diff --git a/tasmota/xnrg_19_cse7761.ino b/tasmota/xnrg_19_cse7761.ino new file mode 100644 index 000000000..3f214b691 --- /dev/null +++ b/tasmota/xnrg_19_cse7761.ino @@ -0,0 +1,362 @@ +/* + xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota + + Copyright (C) 2021 Theo Arends + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#ifdef USE_ENERGY_SENSOR +#ifdef USE_CSE7761 +/*********************************************************************************************\ + * CSE7761 - Energy (Sonoff Dual R3 Pow) + * + * Based on datasheet from ChipSea +\*********************************************************************************************/ + +#define XNRG_19 19 + +#define CSE7761_K1 2 // Current channel sampling resistance in milli Ohm +#define CSE7761_K2 2 // Voltage divider resistance in 1k/1M + +#define CSE7761_2POWER22 4194304 +#define CSE7761_2POWER23 8388608 +#define CSE7761_2POWER31 2147483648 + +enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAc, EnergyBC }; + +#include + +TasmotaSerial *Cse7761Serial = nullptr; + +struct { + uint32_t voltage_rms = 0; + uint32_t current_rms[2] = { 0 }; + uint32_t active_power[2] = { 0 }; + uint16_t coefficient[8] = { 0 }; + uint8_t init = 0; + bool found = false; +} CSE7761Data; + +void Cse7761Write(uint32_t reg, uint32_t data) { + uint8_t buffer[5]; + + buffer[0] = 0xA5; + buffer[1] = reg; + uint32_t len = 2; + if (data) { + if (data < 0xFF) { + buffer[2] = data & 0xFF; + len = 3; + } else { + buffer[2] = (data >> 8) & 0xFF; + buffer[3] = data & 0xFF; + len = 4; + } + uint8_t crc = 0; + for (uint32_t i = 0; i < len; i++) { + crc += buffer[i]; + } + buffer[len] = ~crc; + len++; + } + Cse7761Serial->write(buffer, len); + + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Send %d, Data %*_H"), len, len, buffer); +} + +uint32_t Cse7761Read(uint32_t reg, uint32_t request) { + delay(3); + Cse7761Write(reg, 0); + + uint8_t buffer[5]; + uint32_t rcvd = 0; + uint32_t timeout = millis() + 3; + while (!TimeReached(timeout) && (rcvd <= request) && (rcvd <= sizeof(buffer))) { + int value = Cse7761Serial->read(); + if (value > -1) { + buffer[rcvd++] = value; + } + } + + if (!rcvd) { + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d"), rcvd); + return 0; + } + + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d, Data %*_H"), rcvd, rcvd, buffer); + + int result = 0; + uint8_t crc = 0xA5 + reg; + for (uint32_t i = 0; i < rcvd -1; i++) { + result = (result << 8) | buffer[i]; + crc += buffer[i]; + } + crc = ~crc; + if (crc != buffer[rcvd]) { + result = 0; + } + + return result; +} + +bool Cse7761ChipInit(void) { + uint16_t calc_chksum = 0xFFFF; + for (uint32_t i = 0; i < 8; i++) { + CSE7761Data.coefficient[i] = Cse7761Read(0x70 + i, 2); + calc_chksum += CSE7761Data.coefficient[i]; + } + uint16_t dummy = Cse7761Read(0x6E, 2); + uint16_t coeff_chksum = Cse7761Read(0x6F, 2); + if (calc_chksum != coeff_chksum) { + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Coefficients invalid")); +// return false; + } + + delay(3); + Cse7761Write(0xEA, 0xE5); // Enable write operation + delay(5); + uint8_t sys_status = Cse7761Read(0x43, 1); + if (sys_status & 0x10) { // Write enable to protected registers (WREN) + delay(3); +/* + System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04 + Bit name Function description + 15-11 NC -, the default is 1 + 10 ADC2ON + =1, means ADC current channel B is on (Sonoff Dual R3 Pow) + =0, means ADC current channel B is closed + 9 NC -, the default is 1. + 8-6 PGAIB[2:0] Current channel B analog gain selection highest bit + =1XX, PGA of current channel B=16 + =011, PGA of current channel B=8 + =010, PGA of current channel B=4 + =001, PGA of current channel B=2 + =000, PGA of current channel B=1 (Sonoff Dual R3 Pow) + 5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection + =1XX, PGA of current channel U=16 + =011, PGA of current channel U=8 + =010, PGA of current channel U=4 + =001, PGA of current channel U=2 (Sonoff Dual R3 Pow) + =000, PGA of current channel U=1 + 2-0 PGAIA[2:0] Current channel A analog gain selection highest bit + =1XX, PGA of current channel A=16 + =011, PGA of current channel A=8 + =010, PGA of current channel A=4 + =001, PGA of current channel A=2 + =000, PGA of current channel A=1 (Sonoff Dual R3 Pow) +*/ + Cse7761Write(0x80, 0xFF04); // Set SYSCON +/* + Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000 + Bit name Function description + 15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor: + =2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow) + =2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-. + =2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+. + =2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-. + After measuring these four results and averaging, the AD value of the current measured temperature can be obtained. + 13 tensor_en Temperature measurement module control + =0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow) + =1 when the temperature measurement module is turned on; + 12 comp_off Comparator module close signal: + =0 when the comparator module is in working state + =1 when the comparator module is off (Sonoff Dual R3 Pow) + 11-10 Pmode[1:0] Selection of active energy calculation method: + Pmode =00, both positive and negative active energy participate in the accumulation, + the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow) + Pmode = 01, only accumulate positive active energy; + Pmode = 10, both positive and negative active energy participate in the accumulation, + and the accumulation method is absolute value method. No reverse active power indication; + Pmode =11, reserved, the mode is the same as Pmode =00 + 9 NC - + 8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0: + =0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow) + =1, indicating that the ZX output changes at both the positive and negative zero crossings + 7 ZXD0 + =0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow) + =1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal + 6 HPFIBOFF + =0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow) + =1, turn off the digital high-pass filter of current channel B + 5 HPFIAOFF + =0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow) + =1, turn off the digital high-pass filter of current channel A + 4 HPFUOFF + =0, enable U channel digital high pass filter (Sonoff Dual R3 Pow) + =1, turn off the U channel digital high-pass filter + 3-2 NC - + 1 PBRUN + =1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow) + =0 (default), turn off PFB pulse output and active energy register accumulation. + 0 PARUN + =1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow) + =0 (default), turn off PFA pulse output and active energy register accumulation. +*/ + Cse7761Write(0x81, 0x1003); // Set EMUCON +/* + Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001 + Bit name Function description + 15-13 NC - + 12 SDOCmos + =1, SDO pin CMOS open-drain output (Sonoff Dual R3 Pow) + =0, SDO pin CMOS output + 11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode. + Clear after reading is not supported in UART mode + =1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow) + =0, Energy_PB is cleared after reading; + 10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode, + Clear after reading is not supported in UART mode + =1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow) + =0, Energy_PA is cleared after reading; + 9-8 DUPSEL[1:0] Average register update frequency control + =00, Update frequency 3.4Hz + =01, Update frequency 6.8Hz + =10, Update frequency 13.65Hz + =11, Update frequency 27.3Hz (Sonoff Dual R3 Pow) + 7 CHS_IB Current channel B measurement selection signal + =1, measure the current of channel B (Sonoff Dual R3 Pow) + =0, measure the internal temperature of the chip + 6 PfactorEN Power factor function enable + =1, turn on the power factor output function (Sonoff Dual R3 Pow) + =0, turn off the power factor output function + 5 WaveEN Waveform data, instantaneous data output enable signal + =1, turn on the waveform data output function + =0, turn off the waveform data output function (Sonoff Dual R3 Pow) + 4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first + =1, turn on the voltage drop detection function + =0, turn off the voltage drop detection function (Sonoff Dual R3 Pow) + 3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first + =1, turn on the overvoltage, overcurrent, and overload detection functions + =0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow) + 2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal + =1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions + =0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow) + 1 PeakEN Peak detect enable signal + =1, turn on the peak detection function + =0, turn off the peak detection function (Sonoff Dual R3 Pow) + 0 NC Default is 1 +*/ + Cse7761Write(0x93, 0x0FC1); // Set EMUCON2 + } else { + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write enable failed")); +// return false; + } + delay(80); + Cse7761Write(0xEA, 0xDC); // Close write operation + return true; +} + +void Cse7761GetData(void) { + CSE7761Data.voltage_rms = Cse7761Read(0x26, 3); + CSE7761Data.current_rms[0] = Cse7761Read(0x24, 3); + CSE7761Data.active_power[0] = Cse7761Read(0x2C, 4); + CSE7761Data.current_rms[1] = Cse7761Read(0x25, 3); + CSE7761Data.active_power[1] = Cse7761Read(0x2D, 4); + + if (Energy.power_on) { // Powered on + Energy.voltage[0] = ((float)CSE7761Data.voltage_rms * ((double)CSE7761Data.coefficient[RmsUC] / (CSE7761_K2 * 2 * CSE7761_2POWER22))) / 1000; // V + + for (uint32_t channel = 0; channel < 2; channel++) { + Energy.data_valid[channel] = 0; + Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] * ((double)CSE7761Data.coefficient[PowerPAC + channel] / (CSE7761_K1 * CSE7761_K2 * 2 * CSE7761_2POWER31)); // W + if (0 == Energy.active_power[channel]) { + Energy.current[channel] = 0; + } else { + Energy.current[channel] = (float)CSE7761Data.current_rms[channel] * ((double)CSE7761Data.coefficient[RmsIAC + channel] / (CSE7761_K1 * 2 * CSE7761_2POWER23)); // mA + } + } + + uint32_t active_power_sum = (Energy.active_power[0] + Energy.active_power[1]) * 1000; + if (active_power_sum) { + Energy.kWhtoday_delta += active_power_sum / 36; + EnergyUpdateToday(); + } + } else { // Powered off + Energy.data_valid[0] = ENERGY_WATCHDOG; + Energy.data_valid[1] = ENERGY_WATCHDOG; + } +} + +/********************************************************************************************/ + +void Cse7761EverySecond(void) { + if (CSE7761Data.init) { + if (2 == CSE7761Data.init) { + Cse7761Write(0xEA, 0x96); // Reset chip + } + else if (1 == CSE7761Data.init) { + uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04 + if (0x0A04 == syscon) { + CSE7761Data.found = Cse7761ChipInit(); + } + if (CSE7761Data.found) { + AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found")); + } + } + CSE7761Data.init--; + } + else { + if (CSE7761Data.found) { + Cse7761GetData(); + } + } +} + +void Cse7761SnsInit(void) { + // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions + Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), Pin(GPIO_CSE7766_TX), 1); + if (Cse7761Serial->begin(38400, SERIAL_8E1)) { + if (Cse7761Serial->hardwareSerial()) { +// SetSerial(38400, TS_SERIAL_8E1); + ClaimSerial(); + } + } else { + TasmotaGlobal.energy_driver = ENERGY_NONE; + } +} + +void Cse7761DrvInit(void) { + if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) { + CSE7761Data.found = false; + CSE7761Data.init = 3; // Init setup steps + Energy.phase_count = 2; // Handle two channels as two phases + Energy.voltage_common = true; // Use common voltage + TasmotaGlobal.energy_driver = XNRG_19; + } +} + +/*********************************************************************************************\ + * Interface +\*********************************************************************************************/ + +bool Xnrg19(uint8_t function) { + bool result = false; + + switch (function) { + case FUNC_EVERY_SECOND: + Cse7761EverySecond(); + break; + case FUNC_INIT: + Cse7761SnsInit(); + break; + case FUNC_PRE_INIT: + Cse7761DrvInit(); + break; + } + return result; +} + +#endif // USE_CSE7761 +#endif // USE_ENERGY_SENSOR