From 33f0981d17c7407d949f5dc5e3d95fb0d1c09a43 Mon Sep 17 00:00:00 2001 From: Theo Arends <11044339+arendst@users.noreply.github.com> Date: Thu, 4 Mar 2021 18:46:41 +0100 Subject: [PATCH] Add CSE7761 calibration --- tasmota/xnrg_19_cse7761.ino | 191 ++++++++++++++++++++++-------------- 1 file changed, 120 insertions(+), 71 deletions(-) diff --git a/tasmota/xnrg_19_cse7761.ino b/tasmota/xnrg_19_cse7761.ino index 3973b7ade..ec11d37f4 100644 --- a/tasmota/xnrg_19_cse7761.ino +++ b/tasmota/xnrg_19_cse7761.ino @@ -27,15 +27,13 @@ #define XNRG_19 19 -#define CSE7761_REMOVE_CHECKS +#define CSE7761_DUAL_K1 1 // Current channel sampling resistance in milli Ohm +#define CSE7761_DUAL_K2 1 // Voltage divider resistance in 1k/1M +#define CSE7761_DUAL_CLK1 3579545 // System clock (3.579545MHz) used in frequency calculation -#define CSE7761_DUAL_K1 2 // Current channel sampling resistance in milli Ohm -#define CSE7761_DUAL_K2 2 // Voltage divider resistance in 1k/1M -#define CSE7761_DUAL_CLK1 3579545.0f // System clock (3.579545MHz) as used in frequency calculation - -#define CSE7761_2POWER22 4194304 -#define CSE7761_2POWER23 8388608 -#define CSE7761_2POWER31 2147483648 +#define CSE7761_UREF 4194304 // 2^22 +#define CSE7761_IREF 8388608 // 2^23 +#define CSE7761_PREF 2147483648 // 2^31 #define CSE7761_REG_SYSCON 0x00 // System Control Register #define CSE7761_REG_EMUCON 0x01 // Metering control register @@ -81,10 +79,10 @@ struct { uint32_t frequency = 0; uint32_t voltage_rms = 0; uint32_t current_rms[2] = { 0 }; - int active_power[2] = { 0 }; - uint16_t coefficient[8] = { 0 }; - uint8_t init = 0; - bool found = false; + uint32_t energy[2] = { 0 }; + uint32_t active_power[2] = { 0 }; + uint8_t init = 4; + uint8_t ready = 0; } CSE7761Data; void Cse7761Write(uint32_t reg, uint32_t data) { @@ -112,14 +110,15 @@ void Cse7761Write(uint32_t reg, uint32_t data) { Cse7761Serial->write(buffer, len); - AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Send %d, Data %*_H"), len, len, buffer); + AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer); } uint32_t Cse7761Read(uint32_t reg) { - Cse7761Serial->flush(); + while (Cse7761Serial->available()) { Cse7761Serial->read(); } + Cse7761Write(reg, 0); - uint8_t buffer[8]; + uint8_t buffer[8] = { 0 }; uint32_t rcvd = 0; uint32_t timeout = millis() + 3; while (!TimeReached(timeout)) { @@ -130,17 +129,14 @@ uint32_t Cse7761Read(uint32_t reg) { } if (!rcvd) { - AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rcvd %d"), rcvd); + AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx %d"), rcvd); return 0; } - - AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rcvd %d, Data %*_H"), rcvd, rcvd, buffer); - -#ifndef CSE7761_REMOVE_CHECKS + AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx %*_H"), rcvd, buffer); if (rcvd > 5) { + AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx overflow")); return 0; } -#endif rcvd--; uint32_t result = 0; @@ -151,29 +147,34 @@ uint32_t Cse7761Read(uint32_t reg) { } crc = ~crc; if (crc != buffer[rcvd]) { - AddLog(LOG_LEVEL_DEBUG, PSTR("C61: CRC error")); -#ifndef CSE7761_REMOVE_CHECKS + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rx CRC error")); return 0; -#endif } return result; } bool Cse7761ChipInit(void) { + uint16_t coefficient[8] = { 0 }; uint16_t calc_chksum = 0xFFFF; for (uint32_t i = 0; i < 8; i++) { - CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i); - calc_chksum += CSE7761Data.coefficient[i]; + coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i); + calc_chksum += coefficient[i]; } calc_chksum = ~calc_chksum; uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET); uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM); if (calc_chksum != coeff_chksum) { - AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Coefficients CRC error")); -#ifndef CSE7761_REMOVE_CHECKS - return false; -#endif + AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default coefficients")); + coefficient[RmsIAC] = 0xCC11; + coefficient[RmsUC] = 0xA643; + coefficient[PowerPAC] = 0xADE1; + } + if (HLW_PREF_PULSE == Settings.energy_power_calibration) { + Settings.energy_voltage_calibration = 1000; // Gain 1 * 1000 + Settings.energy_frequency_calibration = 2750; + Settings.energy_current_calibration = 160; // Gain 16 * 10 + Settings.energy_power_calibration = 50000; } Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE); @@ -301,55 +302,46 @@ bool Cse7761ChipInit(void) { Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1); } else { AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write enable failed")); -#ifndef CSE7761_REMOVE_CHECKS return false; -#endif } - delay(80); - Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE); return true; } void Cse7761GetData(void) { - CSE7761Data.voltage_rms = Cse7761Read(CSE7761_REG_RMSU); CSE7761Data.frequency = Cse7761Read(CSE7761_REG_UFREQ); - CSE7761Data.current_rms[0] = Cse7761Read(CSE7761_REG_RMSIA); - CSE7761Data.active_power[0] = Cse7761Read(CSE7761_REG_POWERPA); - CSE7761Data.current_rms[1] = Cse7761Read(CSE7761_REG_RMSIB); - CSE7761Data.active_power[1] = Cse7761Read(CSE7761_REG_POWERPB); + uint32_t value = Cse7761Read(CSE7761_REG_RMSU); + // The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data, + // and when the highest bit is 1, the reading will be processed as zero + CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value; + value = Cse7761Read(CSE7761_REG_RMSIA); + CSE7761Data.current_rms[0] = (value >= 0x800000) ? 0 : value; + value = Cse7761Read(CSE7761_REG_RMSIB); + CSE7761Data.current_rms[1] = (value >= 0x800000) ? 0 : value; + // The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit. + value = Cse7761Read(CSE7761_REG_POWERPA); + CSE7761Data.active_power[0] = (value & 0x80000000) ? (~value) + 1 : value; + value = Cse7761Read(CSE7761_REG_POWERPB); + CSE7761Data.active_power[1] = (value & 0x80000000) ? (~value) + 1 : value; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: U %d, F %d, I %d/%d, P %d/%d"), CSE7761Data.voltage_rms, CSE7761Data.frequency, CSE7761Data.current_rms[0], CSE7761Data.current_rms[1], CSE7761Data.active_power[0], CSE7761Data.active_power[1]); - // The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data, - // and when the highest bit is 1, the reading will be processed as zero - if (CSE7761Data.voltage_rms & 0x800000) { CSE7761Data.voltage_rms = 0; } - if (CSE7761Data.current_rms[0] & 0x800000) { CSE7761Data.current_rms[0] = 0; } - if (CSE7761Data.current_rms[1] & 0x800000) { CSE7761Data.current_rms[1] = 0; } - - // The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit. - if (Energy.power_on) { // Powered on - Energy.voltage[0] = ((float)CSE7761Data.voltage_rms * ((double)CSE7761Data.coefficient[RmsUC] / (CSE7761_DUAL_K2 * 2 * CSE7761_2POWER22))) / 1000; // V - Energy.frequency[0] = CSE7761_DUAL_CLK1 / 8 / ((float)CSE7761Data.frequency + 1); + Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V + Energy.frequency[0] = (float)Settings.energy_frequency_calibration / ((float)CSE7761Data.frequency + 1); // Hz for (uint32_t channel = 0; channel < 2; channel++) { Energy.data_valid[channel] = 0; - Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] * ((double)CSE7761Data.coefficient[PowerPAC + channel] / (CSE7761_DUAL_K1 * CSE7761_DUAL_K2 * 2 * CSE7761_2POWER31)); // W + Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W if (0 == Energy.active_power[channel]) { Energy.current[channel] = 0; } else { - Energy.current[channel] = (float)CSE7761Data.current_rms[channel] * ((double)CSE7761Data.coefficient[RmsIAC + channel] / (CSE7761_DUAL_K1 * 2 * CSE7761_2POWER23)); // mA + Energy.current[channel] = ((float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration) / 10; // mA + CSE7761Data.energy[channel] += Energy.active_power[channel]; } } - - uint32_t active_power_sum = (Energy.active_power[0] + Energy.active_power[1]) * 1000; - if (active_power_sum) { - Energy.kWhtoday_delta += active_power_sum / 36; - EnergyUpdateToday(); - } } else { // Powered off Energy.data_valid[0] = ENERGY_WATCHDOG; Energy.data_valid[1] = ENERGY_WATCHDOG; @@ -358,29 +350,41 @@ void Cse7761GetData(void) { /********************************************************************************************/ +void Cse7761Every200ms(void) { + if (2 == CSE7761Data.ready) { + Cse7761GetData(); + } +} + void Cse7761EverySecond(void) { if (CSE7761Data.init) { - if (2 == CSE7761Data.init) { + if (3 == CSE7761Data.init) { Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET); } - else if (1 == CSE7761Data.init) { + else if (2 == CSE7761Data.init) { uint16_t syscon = Cse7761Read(0x00); // Default 0x0A04 -#ifndef CSE7761_REMOVE_CHECKS - if (0x0A04 == syscon) { - CSE7761Data.found = Cse7761ChipInit(); + if ((0x0A04 == syscon) && Cse7761ChipInit()) { + CSE7761Data.ready = 1; } -#else - CSE7761Data.found = Cse7761ChipInit(); -#endif - if (CSE7761Data.found) { + } + else if (1 == CSE7761Data.init) { + if (1 == CSE7761Data.ready) { + Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE); AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found")); + CSE7761Data.ready = 2; } } CSE7761Data.init--; } else { - if (CSE7761Data.found) { - Cse7761GetData(); + if (2 == CSE7761Data.ready) { + uint32_t energy_sum = (CSE7761Data.energy[0] + CSE7761Data.energy[1]) * 1000; + if (energy_sum) { + Energy.kWhtoday_delta += energy_sum / 36; + EnergyUpdateToday(); + CSE7761Data.energy[0] = 0; + CSE7761Data.energy[1] = 0; + } } } } @@ -400,8 +404,8 @@ void Cse7761SnsInit(void) { void Cse7761DrvInit(void) { if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) { - CSE7761Data.found = false; - CSE7761Data.init = 3; // Init setup steps + CSE7761Data.ready = 0; + CSE7761Data.init = 4; // Init setup steps Energy.phase_count = 2; // Handle two channels as two phases Energy.voltage_common = true; // Use common voltage Energy.frequency_common = true; // Use common frequency @@ -409,6 +413,45 @@ void Cse7761DrvInit(void) { } } +bool Cse7761Command(void) { + bool serviced = true; + + uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0; + uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123 + + if (CMND_POWERSET == Energy.command_code) { + if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) { + if ((value > 100) && (value < 200000)) { // Between 1W and 2000W + Settings.energy_power_calibration = (CSE7761Data.active_power[channel] * 100) / value; + } + } + } + else if (CMND_VOLTAGESET == Energy.command_code) { + if (XdrvMailbox.data_len && CSE7761Data.voltage_rms) { + if ((value > 10000) && (value < 26000)) { // Between 100V and 260V + Settings.energy_voltage_calibration = (CSE7761Data.voltage_rms * 100) / value; + } + } + } + else if (CMND_CURRENTSET == Energy.command_code) { + if (XdrvMailbox.data_len && CSE7761Data.current_rms[channel]) { + if ((value > 2000) && (value < 1000000)) { // Between 20mA and 10A + Settings.energy_current_calibration = (CSE7761Data.current_rms[channel] * 100) / value; + } + } + } + else if (CMND_FREQUENCYSET == Energy.command_code) { + if (XdrvMailbox.data_len && CSE7761Data.frequency) { + if ((value > 4500) && (value < 6500)) { // Between 45Hz and 65Hz + Settings.energy_frequency_calibration = CSE7761Data.frequency * value / 100; + } + } + } + else serviced = false; // Unknown command + + return serviced; +} + /*********************************************************************************************\ * Interface \*********************************************************************************************/ @@ -417,9 +460,15 @@ bool Xnrg19(uint8_t function) { bool result = false; switch (function) { - case FUNC_EVERY_SECOND: + case FUNC_EVERY_200_MSECOND: + Cse7761Every200ms(); + break; + case FUNC_ENERGY_EVERY_SECOND: Cse7761EverySecond(); break; + case FUNC_COMMAND: + result = Cse7761Command(); + break; case FUNC_INIT: Cse7761SnsInit(); break;