diff --git a/tasmota/xnrg_19_cse7761.ino b/tasmota/xnrg_19_cse7761.ino
new file mode 100644
index 000000000..3f214b691
--- /dev/null
+++ b/tasmota/xnrg_19_cse7761.ino
@@ -0,0 +1,362 @@
+/*
+ xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota
+
+ Copyright (C) 2021 Theo Arends
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+*/
+
+#ifdef USE_ENERGY_SENSOR
+#ifdef USE_CSE7761
+/*********************************************************************************************\
+ * CSE7761 - Energy (Sonoff Dual R3 Pow)
+ *
+ * Based on datasheet from ChipSea
+\*********************************************************************************************/
+
+#define XNRG_19 19
+
+#define CSE7761_K1 2 // Current channel sampling resistance in milli Ohm
+#define CSE7761_K2 2 // Voltage divider resistance in 1k/1M
+
+#define CSE7761_2POWER22 4194304
+#define CSE7761_2POWER23 8388608
+#define CSE7761_2POWER31 2147483648
+
+enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAc, EnergyBC };
+
+#include
+
+TasmotaSerial *Cse7761Serial = nullptr;
+
+struct {
+ uint32_t voltage_rms = 0;
+ uint32_t current_rms[2] = { 0 };
+ uint32_t active_power[2] = { 0 };
+ uint16_t coefficient[8] = { 0 };
+ uint8_t init = 0;
+ bool found = false;
+} CSE7761Data;
+
+void Cse7761Write(uint32_t reg, uint32_t data) {
+ uint8_t buffer[5];
+
+ buffer[0] = 0xA5;
+ buffer[1] = reg;
+ uint32_t len = 2;
+ if (data) {
+ if (data < 0xFF) {
+ buffer[2] = data & 0xFF;
+ len = 3;
+ } else {
+ buffer[2] = (data >> 8) & 0xFF;
+ buffer[3] = data & 0xFF;
+ len = 4;
+ }
+ uint8_t crc = 0;
+ for (uint32_t i = 0; i < len; i++) {
+ crc += buffer[i];
+ }
+ buffer[len] = ~crc;
+ len++;
+ }
+ Cse7761Serial->write(buffer, len);
+
+ AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Send %d, Data %*_H"), len, len, buffer);
+}
+
+uint32_t Cse7761Read(uint32_t reg, uint32_t request) {
+ delay(3);
+ Cse7761Write(reg, 0);
+
+ uint8_t buffer[5];
+ uint32_t rcvd = 0;
+ uint32_t timeout = millis() + 3;
+ while (!TimeReached(timeout) && (rcvd <= request) && (rcvd <= sizeof(buffer))) {
+ int value = Cse7761Serial->read();
+ if (value > -1) {
+ buffer[rcvd++] = value;
+ }
+ }
+
+ if (!rcvd) {
+ AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d"), rcvd);
+ return 0;
+ }
+
+ AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d, Data %*_H"), rcvd, rcvd, buffer);
+
+ int result = 0;
+ uint8_t crc = 0xA5 + reg;
+ for (uint32_t i = 0; i < rcvd -1; i++) {
+ result = (result << 8) | buffer[i];
+ crc += buffer[i];
+ }
+ crc = ~crc;
+ if (crc != buffer[rcvd]) {
+ result = 0;
+ }
+
+ return result;
+}
+
+bool Cse7761ChipInit(void) {
+ uint16_t calc_chksum = 0xFFFF;
+ for (uint32_t i = 0; i < 8; i++) {
+ CSE7761Data.coefficient[i] = Cse7761Read(0x70 + i, 2);
+ calc_chksum += CSE7761Data.coefficient[i];
+ }
+ uint16_t dummy = Cse7761Read(0x6E, 2);
+ uint16_t coeff_chksum = Cse7761Read(0x6F, 2);
+ if (calc_chksum != coeff_chksum) {
+ AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Coefficients invalid"));
+// return false;
+ }
+
+ delay(3);
+ Cse7761Write(0xEA, 0xE5); // Enable write operation
+ delay(5);
+ uint8_t sys_status = Cse7761Read(0x43, 1);
+ if (sys_status & 0x10) { // Write enable to protected registers (WREN)
+ delay(3);
+/*
+ System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
+ Bit name Function description
+ 15-11 NC -, the default is 1
+ 10 ADC2ON
+ =1, means ADC current channel B is on (Sonoff Dual R3 Pow)
+ =0, means ADC current channel B is closed
+ 9 NC -, the default is 1.
+ 8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
+ =1XX, PGA of current channel B=16
+ =011, PGA of current channel B=8
+ =010, PGA of current channel B=4
+ =001, PGA of current channel B=2
+ =000, PGA of current channel B=1 (Sonoff Dual R3 Pow)
+ 5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
+ =1XX, PGA of current channel U=16
+ =011, PGA of current channel U=8
+ =010, PGA of current channel U=4
+ =001, PGA of current channel U=2 (Sonoff Dual R3 Pow)
+ =000, PGA of current channel U=1
+ 2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
+ =1XX, PGA of current channel A=16
+ =011, PGA of current channel A=8
+ =010, PGA of current channel A=4
+ =001, PGA of current channel A=2
+ =000, PGA of current channel A=1 (Sonoff Dual R3 Pow)
+*/
+ Cse7761Write(0x80, 0xFF04); // Set SYSCON
+/*
+ Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
+ Bit name Function description
+ 15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor:
+ =2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow)
+ =2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-.
+ =2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+.
+ =2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-.
+ After measuring these four results and averaging, the AD value of the current measured temperature can be obtained.
+ 13 tensor_en Temperature measurement module control
+ =0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow)
+ =1 when the temperature measurement module is turned on;
+ 12 comp_off Comparator module close signal:
+ =0 when the comparator module is in working state
+ =1 when the comparator module is off (Sonoff Dual R3 Pow)
+ 11-10 Pmode[1:0] Selection of active energy calculation method:
+ Pmode =00, both positive and negative active energy participate in the accumulation,
+ the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow)
+ Pmode = 01, only accumulate positive active energy;
+ Pmode = 10, both positive and negative active energy participate in the accumulation,
+ and the accumulation method is absolute value method. No reverse active power indication;
+ Pmode =11, reserved, the mode is the same as Pmode =00
+ 9 NC -
+ 8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0:
+ =0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow)
+ =1, indicating that the ZX output changes at both the positive and negative zero crossings
+ 7 ZXD0
+ =0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow)
+ =1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal
+ 6 HPFIBOFF
+ =0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow)
+ =1, turn off the digital high-pass filter of current channel B
+ 5 HPFIAOFF
+ =0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow)
+ =1, turn off the digital high-pass filter of current channel A
+ 4 HPFUOFF
+ =0, enable U channel digital high pass filter (Sonoff Dual R3 Pow)
+ =1, turn off the U channel digital high-pass filter
+ 3-2 NC -
+ 1 PBRUN
+ =1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
+ =0 (default), turn off PFB pulse output and active energy register accumulation.
+ 0 PARUN
+ =1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
+ =0 (default), turn off PFA pulse output and active energy register accumulation.
+*/
+ Cse7761Write(0x81, 0x1003); // Set EMUCON
+/*
+ Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
+ Bit name Function description
+ 15-13 NC -
+ 12 SDOCmos
+ =1, SDO pin CMOS open-drain output (Sonoff Dual R3 Pow)
+ =0, SDO pin CMOS output
+ 11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
+ Clear after reading is not supported in UART mode
+ =1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
+ =0, Energy_PB is cleared after reading;
+ 10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode,
+ Clear after reading is not supported in UART mode
+ =1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow)
+ =0, Energy_PA is cleared after reading;
+ 9-8 DUPSEL[1:0] Average register update frequency control
+ =00, Update frequency 3.4Hz
+ =01, Update frequency 6.8Hz
+ =10, Update frequency 13.65Hz
+ =11, Update frequency 27.3Hz (Sonoff Dual R3 Pow)
+ 7 CHS_IB Current channel B measurement selection signal
+ =1, measure the current of channel B (Sonoff Dual R3 Pow)
+ =0, measure the internal temperature of the chip
+ 6 PfactorEN Power factor function enable
+ =1, turn on the power factor output function (Sonoff Dual R3 Pow)
+ =0, turn off the power factor output function
+ 5 WaveEN Waveform data, instantaneous data output enable signal
+ =1, turn on the waveform data output function
+ =0, turn off the waveform data output function (Sonoff Dual R3 Pow)
+ 4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first
+ =1, turn on the voltage drop detection function
+ =0, turn off the voltage drop detection function (Sonoff Dual R3 Pow)
+ 3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first
+ =1, turn on the overvoltage, overcurrent, and overload detection functions
+ =0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow)
+ 2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal
+ =1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions
+ =0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow)
+ 1 PeakEN Peak detect enable signal
+ =1, turn on the peak detection function
+ =0, turn off the peak detection function (Sonoff Dual R3 Pow)
+ 0 NC Default is 1
+*/
+ Cse7761Write(0x93, 0x0FC1); // Set EMUCON2
+ } else {
+ AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write enable failed"));
+// return false;
+ }
+ delay(80);
+ Cse7761Write(0xEA, 0xDC); // Close write operation
+ return true;
+}
+
+void Cse7761GetData(void) {
+ CSE7761Data.voltage_rms = Cse7761Read(0x26, 3);
+ CSE7761Data.current_rms[0] = Cse7761Read(0x24, 3);
+ CSE7761Data.active_power[0] = Cse7761Read(0x2C, 4);
+ CSE7761Data.current_rms[1] = Cse7761Read(0x25, 3);
+ CSE7761Data.active_power[1] = Cse7761Read(0x2D, 4);
+
+ if (Energy.power_on) { // Powered on
+ Energy.voltage[0] = ((float)CSE7761Data.voltage_rms * ((double)CSE7761Data.coefficient[RmsUC] / (CSE7761_K2 * 2 * CSE7761_2POWER22))) / 1000; // V
+
+ for (uint32_t channel = 0; channel < 2; channel++) {
+ Energy.data_valid[channel] = 0;
+ Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] * ((double)CSE7761Data.coefficient[PowerPAC + channel] / (CSE7761_K1 * CSE7761_K2 * 2 * CSE7761_2POWER31)); // W
+ if (0 == Energy.active_power[channel]) {
+ Energy.current[channel] = 0;
+ } else {
+ Energy.current[channel] = (float)CSE7761Data.current_rms[channel] * ((double)CSE7761Data.coefficient[RmsIAC + channel] / (CSE7761_K1 * 2 * CSE7761_2POWER23)); // mA
+ }
+ }
+
+ uint32_t active_power_sum = (Energy.active_power[0] + Energy.active_power[1]) * 1000;
+ if (active_power_sum) {
+ Energy.kWhtoday_delta += active_power_sum / 36;
+ EnergyUpdateToday();
+ }
+ } else { // Powered off
+ Energy.data_valid[0] = ENERGY_WATCHDOG;
+ Energy.data_valid[1] = ENERGY_WATCHDOG;
+ }
+}
+
+/********************************************************************************************/
+
+void Cse7761EverySecond(void) {
+ if (CSE7761Data.init) {
+ if (2 == CSE7761Data.init) {
+ Cse7761Write(0xEA, 0x96); // Reset chip
+ }
+ else if (1 == CSE7761Data.init) {
+ uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
+ if (0x0A04 == syscon) {
+ CSE7761Data.found = Cse7761ChipInit();
+ }
+ if (CSE7761Data.found) {
+ AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
+ }
+ }
+ CSE7761Data.init--;
+ }
+ else {
+ if (CSE7761Data.found) {
+ Cse7761GetData();
+ }
+ }
+}
+
+void Cse7761SnsInit(void) {
+ // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
+ Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), Pin(GPIO_CSE7766_TX), 1);
+ if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
+ if (Cse7761Serial->hardwareSerial()) {
+// SetSerial(38400, TS_SERIAL_8E1);
+ ClaimSerial();
+ }
+ } else {
+ TasmotaGlobal.energy_driver = ENERGY_NONE;
+ }
+}
+
+void Cse7761DrvInit(void) {
+ if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) {
+ CSE7761Data.found = false;
+ CSE7761Data.init = 3; // Init setup steps
+ Energy.phase_count = 2; // Handle two channels as two phases
+ Energy.voltage_common = true; // Use common voltage
+ TasmotaGlobal.energy_driver = XNRG_19;
+ }
+}
+
+/*********************************************************************************************\
+ * Interface
+\*********************************************************************************************/
+
+bool Xnrg19(uint8_t function) {
+ bool result = false;
+
+ switch (function) {
+ case FUNC_EVERY_SECOND:
+ Cse7761EverySecond();
+ break;
+ case FUNC_INIT:
+ Cse7761SnsInit();
+ break;
+ case FUNC_PRE_INIT:
+ Cse7761DrvInit();
+ break;
+ }
+ return result;
+}
+
+#endif // USE_CSE7761
+#endif // USE_ENERGY_SENSOR