diff --git a/tasmota/settings.h b/tasmota/settings.h index 913309393..880e8af80 100644 --- a/tasmota/settings.h +++ b/tasmota/settings.h @@ -691,8 +691,10 @@ typedef union { } StateBitfield; // See issue https://github.com/esp8266/Arduino/issues/2913 +#ifdef ESP8266 #ifdef USE_ADC_VCC ADC_MODE(ADC_VCC); // Set ADC input for Power Supply Voltage usage #endif +#endif #endif // _SETTINGS_H_ diff --git a/tasmota/support_button.ino b/tasmota/support_button.ino index e6e6e27ea..be8a4dabb 100644 --- a/tasmota/support_button.ino +++ b/tasmota/support_button.ino @@ -90,12 +90,14 @@ void ButtonInit(void) Button.present++; pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP)); } +#ifdef ESP8266 #ifndef USE_ADC_VCC else if ((99 == Button.adc) && ((ADC0_BUTTON == my_adc0) || (ADC0_BUTTON_INV == my_adc0))) { Button.present++; Button.adc = i; } #endif // USE_ADC_VCC +#endif // ESP8266 } } @@ -162,7 +164,18 @@ void ButtonHandler(void) button = (digitalRead(Pin(GPIO_KEY1, button_index)) != bitRead(Button.inverted_mask, button_index)); } } -#else +#ifndef USE_ADC_VCC + if (Button.adc == button_index) { + button_present = 1; + if (ADC0_BUTTON_INV == my_adc0) { + button = (AdcRead(1) < 128); + } + else if (ADC0_BUTTON == my_adc0) { + button = (AdcRead(1) > 128); + } + } +#endif // USE_ADC_VCC +#else // ESP32 if (PinUsed(GPIO_KEY1, button_index)) { button_present = 1; if (bitRead(Button.touch_mask, button_index)) { // Touch @@ -188,18 +201,7 @@ void ButtonHandler(void) button = (digitalRead(Pin(GPIO_KEY1, button_index)) != bitRead(Button.inverted_mask, button_index)); } } -#endif // ESP8266 -#ifndef USE_ADC_VCC - if (Button.adc == button_index) { - button_present = 1; - if (ADC0_BUTTON_INV == my_adc0) { - button = (AdcRead(1) < 128); - } - else if (ADC0_BUTTON == my_adc0) { - button = (AdcRead(1) > 128); - } - } -#endif // USE_ADC_VCC +#endif // ESP8266 or ESP32 if (button_present) { XdrvMailbox.index = button_index; XdrvMailbox.payload = button; @@ -333,7 +335,7 @@ void ButtonHandler(void) } } else { // 6 press start wificonfig 2 - if (!Settings.flag.button_restrict) { + if (!Settings.flag.button_restrict) { // SetOption1 - Control button multipress snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2")); ExecuteCommand(scmnd, SRC_BUTTON); } diff --git a/tasmota/support_features.ino b/tasmota/support_features.ino index 0561eac6b..8b1bb3d96 100644 --- a/tasmota/support_features.ino +++ b/tasmota/support_features.ino @@ -230,7 +230,7 @@ void GetFeatures(void) #ifdef USE_COUNTER feature_sns1 |= 0x00000001; // xsns_01_counter.ino #endif -#ifdef USE_ADC_VCC +#if defined(USE_ADC_VCC) || defined(USE_ADC) feature_sns1 |= 0x00000002; // xsns_02_analog.ino #endif #ifdef USE_ENERGY_SENSOR diff --git a/tasmota/support_tasmota.ino b/tasmota/support_tasmota.ino index db4ce592f..bfe190069 100644 --- a/tasmota/support_tasmota.ino +++ b/tasmota/support_tasmota.ino @@ -651,10 +651,12 @@ void MqttShowState(void) ResponseAppendTime(); ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime()); +#ifdef ESP8266 #ifdef USE_ADC_VCC dtostrfd((double)ESP.getVcc()/1000, 3, stemp1); ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1); -#endif +#endif // USE_ADC_VCC +#endif // ESP8266 ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"), ESP_getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), // SetOption60 - Enable normal sleep instead of dynamic sleep diff --git a/tasmota/tasmota.h b/tasmota/tasmota.h index 21a7b5b00..29c8875c7 100644 --- a/tasmota/tasmota.h +++ b/tasmota/tasmota.h @@ -85,6 +85,7 @@ const uint8_t MAX_DEV_GROUP_NAMES = 4; // Max number of Device Group names const uint8_t MAX_HUE_DEVICES = 15; // Max number of Philips Hue device per emulation const uint8_t MAX_ROTARIES = 2; // Max number of Rotary Encoders +const uint8_t MAX_ADCS = 18; // Max number of ESP32 ADC pins const char MQTT_TOKEN_PREFIX[] PROGMEM = "%prefix%"; // To be substituted by mqtt_prefix[x] const char MQTT_TOKEN_TOPIC[] PROGMEM = "%topic%"; // To be substituted by mqtt_topic, mqtt_grptopic, mqtt_buttontopic, mqtt_switchtopic diff --git a/tasmota/tasmota_template_ESP32.h b/tasmota/tasmota_template_ESP32.h index ddd13d87b..923a278c6 100644 --- a/tasmota/tasmota_template_ESP32.h +++ b/tasmota/tasmota_template_ESP32.h @@ -36,7 +36,6 @@ // Not ported (yet) #undef USE_DISCOVERY -#undef USE_ADC_VCC // Needs to be ported #undef USE_DEEPSLEEP #undef USE_MY92X1 #undef USE_TUYA_MCU @@ -115,12 +114,12 @@ enum UserSelectablePins { GPIO_HRXL_RX, // Data from MaxBotix HRXL sonar range sensor GPIO_ELECTRIQ_MOODL_TX, // ElectriQ iQ-wifiMOODL Serial TX GPIO_AS3935, - ADC0_INPUT, // Analog input - ADC0_TEMP, // Analog Thermistor - ADC0_LIGHT, // Analog Light sensor - ADC0_BUTTON, ADC0_BUTTON_INV, // Analog Button - ADC0_RANGE, // Analog Range - ADC0_CT_POWER, // ANalog Current + GPIO_ADC_INPUT, // Analog input + GPIO_ADC_TEMP, // Analog Thermistor + GPIO_ADC_LIGHT, // Analog Light sensor + GPIO_ADC_BUTTON, GPIO_ADC_BUTTON_INV, // Analog Button + GPIO_ADC_RANGE, // Analog Range + GPIO_ADC_CT_POWER, // ANalog Current GPIO_WEBCAM_PWDN, GPIO_WEBCAM_RESET, GPIO_WEBCAM_XCLK, // Webcam GPIO_WEBCAM_SIOD, GPIO_WEBCAM_SIOC, // Webcam I2C GPIO_WEBCAM_DATA, @@ -557,17 +556,15 @@ const uint16_t kGpioNiceList[] PROGMEM = { AGPIO(GPIO_TELEINFO_RX), AGPIO(GPIO_TELEINFO_ENABLE), #endif -/* -#ifndef USE_ADC_VCC - AGPIO(ADC0_INPUT), // Analog input - AGPIO(ADC0_TEMP), // Thermistor - AGPIO(ADC0_LIGHT), // Light sensor - AGPIO(ADC0_BUTTON), // Button - AGPIO(ADC0_BUTTON_INV), - AGPIO(ADC0_RANGE), // Range - AGPIO(ADC0_CT_POWER), // Current +#ifdef USE_ADC + AGPIO(GPIO_ADC_INPUT) + MAX_ADCS, // Analog inputs + AGPIO(GPIO_ADC_TEMP) + MAX_ADCS, // Thermistor + AGPIO(GPIO_ADC_LIGHT) + MAX_ADCS, // Light sensor + AGPIO(GPIO_ADC_BUTTON) + MAX_ADCS, // Button + AGPIO(GPIO_ADC_BUTTON_INV) + MAX_ADCS, + AGPIO(GPIO_ADC_RANGE) + MAX_ADCS, // Range + AGPIO(GPIO_ADC_CT_POWER) + MAX_ADCS, // Current #endif -*/ #ifdef USE_WEBCAM AGPIO(GPIO_WEBCAM_PWDN), AGPIO(GPIO_WEBCAM_RESET), @@ -591,6 +588,21 @@ const uint16_t kGpioNiceList[] PROGMEM = { //******************************************************************************************** +// User selectable ADC functionality +enum UserSelectableAdc { + ADC_NONE, // Not used + ADC_INPUT, // Analog input + ADC_TEMP, // Thermistor + ADC_LIGHT, // Light sensor + ADC_BUTTON, // Button + ADC_BUTTON_INV, + ADC_RANGE, // Range + ADC_CT_POWER, // Current + +// ADC_SWITCH, // Switch +// ADC_SWITCH_INV, + ADC_END }; + #define MAX_GPIO_PIN 40 // Number of supported GPIO #define MIN_FLASH_PINS 4 // Number of flash chip pins unusable for configuration (GPIO6, 7, 8 and 11) #define MAX_USER_PINS 36 // MAX_GPIO_PIN - MIN_FLASH_PINS diff --git a/tasmota/xdrv_01_webserver.ino b/tasmota/xdrv_01_webserver.ino index 016240b35..65ea3497d 100644 --- a/tasmota/xdrv_01_webserver.ino +++ b/tasmota/xdrv_01_webserver.ino @@ -1921,7 +1921,7 @@ void HandleModuleConfiguration(void) } WSContentSend_P(PSTR("\";sk(%d," STR(ADC0_PIN) ");"), Settings.my_adc0); #endif // USE_ADC_VCC -#endif // ESP8266 - ESP32 +#endif // ESP8266 WSContentSend_P(PSTR("}wl(sl);")); diff --git a/tasmota/xdrv_07_domoticz.ino b/tasmota/xdrv_07_domoticz.ino index 4f26a2c8a..2ea842491 100644 --- a/tasmota/xdrv_07_domoticz.ino +++ b/tasmota/xdrv_07_domoticz.ino @@ -66,6 +66,7 @@ int DomoticzBatteryQuality(void) { int quality = 100; // Voltage range from 2,6V > 0% to 3,6V > 100% +#ifdef ESP8266 #ifdef USE_ADC_VCC uint16_t voltage = ESP.getVcc(); if (voltage <= 2600) { @@ -75,7 +76,8 @@ int DomoticzBatteryQuality(void) { } else { quality = (voltage - 2600) / 10; } -#endif +#endif // USE_ADC_VCC +#endif // ESP8266 return quality; } diff --git a/tasmota/xsns_02_analog.ino b/tasmota/xsns_02_analog.ino index 235a91bdd..963406b3f 100644 --- a/tasmota/xsns_02_analog.ino +++ b/tasmota/xsns_02_analog.ino @@ -17,6 +17,7 @@ along with this program. If not, see . */ +#ifdef ESP8266 #ifndef USE_ADC_VCC /*********************************************************************************************\ * ADC support @@ -455,4 +456,5 @@ bool Xsns02(uint8_t function) return result; } -#endif // USE_ADC_VCC \ No newline at end of file +#endif // USE_ADC_VCC +#endif // ESP8266 diff --git a/tasmota/xsns_02_analog_esp32.ino b/tasmota/xsns_02_analog_esp32.ino new file mode 100644 index 000000000..0339f8345 --- /dev/null +++ b/tasmota/xsns_02_analog_esp32.ino @@ -0,0 +1,502 @@ +/* + xsns_02_analog_esp32.ino - ESP32 ADC support for Tasmota + + Copyright (C) 2020 Theo Arends + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#ifdef ESP32 +#ifdef USE_ADC +/*********************************************************************************************\ + * ADC support +\*********************************************************************************************/ + +#define XSNS_02 2 + +#define TO_CELSIUS(x) ((x) - 273.15) +#define TO_KELVIN(x) ((x) + 273.15) + +// Parameters for equation +#define ANALOG_V33 3.3 // ESP8266 Analog voltage +#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15) + +// Shelly 2.5 NTC Thermistor +// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd +// | +// ADC0 +#define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor +#define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance +#define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient + +// LDR parameters +// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd +// | +// ADC0 +#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor +#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental +#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental + +// CT Based Apparrent Power Measurement Parameters +// 3V3 --- R1 ----v--- R1 --- Gnd +// | +// CT+ CT- +// | +// ADC0 +// Default settings for a 20A/1V Current Transformer. +// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER +#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use +#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1 +#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V + +#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total + +uint8_t adc_present = 0; + +struct { + float temperature = 0; + float current = 0; + float energy = 0; + uint32_t previous_millis = 0; + uint16_t last_value = 0; + uint8_t type = 0; + uint8_t pin = 0; +} Adc[MAX_ADCS]; + +void AdcInitParams(void) { + my_adc0 = Adc[0].type; + + if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000)) { + if (ADC_TEMP == my_adc0) { + // Default Shelly 2.5 and 1PM parameters + Settings.adc_param_type = ADC_TEMP; + Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE; + Settings.adc_param2 = ANALOG_NTC_RESISTANCE; + Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000; + } + else if (ADC_LIGHT == my_adc0) { + Settings.adc_param_type = ADC_LIGHT; + Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE; + Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR; + Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000; + } + else if (ADC_RANGE == my_adc0) { + Settings.adc_param_type = ADC_RANGE; + Settings.adc_param1 = 0; + Settings.adc_param2 = 1023; + Settings.adc_param3 = 0; + Settings.adc_param4 = 100; + } + else if (ADC_CT_POWER == my_adc0) { + Settings.adc_param_type = ADC_CT_POWER; + Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0 + Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000 + Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10 + } + } +} + +void AdcInit(void) { + adc_present = 0; + for (uint32_t i = 0; i < MAX_ADCS; i++) { + if (PinUsed(GPIO_ADC_INPUT, i)) { + Adc[adc_present].pin = Pin(GPIO_ADC_INPUT, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_INPUT; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + if (PinUsed(GPIO_ADC_TEMP, i)) { + Adc[adc_present].pin = Pin(GPIO_ADC_TEMP, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_TEMP; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + if (PinUsed(GPIO_ADC_LIGHT, i)) { + Adc[adc_present].pin = Pin(GPIO_ADC_LIGHT, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_LIGHT; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + if (PinUsed(GPIO_ADC_BUTTON, i)) { + Adc[adc_present].pin = Pin(GPIO_ADC_BUTTON, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_BUTTON; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + if (PinUsed(ADC_BUTTON_INV, i)) { + Adc[adc_present].pin = Pin(ADC_BUTTON_INV, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_BUTTON_INV; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + if (PinUsed(GPIO_ADC_RANGE, i)) { + Adc[adc_present].pin = Pin(GPIO_ADC_RANGE, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_RANGE; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + if (PinUsed(GPIO_ADC_CT_POWER, i)) { + Adc[adc_present].pin = Pin(GPIO_ADC_CT_POWER, i); + if (adcAttachPin(Adc[adc_present].pin)) { + Adc[adc_present].type = ADC_CT_POWER; +// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default + adc_present++; + } + } + } + if (adc_present) { + analogSetClockDiv(1); // Default 1 + analogSetWidth(12); // Default 12 bits (0 - 4095) + analogSetAttenuation(ADC_11db); // Default 11db + } + AdcInitParams(); +} + +uint16_t AdcRead(uint8_t pin, uint8_t factor) { + // factor 1 = 2 samples + // factor 2 = 4 samples + // factor 3 = 8 samples + // factor 4 = 16 samples + // factor 5 = 32 samples + uint8_t samples = 1 << factor; + uint16_t analog = 0; + for (uint32_t i = 0; i < samples; i++) { + analog += analogRead(pin); + delay(1); + } + analog >>= factor; + return analog; +} + +#ifdef USE_RULES +void AdcEvery250ms(void) { + for (uint32_t idx = 0; idx < adc_present; idx++) { + if (ADC_INPUT == Adc[idx].type) { + uint16_t new_value = AdcRead(Adc[idx].pin, 5); + if ((new_value < Adc[idx].last_value -10) || (new_value > Adc[idx].last_value +10)) { + Adc[idx].last_value = new_value; + uint16_t value = Adc[idx].last_value / 10; + Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), idx, (value > 99) ? 100 : value); + XdrvRulesProcess(); + } + } + } +} +#endif // USE_RULES + +uint16_t AdcGetLux(uint8_t pin) { + int adc = AdcRead(pin, 2); + // Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/ + double resistorVoltage = ((double)adc / 1023) * ANALOG_V33; + double ldrVoltage = ANALOG_V33 - resistorVoltage; + double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1; + double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000); + + return (uint16_t)ldrLux; +} + +uint16_t AdcGetRange(uint8_t pin) { + // formula for calibration: value, fromLow, fromHigh, toLow, toHigh + // Example: 514, 632, 236, 0, 100 + // int( (( - ) / ( - ) ) * ( - ) ) + ) + int adc = AdcRead(pin, 2); + double adcrange = ( ((double)Settings.adc_param2 - (double)adc) / ( ((double)Settings.adc_param2 - (double)Settings.adc_param1)) * ((double)Settings.adc_param3 - (double)Settings.adc_param4) + (double)Settings.adc_param4 ); + return (uint16_t)adcrange; +} + +void AdcGetCurrentPower(uint8_t idx, uint8_t factor) { + // factor 1 = 2 samples + // factor 2 = 4 samples + // factor 3 = 8 samples + // factor 4 = 16 samples + // factor 5 = 32 samples + uint8_t samples = 1 << factor; + uint16_t analog = 0; + uint16_t analog_min = 1023; + uint16_t analog_max = 0; + + if (0 == Settings.adc_param1) { + for (uint32_t i = 0; i < samples; i++) { + analog = analogRead(Adc[idx].pin); + if (analog < analog_min) { + analog_min = analog; + } + if (analog > analog_max) { + analog_max = analog; + } + delay(1); + } + Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000); + } + else { + analog = AdcRead(Adc[idx].pin, 5); + if (analog > Settings.adc_param1) { + Adc[idx].current = ((float)(analog) - (float)Settings.adc_param1) * ((float)(Settings.adc_param2) / 100000); + } + else { + Adc[idx].current = 0; + } + } + + float power = Adc[idx].current * (float)(Settings.adc_param3) / 10; + uint32_t current_millis = millis(); + Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000); + Adc[idx].previous_millis = current_millis; +} + +void AdcEverySecond(void) { + for (uint32_t idx = 0; idx < adc_present; idx++) { + if (ADC_TEMP == Adc[idx].type) { + int adc = AdcRead(Adc[idx].pin, 2); + // Steinhart-Hart equation for thermistor as temperature sensor + double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc); + double BC = (double)Settings.adc_param3 / 10000; + double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2)); + Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T)); + } + else if (ADC_CT_POWER == Adc[idx].type) { + AdcGetCurrentPower(idx, 5); + } + } +} + +void AdcShow(bool json) { + bool domo_flag[ADC_END] = { false }; + char adc_name[10]; // ANALOG12 + for (uint32_t idx = 0; idx < adc_present; idx++) { + snprintf_P(adc_name, sizeof(adc_name), PSTR("ANALOG%d"), idx); + + switch (Adc[idx].type) { + case ADC_INPUT: { + uint16_t analog = AdcRead(Adc[idx].pin, 5); + + if (json) { + ResponseAppend_P(PSTR(",\"%s\":{\"A0\":%d}"), adc_name, analog); +#ifdef USE_WEBSERVER + } else { + WSContentSend_PD(HTTP_SNS_ANALOG, "", idx, analog); +#endif // USE_WEBSERVER + } + break; + } + case ADC_TEMP: { + char temperature[33]; + dtostrfd(Adc[idx].temperature, Settings.flag2.temperature_resolution, temperature); + + if (json) { + ResponseAppend_P(JSON_SNS_TEMP, adc_name, temperature); + if ((0 == tele_period) && (!domo_flag[ADC_TEMP])) { +#ifdef USE_DOMOTICZ + DomoticzSensor(DZ_TEMP, temperature); + domo_flag[ADC_TEMP] = true; +#endif // USE_DOMOTICZ +#ifdef USE_KNX + KnxSensor(KNX_TEMPERATURE, Adc[idx].temperature); +#endif // USE_KNX + } +#ifdef USE_WEBSERVER + } else { + WSContentSend_PD(HTTP_SNS_TEMP, adc_name, temperature, TempUnit()); +#endif // USE_WEBSERVER + } + break; + } + case ADC_LIGHT: { + uint16_t adc_light = AdcGetLux(Adc[idx].pin); + + if (json) { + ResponseAppend_P(JSON_SNS_ILLUMINANCE, adc_name, adc_light); +#ifdef USE_DOMOTICZ + if ((0 == tele_period) && (!domo_flag[ADC_LIGHT])) { + DomoticzSensor(DZ_ILLUMINANCE, adc_light); + domo_flag[ADC_LIGHT] = true; + } +#endif // USE_DOMOTICZ +#ifdef USE_WEBSERVER + } else { + WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light); +#endif // USE_WEBSERVER + } + break; + } + case ADC_RANGE: { + uint16_t adc_range = AdcGetRange(Adc[idx].pin); + + if (json) { + ResponseAppend_P(JSON_SNS_RANGE, adc_name, adc_range); +#ifdef USE_WEBSERVER + } else { + WSContentSend_PD(HTTP_SNS_RANGE, adc_name, adc_range); +#endif // USE_WEBSERVER + } + break; + } + case ADC_CT_POWER: { + AdcGetCurrentPower(idx, 5); + + float voltage = (float)(Settings.adc_param3) / 10; + char voltage_chr[FLOATSZ]; + dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr); + char current_chr[FLOATSZ]; + dtostrfd(Adc[idx].current, Settings.flag2.current_resolution, current_chr); + char power_chr[FLOATSZ]; + dtostrfd(voltage * Adc[idx].current, Settings.flag2.wattage_resolution, power_chr); + char energy_chr[FLOATSZ]; + dtostrfd(Adc[idx].energy, Settings.flag2.energy_resolution, energy_chr); + + if (json) { + ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"), + adc_name, energy_chr, power_chr, voltage_chr, current_chr); +#ifdef USE_DOMOTICZ + if ((0 == tele_period) && (!domo_flag[ADC_CT_POWER])) { + DomoticzSensor(DZ_POWER_ENERGY, power_chr); + DomoticzSensor(DZ_VOLTAGE, voltage_chr); + DomoticzSensor(DZ_CURRENT, current_chr); + domo_flag[ADC_CT_POWER] = true; + } +#endif // USE_DOMOTICZ +#ifdef USE_WEBSERVER + } else { + WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr); + WSContentSend_PD(HTTP_SNS_CURRENT, current_chr); + WSContentSend_PD(HTTP_SNS_POWER, power_chr); + WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr); +#endif // USE_WEBSERVER + } + break; + } + } + } +} + +/*********************************************************************************************\ + * Commands +\*********************************************************************************************/ + +const char kAdcCommands[] PROGMEM = "|" // No prefix + D_CMND_ADCPARAM; + +void (* const AdcCommand[])(void) PROGMEM = { + &CmndAdcParam }; + +void CmndAdcParam(void) { + if (XdrvMailbox.data_len) { + if ((ADC_TEMP == XdrvMailbox.payload) || + (ADC_LIGHT == XdrvMailbox.payload) || + (ADC_RANGE == XdrvMailbox.payload) || + (ADC_CT_POWER == XdrvMailbox.payload)) { + if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry + char sub_string[XdrvMailbox.data_len +1]; + // AdcParam 2, 32000, 10000, 3350 + // AdcParam 3, 10000, 12518931, -1.405 + // AdcParam 6, 0, 1023, 0, 100 + Settings.adc_param_type = XdrvMailbox.payload; + Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10); + Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10); + if (ADC_RANGE == XdrvMailbox.payload) { + Settings.adc_param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10)); + Settings.adc_param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10)); + } else { + Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000); + } + if (ADC_CT_POWER == XdrvMailbox.payload) { + if (((1 == Settings.adc_param1) & CT_FLAG_ENERGY_RESET) > 0) { + for (uint32_t idx = 0; idx < MAX_ADCS; idx++) { + Adc[idx].energy = 0; + } + Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag + } + } + } else { // Set default values based on current adc type + // AdcParam 2 + // AdcParam 3 + // AdcParam 6 + // AdcParam 7 + Settings.adc_param_type = 0; + AdcInitParams(); + } + } + } + + // AdcParam + Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2); + if (ADC_RANGE == my_adc0) { + ResponseAppend_P(PSTR(",%d,%d"), Settings.adc_param3, Settings.adc_param4); + } else { + int value = Settings.adc_param3; + uint8_t precision; + for (precision = 4; precision > 0; precision--) { + if (value % 10) { break; } + value /= 10; + } + char param3[33]; + dtostrfd(((double)Settings.adc_param3)/10000, precision, param3); + ResponseAppend_P(PSTR(",%s"), param3); + } + ResponseAppend_P(PSTR("]}")); +} + +/*********************************************************************************************\ + * Interface +\*********************************************************************************************/ + +bool Xsns02(uint8_t function) { + bool result = false; + + switch (function) { + case FUNC_COMMAND: + result = DecodeCommand(kAdcCommands, AdcCommand); + break; + case FUNC_INIT: + AdcInit(); + break; + default: + if (adc_present) { + switch (function) { +#ifdef USE_RULES + case FUNC_EVERY_250_MSECOND: + AdcEvery250ms(); + break; +#endif // USE_RULES + case FUNC_EVERY_SECOND: + AdcEverySecond(); + break; + case FUNC_JSON_APPEND: + AdcShow(1); + break; +#ifdef USE_WEBSERVER + case FUNC_WEB_SENSOR: + AdcShow(0); + break; +#endif // USE_WEBSERVER + } + } + } + return result; +} + +#endif // USE_ADC +#endif // ESP32