/* xsns_05_ds18x20.ino - DS18x20 temperature sensor support for Tasmota Copyright (C) 2021 Theo Arends and md5sum-as (https://github.com/md5sum-as) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef ESP8266 #ifdef USE_DS18x20 /*********************************************************************************************\ * DS18B20 - Temperature - Multiple sensors \*********************************************************************************************/ #define XSNS_05 5 //#define USE_DS18x20_RECONFIGURE // When sensor is lost keep retrying or re-configure //#define DS18x20_USE_ID_AS_NAME // Use last 3 bytes for naming of sensors /* #define DS18x20_USE_ID_ALIAS in my_user_config.h or user_config_override.h * Use alias for fixed sensor name in scripts by autoexec. Command: DS18Alias XXXXXXXXXXXXXXXX,N where XXXXXXXXXXXXXXXX full serial and N number 1-255 * Result in JSON: "DS18Sens_2":{"Id":"000003287CD8","Temperature":26.3} (example with N=2) * Setting N to an alphanumeric value, the complete name is replaced with it * Result in JSON: "Outside1":{"Id":"000003287CD8","Temperature":26.3} (example with N=Outside1) */ #define DS18S20_CHIPID 0x10 // +/-0.5C 9-bit #define DS1822_CHIPID 0x22 // +/-2C 12-bit #define DS18B20_CHIPID 0x28 // +/-0.5C 12-bit #define M1601_CHIPID 0x28 +1 // +/-0.1C 16-bit (M1601B = +/-0.5C 16-bit) #define MAX31850_CHIPID 0x3B // +/-0.25C 14-bit #define W1_SKIP_ROM 0xCC #define W1_CONVERT_TEMP 0x44 #define W1_WRITE_EEPROM 0x48 #define W1_WRITE_SCRATCHPAD 0x4E #define W1_READ_SCRATCHPAD 0xBE #ifndef DS18X20_MAX_SENSORS // DS18X20_MAX_SENSORS fallback to 8 if not defined in user_config_override.h #define DS18X20_MAX_SENSORS 8 #endif #define DS18X20_ALIAS_LEN 17 //#define DS18X20_DEBUG const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850|M1601"; uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID, M1601_CHIPID }; struct { float temperature; float temp_sum; uint16_t numread; uint8_t address[8]; uint8_t chip_id; uint8_t index; uint8_t valid; int8_t pins_id; #ifdef DS18x20_USE_ID_ALIAS char *alias = (char*)calloc(DS18X20_ALIAS_LEN, 1); #endif // DS18x20_USE_ID_ALIAS } ds18x20_sensor[DS18X20_MAX_SENSORS]; struct { int8_t pin = 0; // Shelly GPIO3 input only int8_t pin_out = 0; // Shelly GPIO00 output only bool dual_mode = false; // Single pin mode } ds18x20_gpios[MAX_DSB]; struct { #ifdef W1_PARASITE_POWER uint32_t w1_power_until = 0; uint8_t current_sensor = 0; #endif char name[17]; uint8_t sensors; uint8_t gpios; // Count of GPIO found uint8_t input_mode = 0; // INPUT or INPUT_PULLUP (=2) int8_t pin = 0; // Shelly GPIO3 input only int8_t pin_out = 0; // Shelly GPIO00 output only bool dual_mode = false; // Single pin mode } DS18X20Data; /*********************************************************************************************\ * Embedded tuned OneWire library \*********************************************************************************************/ #define W1_MATCH_ROM 0x55 #define W1_SEARCH_ROM 0xF0 uint8_t onewire_last_discrepancy = 0; uint8_t onewire_last_family_discrepancy = 0; bool onewire_last_device_flag = false; unsigned char onewire_rom_id[8] = { 0 }; /*------------------------------------------------------------------------------------------*/ uint8_t OneWireReset(void) { uint8_t retries = 125; if (!DS18X20Data.dual_mode) { pinMode(DS18X20Data.pin, DS18X20Data.input_mode); do { if (--retries == 0) { return 0; } delayMicroseconds(2); } while (!digitalRead(DS18X20Data.pin)); pinMode(DS18X20Data.pin, OUTPUT); digitalWrite(DS18X20Data.pin, LOW); delayMicroseconds(480); pinMode(DS18X20Data.pin, DS18X20Data.input_mode); delayMicroseconds(70); uint8_t r = !digitalRead(DS18X20Data.pin); delayMicroseconds(410); return r; } else { digitalWrite(DS18X20Data.pin_out, HIGH); do { if (--retries == 0) { return 0; } delayMicroseconds(2); } while (!digitalRead(DS18X20Data.pin)); digitalWrite(DS18X20Data.pin_out, LOW); delayMicroseconds(480); digitalWrite(DS18X20Data.pin_out, HIGH); delayMicroseconds(70); uint8_t r = !digitalRead(DS18X20Data.pin); delayMicroseconds(410); return r; } } void OneWireWriteBit(uint8_t v) { static const uint8_t delay_low[2] = { 65, 10 }; static const uint8_t delay_high[2] = { 5, 55 }; v &= 1; if (!DS18X20Data.dual_mode) { digitalWrite(DS18X20Data.pin, LOW); pinMode(DS18X20Data.pin, OUTPUT); delayMicroseconds(delay_low[v]); digitalWrite(DS18X20Data.pin, HIGH); } else { digitalWrite(DS18X20Data.pin_out, LOW); delayMicroseconds(delay_low[v]); digitalWrite(DS18X20Data.pin_out, HIGH); } delayMicroseconds(delay_high[v]); } uint8_t OneWire1ReadBit(void) { pinMode(DS18X20Data.pin, OUTPUT); digitalWrite(DS18X20Data.pin, LOW); delayMicroseconds(3); pinMode(DS18X20Data.pin, DS18X20Data.input_mode); delayMicroseconds(10); uint8_t r = digitalRead(DS18X20Data.pin); delayMicroseconds(53); return r; } uint8_t OneWire2ReadBit(void) { digitalWrite(DS18X20Data.pin_out, LOW); delayMicroseconds(3); digitalWrite(DS18X20Data.pin_out, HIGH); delayMicroseconds(10); uint8_t r = digitalRead(DS18X20Data.pin); delayMicroseconds(53); return r; } /*------------------------------------------------------------------------------------------*/ void OneWireWrite(uint8_t v) { for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) { OneWireWriteBit((bit_mask & v) ? 1 : 0); } } uint8_t OneWireRead(void) { uint8_t r = 0; if (!DS18X20Data.dual_mode) { for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) { if (OneWire1ReadBit()) { r |= bit_mask; } } } else { for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) { if (OneWire2ReadBit()) { r |= bit_mask; } } } return r; } void OneWireSelect(const uint8_t rom[8]) { OneWireWrite(W1_MATCH_ROM); for (uint32_t i = 0; i < 8; i++) { OneWireWrite(rom[i]); } } uint8_t OneWireSearch(uint8_t *newAddr) { uint8_t id_bit_number = 1; uint8_t last_zero = 0; uint8_t rom_byte_number = 0; uint8_t search_result = 0; uint8_t id_bit; uint8_t cmp_id_bit; unsigned char rom_byte_mask = 1; unsigned char search_direction; if (!onewire_last_device_flag) { if (!OneWireReset()) { onewire_last_discrepancy = 0; onewire_last_device_flag = false; onewire_last_family_discrepancy = 0; #ifdef DS18X20_DEBUG AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireReset fail")); #endif // DS18X20_DEBUG return false; } OneWireWrite(W1_SEARCH_ROM); do { if (!DS18X20Data.dual_mode) { id_bit = OneWire1ReadBit(); cmp_id_bit = OneWire1ReadBit(); } else { id_bit = OneWire2ReadBit(); cmp_id_bit = OneWire2ReadBit(); } if ((id_bit == 1) && (cmp_id_bit == 1)) { break; } else { if (id_bit != cmp_id_bit) { search_direction = id_bit; } else { if (id_bit_number < onewire_last_discrepancy) { search_direction = ((onewire_rom_id[rom_byte_number] & rom_byte_mask) > 0); } else { search_direction = (id_bit_number == onewire_last_discrepancy); } if (search_direction == 0) { last_zero = id_bit_number; if (last_zero < 9) { onewire_last_family_discrepancy = last_zero; } } } if (search_direction == 1) { onewire_rom_id[rom_byte_number] |= rom_byte_mask; } else { onewire_rom_id[rom_byte_number] &= ~rom_byte_mask; } OneWireWriteBit(search_direction); id_bit_number++; rom_byte_mask <<= 1; if (rom_byte_mask == 0) { rom_byte_number++; rom_byte_mask = 1; } } } while (rom_byte_number < 8); if (!(id_bit_number < 65)) { onewire_last_discrepancy = last_zero; if (onewire_last_discrepancy == 0) { onewire_last_device_flag = true; } search_result = true; } #ifdef DS18X20_DEBUG AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireSearch result %d, bits %d, %8_H"), search_result, id_bit_number, onewire_rom_id); #endif // DS18X20_DEBUG } if (!search_result || !onewire_rom_id[0]) { onewire_last_discrepancy = 0; onewire_last_device_flag = false; onewire_last_family_discrepancy = 0; search_result = false; } for (uint32_t i = 0; i < 8; i++) { newAddr[i] = onewire_rom_id[i]; } return search_result; } bool OneWireCrc8(uint8_t *addr, uint8_t len) { uint8_t crc = 0; while (len--) { uint8_t inbyte = *addr++; for (uint32_t i = 8; i; i--) { uint8_t mix = (crc ^ inbyte) & 0x01; crc >>= 1; if (mix) { crc ^= 0x8C; } inbyte >>= 1; } } return (crc == *addr); } /********************************************************************************************/ void Ds18x20Init(void) { DS18X20Data.gpios = 0; for (uint32_t pins = 0; pins < MAX_DSB; pins++) { if (PinUsed(GPIO_DSB, pins)) { ds18x20_gpios[pins].pin = Pin(GPIO_DSB, pins); if (PinUsed(GPIO_DSB_OUT, pins)) { ds18x20_gpios[pins].dual_mode = true; ds18x20_gpios[pins].pin_out = Pin(GPIO_DSB_OUT, pins); } DS18X20Data.gpios++; } } uint64_t ids[DS18X20_MAX_SENSORS]; DS18X20Data.sensors = 0; DS18X20Data.input_mode = Settings->flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT; // SetOption74 - Enable internal pullup for single DS18x20 sensor for (uint32_t pins = 0; pins < DS18X20Data.gpios; pins++) { DS18X20Data.pin = ds18x20_gpios[pins].pin; DS18X20Data.dual_mode = ds18x20_gpios[pins].dual_mode; if (ds18x20_gpios[pins].dual_mode) { DS18X20Data.pin_out = ds18x20_gpios[pins].pin_out; pinMode(DS18X20Data.pin_out, OUTPUT); pinMode(DS18X20Data.pin, DS18X20Data.input_mode); } onewire_last_discrepancy = 0; onewire_last_device_flag = false; onewire_last_family_discrepancy = 0; for (uint32_t i = 0; i < 8; i++) { onewire_rom_id[i] = 0; } while (DS18X20Data.sensors < DS18X20_MAX_SENSORS) { if (!OneWireSearch(ds18x20_sensor[DS18X20Data.sensors].address)) { #ifdef DS18X20_DEBUG AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireSearch fail")); #endif // DS18X20_DEBUG break; } uint32_t chip_id = ds18x20_sensor[DS18X20Data.sensors].address[0]; bool crc = OneWireCrc8(ds18x20_sensor[DS18X20Data.sensors].address, 7); if (!crc) { // Look for M1601 which has same chip_id as DS18B20 but has wrong CRC over 64-bit ROM code // DS18B20 address 284CC48E04000079 // M1601 address 2894020000000000 if ((ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18B20_CHIPID) && (ds18x20_sensor[DS18X20Data.sensors].address[7] == 0)) { chip_id = M1601_CHIPID; // Need different chip_id as different temperature calculation crc = true; } } if (crc && ((chip_id == DS18S20_CHIPID) || (chip_id == DS1822_CHIPID) || (chip_id == DS18B20_CHIPID) || (chip_id == M1601_CHIPID) || (chip_id == MAX31850_CHIPID))) { ds18x20_sensor[DS18X20Data.sensors].index = DS18X20Data.sensors; ids[DS18X20Data.sensors] = chip_id; // Chip id for (uint32_t j = 6; j > 0; j--) { ids[DS18X20Data.sensors] = ids[DS18X20Data.sensors] << 8 | ds18x20_sensor[DS18X20Data.sensors].address[j]; } #ifdef DS18x20_USE_ID_ALIAS ds18x20_sensor[DS18X20Data.sensors].alias[0] = '0'; #endif ds18x20_sensor[DS18X20Data.sensors].chip_id = chip_id; ds18x20_sensor[DS18X20Data.sensors].pins_id = pins; DS18X20Data.sensors++; } #ifdef DS18X20_DEBUG else { AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: Ds18x20Init CRC fail")); } #endif // DS18X20_DEBUG } } for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { for (uint32_t j = i + 1; j < DS18X20Data.sensors; j++) { if (ids[ds18x20_sensor[i].index] > ids[ds18x20_sensor[j].index]) { // Sort ascending std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index); } } } AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors); } void Ds18x20Convert(void) { for (uint8_t i = 0; i < DS18X20Data.gpios; i++) { DS18X20Data.pin = ds18x20_gpios[i].pin; DS18X20Data.dual_mode = ds18x20_gpios[i].dual_mode; DS18X20Data.pin_out = ds18x20_gpios[i].pin_out; OneWireReset(); #ifdef W1_PARASITE_POWER // With parasite power address one sensor at a time if (++DS18X20Data.current_sensor >= DS18X20Data.sensors) DS18X20Data.current_sensor = 0; OneWireSelect(ds18x20_sensor[DS18X20Data.current_sensor].address); #else OneWireWrite(W1_SKIP_ROM); // Address all Sensors on Bus #endif OneWireWrite(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end // delay(750); // 750ms should be enough for 12bit conv } } bool Ds18x20Read(uint8_t sensor) { float temperature; uint8_t data[9]; int8_t sign = 1; uint8_t index = ds18x20_sensor[sensor].index; DS18X20Data.pin = ds18x20_gpios[ds18x20_sensor[index].pins_id].pin; DS18X20Data.pin_out = ds18x20_gpios[ds18x20_sensor[index].pins_id].pin_out; DS18X20Data.dual_mode = ds18x20_gpios[ds18x20_sensor[index].pins_id].dual_mode; if (ds18x20_sensor[index].valid) { ds18x20_sensor[index].valid--; } for (uint32_t retry = 0; retry < 3; retry++) { OneWireReset(); OneWireSelect(ds18x20_sensor[index].address); OneWireWrite(W1_READ_SCRATCHPAD); for (uint32_t i = 0; i < 9; i++) { data[i] = OneWireRead(); } #ifdef DS18X20_DEBUG AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireRead ChipId 0x%02X, %9_H"), ds18x20_sensor[index].chip_id, data); #endif // DS18X20_DEBUG if (OneWireCrc8(data, 8)) { switch(ds18x20_sensor[index].chip_id) { case DS18S20_CHIPID: { int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F); temperature = ConvertTemp(tempS * 0.0625f - 0.250f); break; } case DS1822_CHIPID: case DS18B20_CHIPID: { // 71 01 4B 46 7F FF 0F 10 56 if (data[4] != 0x7F) { data[4] = 0x7F; // Set resolution to 12-bit OneWireReset(); OneWireSelect(ds18x20_sensor[index].address); OneWireWrite(W1_WRITE_SCRATCHPAD); OneWireWrite(data[2]); // Th Register OneWireWrite(data[3]); // Tl Register OneWireWrite(data[4]); // Configuration Register OneWireSelect(ds18x20_sensor[index].address); OneWireWrite(W1_WRITE_EEPROM); // Save scratchpad to EEPROM #ifdef W1_PARASITE_POWER DS18X20Data.w1_power_until = millis() + 10; // 10ms specified duration for EEPROM write #endif } uint16_t temp12 = (data[1] << 8) + data[0]; if (temp12 > 2047) { temp12 = (~temp12) +1; sign = -1; } temperature = ConvertTemp(sign * temp12 * 0.0625f); // Divide by 16 break; } case M1601_CHIPID: { // 96 F1 00 80 55 05 02 09 86 float temp = (int16_t)(data[1] << 8) + data[0]; temperature = ConvertTemp(40 + (temp / 256)); break; } case MAX31850_CHIPID: { int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC); temperature = ConvertTemp(temp14 * 0.0625f); // Divide by 16 break; } } ds18x20_sensor[index].temperature = temperature; if (Settings->flag5.ds18x20_mean) { if (ds18x20_sensor[index].numread++ == 0) { ds18x20_sensor[index].temp_sum = 0; } ds18x20_sensor[index].temp_sum += temperature; } ds18x20_sensor[index].valid = SENSOR_MAX_MISS; return true; } } AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR)); return false; } void Ds18x20Name(uint8_t sensor) { uint32_t sensor_index = ds18x20_sensor[sensor].index; uint32_t index = sizeof(ds18x20_chipids); while (--index) { if (ds18x20_sensor[sensor_index].chip_id == ds18x20_chipids[index]) { break; } } // DS18B20 GetTextIndexed(DS18X20Data.name, sizeof(DS18X20Data.name), index, kDs18x20Types); #ifdef DS18x20_USE_ID_AS_NAME char address[17]; for (uint32_t j = 0; j < 3; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[sensor_index].address[3-j]); // Only last 3 bytes } // DS18B20-8EC44C snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%s"), DS18X20Data.name, IndexSeparator(), address); return; #elif defined(DS18x20_USE_ID_ALIAS) if (ds18x20_sensor[sensor_index].alias[0] && (ds18x20_sensor[sensor_index].alias[0] != '0')) { if (isdigit(ds18x20_sensor[sensor_index].alias[0])) { // DS18Sens-1 snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("DS18Sens%c%d"), IndexSeparator(), atoi(ds18x20_sensor[sensor_index].alias)); } else { // UserText snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s"), ds18x20_sensor[sensor_index].alias); } return; } #endif // DS18x20_USE_ID_AS_NAME or DS18x20_USE_ID_ALIAS if (DS18X20Data.sensors > 1) { // DS18B20-1 snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%d"), DS18X20Data.name, IndexSeparator(), sensor + 1); } } /********************************************************************************************/ void Ds18x20EverySecond(void) { if (!DS18X20Data.sensors) { return; } #ifdef W1_PARASITE_POWER // skip access if there is still an eeprom write ongoing unsigned long now = millis(); if (now < DS18X20Data.w1_power_until) { return; } #endif if (TasmotaGlobal.uptime & 1 #ifdef W1_PARASITE_POWER // if more than 1 sensor and only parasite power: convert every cycle || DS18X20Data.sensors >= 2 #endif ) { // 2mS Ds18x20Convert(); // Start conversion, takes up to one second } else { for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { // 12mS per device if (!Ds18x20Read(i)) { // Read temperature Ds18x20Name(i); AddLogMissed(DS18X20Data.name, ds18x20_sensor[ds18x20_sensor[i].index].valid); #ifdef USE_DS18x20_RECONFIGURE if (!ds18x20_sensor[ds18x20_sensor[i].index].valid) { memset(&ds18x20_sensor, 0, sizeof(ds18x20_sensor)); Ds18x20Init(); // Re-configure } #endif // USE_DS18x20_RECONFIGURE } } } } void Ds18x20Show(bool json) { for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { uint8_t index = ds18x20_sensor[i].index; if (ds18x20_sensor[index].valid) { // Check for valid temperature Ds18x20Name(i); if (json) { if (Settings->flag5.ds18x20_mean) { if ((0 == TasmotaGlobal.tele_period) && ds18x20_sensor[index].numread) { ds18x20_sensor[index].temperature = ds18x20_sensor[index].temp_sum / ds18x20_sensor[index].numread; ds18x20_sensor[index].numread = 0; } } char address[17]; for (uint32_t j = 0; j < 6; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[index].address[6-j]); // Skip sensor type and crc } ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"), DS18X20Data.name, address, Settings->flag2.temperature_resolution, &ds18x20_sensor[index].temperature); #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (0 == i)) { DomoticzFloatSensor(DZ_TEMP, ds18x20_sensor[index].temperature); } #endif // USE_DOMOTICZ #ifdef USE_KNX if ((0 == TasmotaGlobal.tele_period) && (0 == i)) { KnxSensor(KNX_TEMPERATURE, ds18x20_sensor[index].temperature); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_Temp(DS18X20Data.name, ds18x20_sensor[index].temperature); #endif // USE_WEBSERVER } } } } #ifdef DS18x20_USE_ID_ALIAS const char kds18Commands[] PROGMEM = "DS18|" // prefix D_CMND_DS_ALIAS; void (* const DSCommand[])(void) PROGMEM = { &CmndDSAlias }; void CmndDSAlias(void) { // Ds18Alias 430516707FA6FF28,SensorName - Use SensorName instead of DS18B20 // Ds18Alias 430516707FA6FF28,0 - Disable alias (default) char Argument1[XdrvMailbox.data_len]; char Argument2[XdrvMailbox.data_len]; char address[17]; if (ArgC()==2) { ArgV(Argument1, 1); ArgV(Argument2, 2); TrimSpace(Argument2); for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { for (uint32_t j = 0; j < 8; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[i].address[7-j]); } if (!strncmp(Argument1, address, 12) && Argument2[0]) { snprintf_P(ds18x20_sensor[i].alias, DS18X20_ALIAS_LEN, PSTR("%s"), Argument2); break; } } } Response_P(PSTR("{")); for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { Ds18x20Name(i); char address[17]; for (uint32_t j = 0; j < 8; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[7-j]); // Skip sensor type and crc } ResponseAppend_P(PSTR("\"%s\":{\"" D_JSON_ID "\":\"%s\"}"),DS18X20Data.name, address); if (i < DS18X20Data.sensors-1) { ResponseAppend_P(PSTR(",")); } } ResponseAppend_P(PSTR("}")); } #endif // DS18x20_USE_ID_ALIAS /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns05(uint32_t function) { bool result = false; if (PinUsed(GPIO_DSB, GPIO_ANY)) { switch (function) { case FUNC_INIT: Ds18x20Init(); break; case FUNC_EVERY_SECOND: Ds18x20EverySecond(); break; case FUNC_JSON_APPEND: Ds18x20Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: Ds18x20Show(0); break; #endif // USE_WEBSERVER #ifdef DS18x20_USE_ID_ALIAS case FUNC_COMMAND: result = DecodeCommand(kds18Commands, DSCommand); break; #endif // DS18x20_USE_ID_ALIAS } } return result; } #endif // USE_DS18x20 #endif // ESP8266