diff --git a/CHANGELOG.md b/CHANGELOG.md index 38b7ce313..0e08feb92 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -7,6 +7,7 @@ All notable changes to this project will be documented in this file. ### Added - Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection - Berry automated solidification of code +- Support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM (#16486) ### Changed diff --git a/RELEASENOTES.md b/RELEASENOTES.md index 5cd31ad34..30e49b70d 100644 --- a/RELEASENOTES.md +++ b/RELEASENOTES.md @@ -119,8 +119,11 @@ The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmo - Zigbee device plugin mechanism with commands ``ZbLoad``, ``ZbUnload`` and ``ZbLoadDump`` [#16252](https://github.com/arendst/Tasmota/issues/16252) - Zigbee prepare for Green Power support [#16407](https://github.com/arendst/Tasmota/issues/16407) - Flowrate meter flow amount/duration, show values in table format [#16385](https://github.com/arendst/Tasmota/issues/16385) +- Support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM [#16486](https://github.com/arendst/Tasmota/issues/16486) - Support for Ethernet in ESP32 safeboot firmware [#16388](https://github.com/arendst/Tasmota/issues/16388) - ESP32-S3 support for internal temperature sensor +- Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection +- Berry automated solidification of code ### Breaking Changed diff --git a/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino b/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino index 6205612be..f383874b8 100644 --- a/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino +++ b/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino @@ -29,30 +29,130 @@ * Based on datasheet from https://www.analog.com/en/products/ade7953.html * * I2C Address: 0x38 + ********************************************************************************************* + * Optionally allowing users to tweak calibration registers: + * - In addition to possible rules add a rule containing the calib.dat string like: + * - rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon + * - rule3 on file#calib.dat do {"rms":{"current_a":3166385,"current_b":3125691,"voltage":767262},"angles":{"angle0":180,"angle1":176},"powers":{"totactive":{"a":1345820,"b":1347328},"apparent":{"a":1345820,"b":1347328},"reactive":{"a":1345820,"b":1347328}}} endon + * - Restart Tasmota and obeserve that the results seem calibrated as Tasmota now uses the information from calib.dat + * To restore standard calibration using commands like VoltSet remove above entry from rule3 \*********************************************************************************************/ #define XNRG_07 7 #define XI2C_07 7 // See I2CDEVICES.md +#define ADE7953_ADDR 0x38 + +/*********************************************************************************************/ + +//#define ADE7953_DEBUG + #define ADE7953_PREF 1540 #define ADE7953_UREF 26000 #define ADE7953_IREF 10000 -#define ADE7953_ADDR 0x38 +// Default calibration parameters can be overridden by a rule as documented above. +#define ADE7953_AVGAIN_INIT 4194304 // rms, voltage +#define ADE7953_AIGAIN_INIT 4194304 // rms, current_a +#define ADE7953_BIGAIN_INIT 4194304 // rms, current_b +#define ADE7953_AWGAIN_INIT 4194304 // powers, totactive, a +#define ADE7953_BWGAIN_INIT 4194304 // powers, totactive, b +#define ADE7953_AVAGAIN_INIT 4194304 // powers, apparent, a +#define ADE7953_BVAGAIN_INIT 4194304 // powers, apparent, b +#define ADE7953_AVARGAIN_INIT 4194304 // powers, reactive, a +#define ADE7953_BVARGAIN_INIT 4194304 // powers, reactive, b +#define ADE7943_PHCALA_INIT 0 // angles, angle0 +#define ADE7943_PHCALB_INIT 0 // angles, angle1 + +enum Ade7953_16BitRegisters { + // Register Name Addres R/W Bt Ty Default Description + // ---------------------------- ------ --- -- -- ---------- -------------------------------------------------------------------- + ADE7953_ZXTOUT = 0x100, // 0x100 R/W 16 U 0xFFFF Zero-crossing timeout + ADE7953_LINECYC, // 0x101 R/W 16 U 0x0000 Number of half line cycles for line cycle energy accumulation mode + ADE7953_CONFIG, // 0x102 R/W 16 U 0x8004 Configuration register (see Table 18) + ADE7953_CF1DEN, // 0x103 R/W 16 U 0x003F CF1 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful. + ADE7953_CF2DEN, // 0x104 R/W 16 U 0x003F CF2 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful. + ADE7953_CFMODE = 0x107, // 0x107 R/W 16 U 0x0300 CF output selection (see Table 19) + ADE7943_PHCALA, // 0x108 R/W 16 S 0x0000 Phase calibration register (Current Channel A). This register is in sign magnitude format. + ADE7943_PHCALB, // 0x109 R/W 16 S 0x0000 Phase calibration register (Current Channel B). This register is in sign magnitude format. + ADE7943_PFA, // 0x10A R 16 S 0x0000 Power factor (Current Channel A) + ADE7943_PFB, // 0x10B R 16 S 0x0000 Power factor (Current Channel B) + ADE7943_ANGLE_A, // 0x10C R 16 S 0x0000 Angle between the voltage input and the Current Channel A input + ADE7943_ANGLE_B, // 0x10D R 16 S 0x0000 Angle between the voltage input and the Current Channel B input + ADE7943_Period // 0x10E R 16 U 0x0000 Period register +}; + +enum Ade7953_32BitRegisters { + ADE7953_ACCMODE = 0x301, // 0x301 R/W 24 U 0x000000 Accumulation mode (see Table 21) + ADE7953_AVA = 0x310, // 0x310 R 24 S 0x000000 Instantaneous apparent power (Current Channel A) + ADE7953_BVA, // 0x311 R 24 S 0x000000 Instantaneous apparent power (Current Channel B) + ADE7953_AWATT, // 0x312 R 24 S 0x000000 Instantaneous active power (Current Channel A) + ADE7953_BWATT, // 0x313 R 24 S 0x000000 Instantaneous active power (Current Channel B) + ADE7953_AVAR, // 0x314 R 24 S 0x000000 Instantaneous reactive power (Current Channel A) + ADE7953_BVAR, // 0x315 R 24 S 0x000000 Instantaneous reactive power (Current Channel B) + ADE7953_IA, // 0x316 R 24 S 0x000000 Instantaneous current (Current Channel A) + ADE7953_IB, // 0x317 R 24 S 0x000000 Instantaneous current (Current Channel B) + ADE7953_V, // 0x318 R 24 S 0x000000 Instantaneous voltage (voltage channel) + ADE7953_IRMSA = 0x31A, // 0x31A R 24 U 0x000000 IRMS register (Current Channel A) + ADE7953_IRMSB, // 0x31B R 24 U 0x000000 IRMS register (Current Channel B) + ADE7953_VRMS, // 0x31C R 24 U 0x000000 VRMS register + ADE7953_AENERGYA = 0x31E, // 0x31E R 24 S 0x000000 Active energy (Current Channel A) + ADE7953_AENERGYB, // 0x31F R 24 S 0x000000 Active energy (Current Channel B) + ADE7953_RENERGYA, // 0x320 R 24 S 0x000000 Reactive energy (Current Channel A) + ADE7953_RENERGYB, // 0x321 R 24 S 0x000000 Reactive energy (Current Channel B) + ADE7953_APENERGYA, // 0x322 R 24 S 0x000000 Apparent energy (Current Channel A) + ADE7953_APENERGYB, // 0x323 R 24 S 0x000000 Apparent energy (Current Channel B) + ADE7953_OVLVL, // 0x324 R/W 24 U 0xFFFFFF Overvoltage level + ADE7953_OILVL, // 0x325 R/W 24 U 0xFFFFFF Overcurrent level + ADE7953_VPEAK, // 0x326 R 24 U 0x000000 Voltage channel peak + ADE7953_RSTVPEAK, // 0x327 R 24 U 0x000000 Read voltage peak with reset + ADE7953_IAPEAK, // 0x328 R 24 U 0x000000 Current Channel A peak + ADE7953_RSTIAPEAK, // 0x329 R 24 U 0x000000 Read Current Channel A peak with reset + ADE7953_IBPEAK, // 0x32A R 24 U 0x000000 Current Channel B peak + ADE7953_RSTIBPEAK, // 0x32B R 24 U 0x000000 Read Current Channel B peak with reset + ADE7953_IRQENA, // 0x32C R/W 24 U 0x100000 Interrupt enable (Current Channel A, see Table 22) + ADE7953_IRQSTATA, // 0x32D R 24 U 0x000000 Interrupt status (Current Channel A, see Table 23) + ADE7953_RSTIRQSTATA, // 0x32E R 24 U 0x000000 Reset interrupt status (Current Channel A) + ADE7953_IRQENB, // 0x32F R/W 24 U 0x000000 Interrupt enable (Current Channel B, see Table 24) + ADE7953_IRQSTATB, // 0x330 R 24 U 0x000000 Interrupt status (Current Channel B, see Table 25) + ADE7953_RSTIRQSTATB, // 0x331 R 24 U 0x000000 Reset interrupt status (Current Channel B) + ADE7953_CRC = 0x37F, // 0x37F R 32 U 0xFFFFFFFF Checksum + ADE7953_AIGAIN, // 0x380 R/W 24 U 0x400000 Current channel gain (Current Channel A) + ADE7953_AVGAIN, // 0x381 R/W 24 U 0x400000 Voltage channel gain + ADE7953_AWGAIN, // 0x382 R/W 24 U 0x400000 Active power gain (Current Channel A) + ADE7953_AVARGAIN, // 0x383 R/W 24 U 0x400000 Reactive power gain (Current Channel A) + ADE7953_AVAGAIN, // 0x384 R/W 24 U 0x400000 Apparent power gain (Current Channel A) + ADE7953_AIRMSOS = 0x386, // 0x386 R/W 24 S 0x000000 IRMS offset (Current Channel A) + ADE7953_VRMSOS = 0x388, // 0x388 R/W 24 S 0x000000 VRMS offset + ADE7953_AWATTOS, // 0x389 R/W 24 S 0x000000 Active power offset correction (Current Channel A) + ADE7953_AVAROS, // 0x38A R/W 24 S 0x000000 Reactive power offset correction (Current Channel A) + ADE7953_AVAOS, // 0x38B R/W 24 S 0x000000 Apparent power offset correction (Current Channel A) + ADE7953_BIGAIN, // 0x38C R/W 24 U 0x400000 Current channel gain (Current Channel B) + ADE7953_BVGAIN, // 0x38D R/W 24 U 0x400000 This register should not be modified. + ADE7953_BWGAIN, // 0x38E R/W 24 U 0x400000 Active power gain (Current Channel B) + ADE7953_BVARGAIN, // 0x38F R/W 24 U 0x400000 Reactive power gain (Current Channel B) + ADE7953_BVAGAIN, // 0x390 R/W 24 U 0x400000 Apparent power gain (Current Channel B) + ADE7953_BIRMSOS = 0x392, // 0x392 R/W 24 S 0x000000 IRMS offset (Current Channel B) + ADE7953_BWATTOS = 0x395, // 0x395 R/W 24 S 0x000000 Active power offset correction (Current Channel B) + ADE7953_BVAROS, // 0x396 R/W 24 S 0x000000 Reactive power offset correction (Current Channel B) + ADE7953_BVAOS // 0x397 R/W 24 S 0x000000 Apparent power offset correction (Current Channel B) +}; + +enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM }; // 24-bit data registers const uint16_t Ade7953Registers[] { - 0x31B, // IRMSB - RMS current channel B (Relay 1) - 0x313, // BWATT - Active power channel B - 0x311, // BVA - Apparent power channel B - 0x315, // BVAR - Reactive power channel B - 0x31A, // IRMSA - RMS current channel A (Relay 2) - 0x312, // AWATT - Active power channel A - 0x310, // AVA - Apparent power channel A - 0x314, // AVAR - Reactive power channel A - 0x31C, // VRMS - RMS voltage (Both relays) - 0x10E, // Period - 16-bit unsigned period register - 0x301 // ACCMODE - Accumulation mode + ADE7953_IRMSB, // IRMSB - RMS current channel B (Relay 1) + ADE7953_BWATT, // BWATT - Active power channel B + ADE7953_BVA, // BVA - Apparent power channel B + ADE7953_BVAR, // BVAR - Reactive power channel B + ADE7953_IRMSA, // IRMSA - RMS current channel A (Relay 2) + ADE7953_AWATT, // AWATT - Active power channel A + ADE7953_AVA, // AVA - Apparent power channel A + ADE7953_AVAR, // AVAR - Reactive power channel A + ADE7953_VRMS, // VRMS - RMS voltage (Both relays) + ADE7943_Period, // Period - 16-bit unsigned period register + ADE7953_ACCMODE // ACCMODE - Accumulation mode }; // Active power @@ -71,21 +171,26 @@ struct Ade7953 { uint32_t period = 0; uint32_t current_rms[2] = { 0, 0 }; uint32_t active_power[2] = { 0, 0 }; + uint32_t calib_igain[2]; + uint32_t calib_wgain[2]; + uint32_t calib_vagain[2]; + uint32_t calib_vargain[2]; + uint32_t calib_vgain; + int16_t calib_phcal[2]; uint8_t init_step = 0; uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM } Ade7953; -int Ade7953RegSize(uint16_t reg) -{ +int Ade7953RegSize(uint16_t reg) { int size = 0; switch ((reg >> 8) & 0x0F) { - case 0x03: + case 0x03: // 32-bit size++; - case 0x02: + case 0x02: // 24-bit size++; - case 0x01: + case 0x01: // 16-bit size++; - case 0x00: + case 0x00: // 8-bit case 0x07: case 0x08: size++; @@ -93,8 +198,7 @@ int Ade7953RegSize(uint16_t reg) return size; } -void Ade7953Write(uint16_t reg, uint32_t val) -{ +void Ade7953Write(uint16_t reg, uint32_t val) { int size = Ade7953RegSize(reg); if (size) { Wire.beginTransmission(ADE7953_ADDR); @@ -108,8 +212,7 @@ void Ade7953Write(uint16_t reg, uint32_t val) } } -int32_t Ade7953Read(uint16_t reg) -{ +int32_t Ade7953Read(uint16_t reg) { uint32_t response = 0; int size = Ade7953RegSize(reg); @@ -128,15 +231,57 @@ int32_t Ade7953Read(uint16_t reg) return response; } -void Ade7953Init(void) -{ - Ade7953Write(0x102, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF - Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 - Ade7953Write(0x120, 0x0030); // Configure optimum setting +void Ade7953Init(void) { + Ade7953Write(ADE7953_CONFIG, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF + Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 + Ade7953Write(0x120, 0x0030); // Configure optimum setting + +#ifdef ADE7953_DEBUG + uint32_t aigain = Ade7953Read(ADE7953_AIGAIN); + uint32_t avgain = Ade7953Read(ADE7953_AVGAIN); + uint32_t bigain = Ade7953Read(ADE7953_BIGAIN); + uint32_t awgain = Ade7953Read(ADE7953_AWGAIN); + uint32_t bwgain = Ade7953Read(ADE7953_BWGAIN); + uint32_t avagain = Ade7953Read(ADE7953_AVAGAIN); + uint32_t bvagain = Ade7953Read(ADE7953_BVAGAIN); + uint32_t avargain = Ade7953Read(ADE7953_AVARGAIN); + uint32_t bvargain = Ade7953Read(ADE7953_BVARGAIN); + int32_t phcala = Ade7953Read(ADE7943_PHCALA); + int32_t phcalb = Ade7953Read(ADE7943_PHCALB); + AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs V %06X, AI %06X, BI %06X, AW %06X, BW %06X, AVA %06X, BVA %06X, AVAr %06X, BVAr %06X, PA %06X, PB %06X"), + avgain, aigain, bigain, awgain, bwgain, avagain, bvagain, avargain, bvargain, phcala, phcalb); +#endif // ADE7953_DEBUG + + Ade7953Write(ADE7953_AVGAIN, Ade7953.calib_vgain); + Ade7953Write(ADE7953_AIGAIN, Ade7953.calib_igain[0]); + Ade7953Write(ADE7953_BIGAIN, Ade7953.calib_igain[1]); + Ade7953Write(ADE7953_AWGAIN, Ade7953.calib_wgain[0]); + Ade7953Write(ADE7953_BWGAIN, Ade7953.calib_wgain[1]); + Ade7953Write(ADE7953_AVAGAIN, Ade7953.calib_vagain[0]); + Ade7953Write(ADE7953_BVAGAIN, Ade7953.calib_vagain[1]); + Ade7953Write(ADE7953_AVARGAIN, Ade7953.calib_vargain[0]); + Ade7953Write(ADE7953_BVARGAIN, Ade7953.calib_vargain[1]); + Ade7953Write(ADE7943_PHCALA, Ade7953.calib_phcal[0]); + Ade7953Write(ADE7943_PHCALB, Ade7953.calib_phcal[1]); + +#ifdef ADE7953_DEBUG + aigain = Ade7953Read(ADE7953_AIGAIN); + avgain = Ade7953Read(ADE7953_AVGAIN); + bigain = Ade7953Read(ADE7953_BIGAIN); + awgain = Ade7953Read(ADE7953_AWGAIN); + bwgain = Ade7953Read(ADE7953_BWGAIN); + avagain = Ade7953Read(ADE7953_AVAGAIN); + bvagain = Ade7953Read(ADE7953_BVAGAIN); + avargain = Ade7953Read(ADE7953_AVARGAIN); + bvargain = Ade7953Read(ADE7953_BVARGAIN); + phcala = Ade7953Read(ADE7943_PHCALA); + phcalb = Ade7953Read(ADE7943_PHCALB); + AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs V %06X, AI %06X, BI %06X, AW %06X, BW %06X, AVA %06X, BVA %06X, AVAr %06X, BVAr %06X, PA %06X, PB %06X"), + avgain, aigain, bigain, awgain, bwgain, avagain, bvagain, avargain, bvargain, phcala, phcalb); +#endif // ADE7953_DEBUG } -void Ade7953GetData(void) -{ +void Ade7953GetData(void) { uint32_t acc_mode; int32_t reg[2][4]; for (uint32_t i = 0; i < sizeof(Ade7953Registers)/sizeof(uint16_t); i++) { @@ -148,7 +293,7 @@ void Ade7953GetData(void) } else if (10 == i) { acc_mode = value; // Accumulation mode /* - if (0 == Ade7953.model) { // Shelly 2.5 - Swap channel B values due to hardware connection + if (ADE7953_SHELLY_25 == Ade7953.model) { // Shelly 2.5 - Swap channel B values due to hardware connection // if (acc_mode & APSIGN[0]) { acc_mode &= ~APSIGN[0]; } else { acc_mode |= APSIGN[0]; } // if (acc_mode & VARSIGN[0]) { acc_mode &= ~VARSIGN[0]; } else { acc_mode |= VARSIGN[0]; } acc_mode ^= (APSIGN[0] | VARSIGN[0]); @@ -187,14 +332,17 @@ void Ade7953GetData(void) Ade7953.active_power[0], Ade7953.active_power[1]); if (Energy.power_on) { // Powered on - Energy.voltage[0] = (float)Ade7953.voltage_rms / Settings->energy_voltage_calibration; - Energy.frequency[0] = 223750.0f / ( (float)Ade7953.period + 1); + Energy.voltage[0] = (Ade7953.calib_vgain != ADE7953_AVGAIN_INIT) ? (float)Ade7953.voltage_rms / 10000 + : (float)Ade7953.voltage_rms / Settings->energy_voltage_calibration; + Energy.frequency[0] = 223750.0f / ((float)Ade7953.period + 1); for (uint32_t channel = 0; channel < 2; channel++) { Energy.data_valid[channel] = 0; - Energy.active_power[channel] = (float)Ade7953.active_power[channel] / (Settings->energy_power_calibration / 10); - Energy.reactive_power[channel] = (float)reactive_power[channel] / (Settings->energy_power_calibration / 10); - if (1 == Ade7953.model) { // Shelly EM + Energy.active_power[channel] = (Ade7953.calib_wgain[channel] != ADE7953_AWGAIN_INIT) ? (float)Ade7953.active_power[channel] / 100 + : (float)Ade7953.active_power[channel] / (Settings->energy_power_calibration / 10); + Energy.reactive_power[channel] = (Ade7953.calib_vargain[channel] != ADE7953_AVARGAIN_INIT) ? (float)reactive_power[channel] / 100 + : (float)reactive_power[channel] / (Settings->energy_power_calibration / 10); + if (ADE7953_SHELLY_EM == Ade7953.model) { if ((acc_mode & APSIGN[channel]) != 0) { Energy.active_power[channel] = Energy.active_power[channel] * -1; } @@ -202,11 +350,13 @@ void Ade7953GetData(void) Energy.reactive_power[channel] = Energy.reactive_power[channel] * -1; } } - Energy.apparent_power[channel] = (float)apparent_power[channel] / (Settings->energy_power_calibration / 10); + Energy.apparent_power[channel] = (Ade7953.calib_vagain[channel] != ADE7953_AVAGAIN_INIT) ? (float)apparent_power[channel] / 100 + : (float)apparent_power[channel] / (Settings->energy_power_calibration / 10); if (0 == Energy.active_power[channel]) { Energy.current[channel] = 0; } else { - Energy.current[channel] = (float)Ade7953.current_rms[channel] / (Settings->energy_current_calibration * 10); + Energy.current[channel] = (Ade7953.calib_igain[channel] != ADE7953_AIGAIN_INIT) ? (float)Ade7953.current_rms[channel] / 100000 + : (float)Ade7953.current_rms[channel] / (Settings->energy_current_calibration * 10); Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36; } } @@ -219,8 +369,7 @@ void Ade7953GetData(void) } } -void Ade7953EnergyEverySecond(void) -{ +void Ade7953EnergyEverySecond(void) { if (Ade7953.init_step) { if (1 == Ade7953.init_step) { Ade7953Init(); @@ -231,14 +380,98 @@ void Ade7953EnergyEverySecond(void) } } -void Ade7953DrvInit(void) -{ +/*********************************************************************************************/ + +bool Ade7953SetDefaults(const char* json) { + // {"angles":{"angle0":180,"angle1":176}} + // {"rms":{"current_a":3166385,"current_b":3125691,"voltage":767262},"angles":{"angle0":180,"angle1":176},"powers":{"totactive":{"a":1345820,"b":1347328},"apparent":{"a":1345820,"b":1347328},"reactive":{"a":1345820,"b":1347328}}} + uint32_t len = strlen(json) +1; + if (len < 7) { return false; } // Too short + + char json_buffer[len]; + memcpy(json_buffer, json, len); // Keep original safe + JsonParser parser(json_buffer); + JsonParserObject root = parser.getRootObject(); + if (!root) { + AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Invalid JSON")); + return false; + } + + // All parameters are optional allowing for partial changes + JsonParserToken val; + JsonParserObject rms = root[PSTR("rms")].getObject(); + if (rms) { + val = rms[PSTR("voltage")]; + if (val) { Ade7953.calib_vgain = val.getInt(); } + val = rms[PSTR("current_a")]; + if (val) { Ade7953.calib_igain[0] = val.getInt(); } + val = rms[PSTR("current_b")]; + if (val) { Ade7953.calib_igain[1] = val.getInt(); } + } + JsonParserObject angles = root[PSTR("angles")].getObject(); + if (angles) { + val = angles[PSTR("angle0")]; + if (val) { Ade7953.calib_phcal[0] = val.getUInt(); } + val = angles[PSTR("angle1")]; + if (val) { Ade7953.calib_phcal[1] = val.getUInt(); } + } + JsonParserObject powers = root[PSTR("powers")].getObject(); + if (powers) { + JsonParserObject totactive = powers[PSTR("totactive")].getObject(); + if (totactive) { + val = totactive[PSTR("a")]; + if (val) { Ade7953.calib_wgain[0] = val.getInt(); } + val = totactive[PSTR("b")]; + if (val) { Ade7953.calib_wgain[1] = val.getInt(); } + } + JsonParserObject apparent = powers[PSTR("apparent")].getObject(); + if (apparent) { + val = totactive[PSTR("a")]; + if (val) { Ade7953.calib_vagain[0] = val.getInt(); } + val = totactive[PSTR("b")]; + if (val) { Ade7953.calib_vagain[1] = val.getInt(); } + } + JsonParserObject reactive = powers[PSTR("reactive")].getObject(); + if (reactive) { + val = totactive[PSTR("a")]; + if (val) { Ade7953.calib_vargain[0] = val.getInt(); } + val = totactive[PSTR("b")]; + if (val) { Ade7953.calib_vargain[1] = val.getInt(); } + } + } + return true; +} + +void Ade7953Defaults(void) { + Ade7953.calib_vgain = ADE7953_AVGAIN_INIT; + Ade7953.calib_igain[0] = ADE7953_AIGAIN_INIT; + Ade7953.calib_igain[1] = ADE7953_BIGAIN_INIT; + Ade7953.calib_wgain[0] = ADE7953_AWGAIN_INIT; + Ade7953.calib_wgain[1] = ADE7953_BWGAIN_INIT; + Ade7953.calib_vagain[0] = ADE7953_AVAGAIN_INIT; + Ade7953.calib_vagain[1] = ADE7953_BVAGAIN_INIT; + Ade7953.calib_vargain[0] = ADE7953_AVARGAIN_INIT; + Ade7953.calib_vargain[1] = ADE7953_BVARGAIN_INIT; + Ade7953.calib_phcal[0] = ADE7943_PHCALA_INIT; + Ade7953.calib_phcal[1] = ADE7943_PHCALB_INIT; + +#ifdef USE_RULES + // rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon + String calib = RuleLoadFile("CALIB.DAT"); + if (calib.length()) { +// AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: File '%s'"), calib.c_str()); + Ade7953SetDefaults(calib.c_str()); + } +#endif // USE_RULES +} + +void Ade7953DrvInit(void) { if (PinUsed(GPIO_ADE7953_IRQ, GPIO_ANY)) { // Irq on GPIO16 is not supported... uint32_t pin_irq = Pin(GPIO_ADE7953_IRQ, GPIO_ANY); pinMode(pin_irq, INPUT); // Related to resetPins() - Must be set to input Ade7953.model = GetPin(pin_irq) - AGPIO(GPIO_ADE7953_IRQ); // 0 (Shelly 2.5), 1 (Shelly EM) - if (1 == Ade7953.model) { // Shelly EM + if (ADE7953_SHELLY_EM == Ade7953.model) { pinMode(16, OUTPUT); // Reset pin ADE7953 digitalWrite(16, 0); delay(1); @@ -254,6 +487,9 @@ void Ade7953DrvInit(void) Settings->energy_current_calibration = ADE7953_IREF; } I2cSetActiveFound(ADE7953_ADDR, "ADE7953"); + + Ade7953Defaults(); + Ade7953.init_step = 2; Energy.phase_count = 2; // Handle two channels as two phases Energy.voltage_common = true; // Use common voltage @@ -264,8 +500,7 @@ void Ade7953DrvInit(void) } } -bool Ade7953Command(void) -{ +bool Ade7953Command(void) { bool serviced = true; uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0; @@ -313,8 +548,7 @@ bool Ade7953Command(void) * Interface \*********************************************************************************************/ -bool Xnrg07(uint8_t function) -{ +bool Xnrg07(uint8_t function) { if (!I2cEnabled(XI2C_07)) { return false; } bool result = false;