffer(buf)
bw := bufio.NewWriter(w)
got := testing.AllocsPerRun(1000, func() {
w.Reset()
bw.Reset(w)
var k NodePublic
if err := k.WriteRawWithoutAllocating(bw); err != nil {
t.Fatalf("WriteRawWithoutAllocating: %v", err)
}
})
if want := 0.0; got != want {
t.Fatalf("WriteRawWithoutAllocating got %f allocs, want %f", got, want)
}
}
func TestChallenge(t *testing.T) {
priv := NewChallenge()
pub := priv.Public()
txt, err := pub.MarshalText()
if err != nil {
t.Fatal(err)
}
var back ChallengePublic
if err := back.UnmarshalText(txt); err != nil {
t.Fatal(err)
}
if back != pub {
t.Errorf("didn't round trip: %v != %v", back, pub)
}
}
// Test that NodePublic.Shard is uniformly distributed.
func TestShard(t *testing.T) {
const N = 1_000
var shardCount [256]int
for range N {
shardCount[NewNode().Public().Shard()]++
}
e := float64(N) / 256 // expected
var x2 float64 // chi-squared
for _, c := range shardCount {
r := float64(c) - e // residual
x2 += r * r / e
}
t.Logf("x^2 = %v", x2)
if x2 > 512 { // really want x^2 =~ (256 - 1), but leave slop
t.Errorf("too much variation in shard distribution")
for i, c := range shardCount {
rj := float64(c) - e
t.Logf("shard[%v] = %v (off by %v)", i, c, rj)
}
}
}