From 54acd8fad735d6dbe19a57a6eec45893b6f83903 Mon Sep 17 00:00:00 2001
From: Christian Baars <Baars@gmx.de>
Date: Mon, 8 Nov 2021 18:22:55 +0100
Subject: [PATCH] Delete bignum.c

forgot to delete this...
---
 .../ESP32-HomeKit/src/port/bignum.c           | 286 ------------------
 1 file changed, 286 deletions(-)
 delete mode 100644 lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c

diff --git a/lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c b/lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c
deleted file mode 100644
index 5fab344e5..000000000
--- a/lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c
+++ /dev/null
@@ -1,286 +0,0 @@
-/**
- * \brief  Multi-precision integer library, ESP-IDF hardware accelerated parts
- *
- *  based on mbedTLS implementation
- *
- *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
- *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
- *  SPDX-License-Identifier: Apache-2.0
- *
- *  Licensed under the Apache License, Version 2.0 (the "License"); you may
- *  not use this file except in compliance with the License.
- *  You may obtain a copy of the License at
- *
- *  http://www.apache.org/licenses/LICENSE-2.0
- *
- *  Unless required by applicable law or agreed to in writing, software
- *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *  See the License for the specific language governing permissions and
- *  limitations under the License.
- *
- */
-
-#if __has_include("esp_idf_version.h")
-#include "esp_idf_version.h"
-#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
-#warning("IDF is 4 or later")
-#include "soc/hwcrypto_periph.h"
-#endif
-#endif
-
-#include "soc/hwcrypto_reg.h"
-#include "driver/periph_ctrl.h"
-#include <mbedtls/bignum.h>
-#include "bignum_impl.h"
-#include <sys/param.h>
-#include <sys/lock.h>
-
-static _lock_t mpi_lock;
-
-/* Round up number of words to nearest
-   512 bit (16 word) block count.
-*/
-size_t esp_mpi_hardware_words(size_t words)
-{
-    return (words + 0xF) & ~0xF;
-}
-
-void esp_mpi_enable_hardware_hw_op( void )
-{
-    /* newlib locks lazy initialize on ESP-IDF */
-    _lock_acquire(&mpi_lock);
-
-    /* Enable RSA hardware */
-    periph_module_enable(PERIPH_RSA_MODULE);
-    DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
-
-    while (DPORT_REG_READ(RSA_CLEAN_REG) != 1)
-    { }
-    // Note: from enabling RSA clock to here takes about 1.3us
-}
-
-void esp_mpi_disable_hardware_hw_op( void )
-{
-    DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
-
-    /* Disable RSA hardware */
-    periph_module_disable(PERIPH_RSA_MODULE);
-
-    _lock_release(&mpi_lock);
-}
-
-
-/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
-
-   If hw_words is higher than the number of words in the bignum then
-   these additional words will be zeroed in the memory buffer.
-
-*/
-static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
-{
-    uint32_t *pbase = (uint32_t *)mem_base;
-    uint32_t copy_words = MIN(hw_words, mpi->n);
-
-    /* Copy MPI data to memory block registers */
-    for (int i = 0; i < copy_words; i++) {
-        pbase[i] = mpi->p[i];
-    }
-
-    /* Zero any remaining memory block data */
-    for (int i = copy_words; i < hw_words; i++) {
-        pbase[i] = 0;
-    }
-}
-
-/* Read mbedTLS MPI bignum back from hardware memory block.
-
-   Reads num_words words from block.
-
-   Bignum 'x' should already be grown to at least num_words by caller (can be done while
-   calculation is in progress, to save some cycles)
-*/
-static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
-{
-    assert(x->n >= num_words);
-
-    /* Copy data from memory block registers */
-    esp_dport_access_read_buffer(x->p, mem_base, num_words);
-
-    /* Zero any remaining limbs in the bignum, if the buffer is bigger
-       than num_words */
-    for (size_t i = num_words; i < x->n; i++) {
-        x->p[i] = 0;
-    }
-}
-
-
-/* Begin an RSA operation. op_reg specifies which 'START' register
-   to write to.
-*/
-static inline void start_op(uint32_t op_reg)
-{
-    /* Clear interrupt status */
-    DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
-
-    /* Note: above REG_WRITE includes a memw, so we know any writes
-       to the memory blocks are also complete. */
-
-    DPORT_REG_WRITE(op_reg, 1);
-}
-
-/* Wait for an RSA operation to complete.
-*/
-static inline void wait_op_complete(void)
-{
-    while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
-    { }
-
-    /* clear the interrupt */
-    DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
-}
-
-/* Read result from last MPI operation */
-void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
-{
-    wait_op_complete();
-    mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
-}
-
-/* Z = (X * Y) mod M */
-void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words)
-{
-    /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
-    mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
-    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
-    mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words);
-    DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
-
-    /* "mode" register loaded with number of 512-bit blocks, minus 1 */
-    DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
-
-    /* Execute first stage montgomery multiplication */
-    start_op(RSA_MULT_START_REG);
-
-    wait_op_complete();
-
-    /* execute second stage */
-    /* Load Y to X input memory block, rerun */
-    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
-
-    start_op(RSA_MULT_START_REG);
-}
-
-/* Z = X * Y */
-void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words)
-{
-    /* Copy X (right-extended) & Y (left-extended) to memory block */
-    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
-    mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words);
-    /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
-       This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
-    */
-
-    DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
-
-    /* "mode" register loaded with number of 512-bit blocks in result,
-       plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
-    */
-    DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7);
-
-    start_op(RSA_MULT_START_REG);
-
-}
-
-
-int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
-                   mbedtls_mpi_uint Mprime,
-                   size_t hw_words,
-                   bool again)
-{
-    // Note Z may be the same pointer as X or Y
-    int ret = 0;
-
-    // montgomery mult prepare
-    if (again == false) {
-        mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
-        DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
-        DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1);
-    }
-
-    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
-    mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words);
-
-    start_op(RSA_MULT_START_REG);
-    Z->s = 1; // The sign of Z will be = M->s (but M->s is always 1)
-    MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
-
-    wait_op_complete();
-
-    /* Read back the result */
-    mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words);
-
-
-    /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
-    if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
-        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
-    }
-cleanup:
-    return ret;
-}
-
-
-
-/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
-   multiplication to calculate an mbedtls_mpi_mult_mpi result where either
-   A or B are >2048 bits so can't use the standard multiplication method.
-
-   Result (z_words, based on A bits + B bits) must still be less than 4096 bits.
-
-   This case is simpler than the general case modulo multiply of
-   esp_mpi_mul_mpi_mod() because we can control the other arguments:
-
-   * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
-   isn't actually modulo anything.
-   * Mprime and Rinv are therefore predictable as follows:
-   Mprime = 1
-   Rinv = 1
-
-   (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
-*/
-void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
-{
-    size_t hw_words = num_words;
-
-    /* M = 2^num_words - 1, so block is entirely FF */
-    for (int i = 0; i < hw_words; i++) {
-        DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
-    }
-    /* Mprime = 1 */
-    DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
-
-    /* "mode" register loaded with number of 512-bit blocks, minus 1 */
-    DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
-
-    /* Load X */
-    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
-
-    /* Rinv = 1, write first word */
-    DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
-
-    /* Zero out rest of the Rinv words */
-    for (int i = 1; i < hw_words; i++) {
-        DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
-    }
-
-    start_op(RSA_MULT_START_REG);
-
-    wait_op_complete();
-
-    /* finish the modular multiplication */
-    /* Load Y to X input memory block, rerun */
-    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
-
-    start_op(RSA_MULT_START_REG);
-
-}