From 54acd8fad735d6dbe19a57a6eec45893b6f83903 Mon Sep 17 00:00:00 2001 From: Christian Baars <Baars@gmx.de> Date: Mon, 8 Nov 2021 18:22:55 +0100 Subject: [PATCH] Delete bignum.c forgot to delete this... --- .../ESP32-HomeKit/src/port/bignum.c | 286 ------------------ 1 file changed, 286 deletions(-) delete mode 100644 lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c diff --git a/lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c b/lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c deleted file mode 100644 index 5fab344e5..000000000 --- a/lib/libesp32_div/ESP32-HomeKit/src/port/bignum.c +++ /dev/null @@ -1,286 +0,0 @@ -/** - * \brief Multi-precision integer library, ESP-IDF hardware accelerated parts - * - * based on mbedTLS implementation - * - * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved - * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the "License"); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * - */ - -#if __has_include("esp_idf_version.h") -#include "esp_idf_version.h" -#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0) -#warning("IDF is 4 or later") -#include "soc/hwcrypto_periph.h" -#endif -#endif - -#include "soc/hwcrypto_reg.h" -#include "driver/periph_ctrl.h" -#include <mbedtls/bignum.h> -#include "bignum_impl.h" -#include <sys/param.h> -#include <sys/lock.h> - -static _lock_t mpi_lock; - -/* Round up number of words to nearest - 512 bit (16 word) block count. -*/ -size_t esp_mpi_hardware_words(size_t words) -{ - return (words + 0xF) & ~0xF; -} - -void esp_mpi_enable_hardware_hw_op( void ) -{ - /* newlib locks lazy initialize on ESP-IDF */ - _lock_acquire(&mpi_lock); - - /* Enable RSA hardware */ - periph_module_enable(PERIPH_RSA_MODULE); - DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD); - - while (DPORT_REG_READ(RSA_CLEAN_REG) != 1) - { } - // Note: from enabling RSA clock to here takes about 1.3us -} - -void esp_mpi_disable_hardware_hw_op( void ) -{ - DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD); - - /* Disable RSA hardware */ - periph_module_disable(PERIPH_RSA_MODULE); - - _lock_release(&mpi_lock); -} - - -/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'. - - If hw_words is higher than the number of words in the bignum then - these additional words will be zeroed in the memory buffer. - -*/ -static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words) -{ - uint32_t *pbase = (uint32_t *)mem_base; - uint32_t copy_words = MIN(hw_words, mpi->n); - - /* Copy MPI data to memory block registers */ - for (int i = 0; i < copy_words; i++) { - pbase[i] = mpi->p[i]; - } - - /* Zero any remaining memory block data */ - for (int i = copy_words; i < hw_words; i++) { - pbase[i] = 0; - } -} - -/* Read mbedTLS MPI bignum back from hardware memory block. - - Reads num_words words from block. - - Bignum 'x' should already be grown to at least num_words by caller (can be done while - calculation is in progress, to save some cycles) -*/ -static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words) -{ - assert(x->n >= num_words); - - /* Copy data from memory block registers */ - esp_dport_access_read_buffer(x->p, mem_base, num_words); - - /* Zero any remaining limbs in the bignum, if the buffer is bigger - than num_words */ - for (size_t i = num_words; i < x->n; i++) { - x->p[i] = 0; - } -} - - -/* Begin an RSA operation. op_reg specifies which 'START' register - to write to. -*/ -static inline void start_op(uint32_t op_reg) -{ - /* Clear interrupt status */ - DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1); - - /* Note: above REG_WRITE includes a memw, so we know any writes - to the memory blocks are also complete. */ - - DPORT_REG_WRITE(op_reg, 1); -} - -/* Wait for an RSA operation to complete. -*/ -static inline void wait_op_complete(void) -{ - while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1) - { } - - /* clear the interrupt */ - DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1); -} - -/* Read result from last MPI operation */ -void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words) -{ - wait_op_complete(); - mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words); -} - -/* Z = (X * Y) mod M */ -void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words) -{ - /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */ - mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words); - mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); - mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words); - DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime); - - /* "mode" register loaded with number of 512-bit blocks, minus 1 */ - DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1); - - /* Execute first stage montgomery multiplication */ - start_op(RSA_MULT_START_REG); - - wait_op_complete(); - - /* execute second stage */ - /* Load Y to X input memory block, rerun */ - mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words); - - start_op(RSA_MULT_START_REG); -} - -/* Z = X * Y */ -void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words) -{ - /* Copy X (right-extended) & Y (left-extended) to memory block */ - mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); - mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words); - /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block. - This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware(). - */ - - DPORT_REG_WRITE(RSA_M_DASH_REG, 0); - - /* "mode" register loaded with number of 512-bit blocks in result, - plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8)) - */ - DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7); - - start_op(RSA_MULT_START_REG); - -} - - -int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, - mbedtls_mpi_uint Mprime, - size_t hw_words, - bool again) -{ - // Note Z may be the same pointer as X or Y - int ret = 0; - - // montgomery mult prepare - if (again == false) { - mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words); - DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime); - DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1); - } - - mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); - mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words); - - start_op(RSA_MULT_START_REG); - Z->s = 1; // The sign of Z will be = M->s (but M->s is always 1) - MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) ); - - wait_op_complete(); - - /* Read back the result */ - mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words); - - - /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */ - if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) { - MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M)); - } -cleanup: - return ret; -} - - - -/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod - multiplication to calculate an mbedtls_mpi_mult_mpi result where either - A or B are >2048 bits so can't use the standard multiplication method. - - Result (z_words, based on A bits + B bits) must still be less than 4096 bits. - - This case is simpler than the general case modulo multiply of - esp_mpi_mul_mpi_mod() because we can control the other arguments: - - * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output - isn't actually modulo anything. - * Mprime and Rinv are therefore predictable as follows: - Mprime = 1 - Rinv = 1 - - (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv) -*/ -void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words) -{ - size_t hw_words = num_words; - - /* M = 2^num_words - 1, so block is entirely FF */ - for (int i = 0; i < hw_words; i++) { - DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX); - } - /* Mprime = 1 */ - DPORT_REG_WRITE(RSA_M_DASH_REG, 1); - - /* "mode" register loaded with number of 512-bit blocks, minus 1 */ - DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1); - - /* Load X */ - mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); - - /* Rinv = 1, write first word */ - DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1); - - /* Zero out rest of the Rinv words */ - for (int i = 1; i < hw_words; i++) { - DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0); - } - - start_op(RSA_MULT_START_REG); - - wait_op_complete(); - - /* finish the modular multiplication */ - /* Load Y to X input memory block, rerun */ - mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words); - - start_op(RSA_MULT_START_REG); - -}