/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE /*********************************************************************************************\ * Parsers for incoming ZNP messages \*********************************************************************************************/ // // Handle a "Receive Device Info" incoming message // int32_t Z_ReceiveDeviceInfo(int32_t res, class SBuffer &buf) { // Ex= 6700.00.6263151D004B1200.0000.07.09.02.83869991 // IEEE Adr (8 bytes) = 0x00124B001D156362 // Short Addr (2 bytes) = 0x0000 // Device Type (1 byte) = 0x07 (coord?) // Device State (1 byte) = 0x09 (coordinator started) // NumAssocDevices (1 byte) = 0x02 // List of devices: 0x8683, 0x9199 Z_IEEEAddress long_adr = buf.get64(3); Z_ShortAddress short_adr = buf.get16(11); uint8_t device_type = buf.get8(13); uint8_t device_state = buf.get8(14); uint8_t device_associated = buf.get8(15); // keep track of the local IEEE address localIEEEAddr = long_adr; char hex[20]; Uint64toHex(long_adr, hex, 64); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%s\",\"ShortAddr\":\"0x%04X\"" ",\"DeviceType\":%d,\"DeviceState\":%d" ",\"NumAssocDevices\":%d"), ZIGBEE_STATUS_CC_INFO, hex, short_adr, device_type, device_state, device_associated); if (device_associated > 0) { uint idx = 16; ResponseAppend_P(PSTR(",\"AssocDevicesList\":[")); for (uint32_t i = 0; i < device_associated; i++) { if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(idx)); idx += 2; } ResponseAppend_P(PSTR("]")); } ResponseJsonEnd(); // append '}' ResponseJsonEnd(); // append '}' MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); XdrvRulesProcess(); return res; } int32_t Z_CheckNVWrite(int32_t res, class SBuffer &buf) { // Check the status after NV Init "ZNP Has Configured" // Good response should be 610700 or 610709 (Success or Created) // We only filter the response on 6107 and check the code in this function uint8_t status = buf.get8(2); if ((0x00 == status) || (0x09 == status)) { return 0; // Ok, continue } else { return -2; // Error } } int32_t Z_Reboot(int32_t res, class SBuffer &buf) { // print information about the reboot of device // 4180.02.02.00.02.06.03 // static const char Z_RebootReason[] PROGMEM = "Power-up|External|Watchdog"; uint8_t reason = buf.get8(2); uint8_t transport_rev = buf.get8(3); uint8_t product_id = buf.get8(4); uint8_t major_rel = buf.get8(5); uint8_t minor_rel = buf.get8(6); uint8_t hw_rev = buf.get8(7); char reason_str[12]; if (reason > 3) { reason = 3; } GetTextIndexed(reason_str, sizeof(reason_str), reason, Z_RebootReason); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Message\":\"CC2530 booted\",\"RestartReason\":\"%s\"" ",\"MajorRel\":%d,\"MinorRel\":%d}}"), ZIGBEE_STATUS_BOOT, reason_str, major_rel, minor_rel); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); XdrvRulesProcess(); if ((0x02 == major_rel) && (0x06 == minor_rel)) { return 0; // version 2.6.x is ok } else { return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort } } int32_t Z_ReceiveCheckVersion(int32_t res, class SBuffer &buf) { // check that the version is supported // typical version for ZNP 1.2 // 61020200-02.06.03.D9143401.0200000000 // TranportRev = 02 // Product = 00 // MajorRel = 2 // MinorRel = 6 // MaintRel = 3 // Revision = 20190425 d (0x013414D9) uint8_t major_rel = buf.get8(4); uint8_t minor_rel = buf.get8(5); uint8_t maint_rel = buf.get8(6); uint32_t revision = buf.get32(7); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"MajorRel\":%d,\"MinorRel\":%d" ",\"MaintRel\":%d,\"Revision\":%d}}"), ZIGBEE_STATUS_CC_VERSION, major_rel, minor_rel, maint_rel, revision); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); XdrvRulesProcess(); if ((0x02 == major_rel) && (0x06 == minor_rel)) { return 0; // version 2.6.x is ok } else { return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort } } // checks the device type (coordinator, router, end-device) // If coordinator continue // If router goto ZIGBEE_LABEL_START_ROUTER // If device goto ZIGBEE_LABEL_START_DEVICE int32_t Z_SwitchDeviceType(int32_t res, class SBuffer &buf) { switch (Settings.zb_pan_id) { case 0xFFFF: return ZIGBEE_LABEL_INIT_ROUTER; case 0xFFFE: return ZIGBEE_LABEL_INIT_DEVICE; default: return 0; // continue } } // // Helper function, checks if the incoming buffer matches the 2-bytes prefix, i.e. message type in PMEM // bool Z_ReceiveMatchPrefix(const class SBuffer &buf, const uint8_t *match) { if ( (pgm_read_byte(&match[0]) == buf.get8(0)) && (pgm_read_byte(&match[1]) == buf.get8(1)) ) { return true; } else { return false; } } // // Handle Permit Join response // int32_t Z_ReceivePermitJoinStatus(int32_t res, const class SBuffer &buf) { // we received a PermitJoin status change uint8_t duration = buf.get8(2); uint8_t status_code; const char* message; if (0xFF == duration) { status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_XX; message = PSTR("Enable Pairing mode until next boot"); } else if (duration > 0) { status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_60; message = PSTR("Enable Pairing mode for %d seconds"); } else { status_code = ZIGBEE_STATUS_PERMITJOIN_CLOSE; message = PSTR("Disable Pairing mode"); } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Message\":\""), status_code); ResponseAppend_P(message, duration); ResponseAppend_P(PSTR("\"}}")); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); XdrvRulesProcess(); return -1; } const char* Z_DeviceType[] = { "Coordinator", "Router", "End Device", "Unknown" }; int32_t Z_ReceiveNodeDesc(int32_t res, const class SBuffer &buf) { // Received ZDO_NODE_DESC_RSP Z_ShortAddress srcAddr = buf.get16(2); uint8_t status = buf.get8(4); Z_ShortAddress nwkAddr = buf.get16(5); uint8_t logicalType = buf.get8(7); uint8_t apsFlags = buf.get8(8); uint8_t MACCapabilityFlags = buf.get8(9); uint16_t manufacturerCapabilities = buf.get16(10); uint8_t maxBufferSize = buf.get8(12); uint16_t maxInTransferSize = buf.get16(13); uint16_t serverMask = buf.get16(15); uint16_t maxOutTransferSize = buf.get16(17); uint8_t descriptorCapabilities = buf.get8(19); if (0 == status) { uint8_t deviceType = logicalType & 0x7; // 0=coordinator, 1=router, 2=end device if (deviceType > 3) { deviceType = 3; } bool complexDescriptorAvailable = (logicalType & 0x08) ? 1 : 0; Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"NodeType\":\"%s\",\"ComplexDesc\":%s}}"), ZIGBEE_STATUS_NODE_DESC, Z_DeviceType[deviceType], complexDescriptorAvailable ? "true" : "false" ); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); } return -1; } // // Porcess Receive Active Endpoint // int32_t Z_ReceiveActiveEp(int32_t res, const class SBuffer &buf) { // Received ZDO_ACTIVE_EP_RSP Z_ShortAddress srcAddr = buf.get16(2); uint8_t status = buf.get8(4); Z_ShortAddress nwkAddr = buf.get16(5); uint8_t activeEpCount = buf.get8(7); uint8_t* activeEpList = (uint8_t*) buf.charptr(8); for (uint32_t i = 0; i < activeEpCount; i++) { zigbee_devices.addEndpoint(nwkAddr, activeEpList[i]); } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"ActiveEndpoints\":["), ZIGBEE_STATUS_ACTIVE_EP); for (uint32_t i = 0; i < activeEpCount; i++) { if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%02X\""), activeEpList[i]); } ResponseAppend_P(PSTR("]}}")); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); Z_SendAFInfoRequest(nwkAddr); // probe for ModelId and ManufId return -1; } // // Handle IEEEAddr incoming message // int32_t Z_ReceiveIEEEAddr(int32_t res, const class SBuffer &buf) { uint8_t status = buf.get8(2); Z_IEEEAddress ieeeAddr = buf.get64(3); Z_ShortAddress nwkAddr = buf.get16(11); // uint8_t startIndex = buf.get8(13); // not used // uint8_t numAssocDev = buf.get8(14); if (0 == status) { // SUCCESS zigbee_devices.updateDevice(nwkAddr, ieeeAddr); char hex[20]; Uint64toHex(ieeeAddr, hex, 64); // Ping response const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr); if (friendlyName) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_IEEE "\":\"0x%s\"" ",\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), nwkAddr, hex, friendlyName); } else { Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_IEEE "\":\"0x%s\"" "}}"), nwkAddr, hex); } MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); } return -1; } // // Report any AF_DATA_CONFIRM message // Ex: {"ZbConfirm":{"Endpoint":1,"Status":0,"StatusMessage":"SUCCESS"}} // int32_t Z_DataConfirm(int32_t res, const class SBuffer &buf) { uint8_t status = buf.get8(2); uint8_t endpoint = buf.get8(3); //uint8_t transId = buf.get8(4); // unused if (status) { // only report errors Response_P(PSTR("{\"" D_JSON_ZIGBEE_CONFIRM "\":{\"" D_CMND_ZIGBEE_ENDPOINT "\":%d" ",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), endpoint, status, getZigbeeStatusMessage(status).c_str()); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); } return -1; } // // Handle State Change Indication incoming message // // Reference: // 0x00: Initialized - not started automatically // 0x01: Initialized - not connected to anything // 0x02: Discovering PAN's to join // 0x03: Joining a PAN // 0x04: Rejoining a PAN, only for end devices // 0x05: Joined but not yet authenticated by trust center // 0x06: Started as device after authentication // 0x07: Device joined, authenticated and is a router // 0x08: Starting as ZigBee Coordinator // 0x09: Started as ZigBee Coordinator // 0x0A: Device has lost information about its parent int32_t Z_ReceiveStateChange(int32_t res, const class SBuffer &buf) { uint8_t state = buf.get8(2); const char * msg = nullptr; switch (state) { case ZDO_DEV_NWK_DISC: // 0x02 msg = PSTR("Scanning Zigbee network"); break; case ZDO_DEV_NWK_JOINING: // 0x03 case ZDO_DEV_NWK_REJOIN: // 0x04 msg = PSTR("Joining a PAN"); break; case ZDO_DEV_END_DEVICE_UNAUTH: // 0x05 msg = PSTR("Joined, not yet authenticated"); break; case ZDO_DEV_END_DEVICE: // 0x06 msg = PSTR("Started as device"); break; case ZDO_DEV_ROUTER: // 0x07 msg = PSTR("Started as router"); break; case ZDO_DEV_ZB_COORD: // 0x09 msg = PSTR("Started as coordinator"); break; case ZDO_DEV_NWK_ORPHAN: // 0x0A msg = PSTR("Device has lost its parent"); break; }; if (msg) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"NewState\":%d,\"Message\":\"%s\"}}"), ZIGBEE_STATUS_SCANNING, state, msg ); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); } if ((ZDO_DEV_END_DEVICE == state) || (ZDO_DEV_ROUTER == state) || (ZDO_DEV_ZB_COORD == state)) { return 0; // device sucessfully started } else { return -1; // ignore } } // // Handle Receive End Device Announce incoming message // This message is also received when a previously paired device is powered up // Send back Active Ep Req message // int32_t Z_ReceiveEndDeviceAnnonce(int32_t res, const class SBuffer &buf) { Z_ShortAddress srcAddr = buf.get16(2); Z_ShortAddress nwkAddr = buf.get16(4); Z_IEEEAddress ieeeAddr = buf.get64(6); uint8_t capabilities = buf.get8(14); zigbee_devices.updateDevice(nwkAddr, ieeeAddr); char hex[20]; Uint64toHex(ieeeAddr, hex, 64); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%s\",\"ShortAddr\":\"0x%04X\"" ",\"PowerSource\":%s,\"ReceiveWhenIdle\":%s,\"Security\":%s}}"), ZIGBEE_STATUS_DEVICE_ANNOUNCE, hex, nwkAddr, (capabilities & 0x04) ? "true" : "false", (capabilities & 0x08) ? "true" : "false", (capabilities & 0x40) ? "true" : "false" ); // query the state of the bulb (for Alexa) uint32_t wait_ms = 2000; // wait for 2s Z_Query_Bulb(nwkAddr, wait_ms); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); Z_SendActiveEpReq(nwkAddr); return -1; } // // Handle Receive TC Dev Ind incoming message // 45CA // int32_t Z_ReceiveTCDevInd(int32_t res, const class SBuffer &buf) { Z_ShortAddress srcAddr = buf.get16(2); Z_IEEEAddress ieeeAddr = buf.get64(4); Z_ShortAddress parentNw = buf.get16(12); zigbee_devices.updateDevice(srcAddr, ieeeAddr); char hex[20]; Uint64toHex(ieeeAddr, hex, 64); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%s\",\"ShortAddr\":\"0x%04X\"" ",\"ParentNetwork\":\"0x%04X\"}}"), ZIGBEE_STATUS_DEVICE_INDICATION, hex, srcAddr, parentNw ); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); return -1; } // // Handle Bind Rsp incoming message // int32_t Z_BindRsp(int32_t res, const class SBuffer &buf) { Z_ShortAddress nwkAddr = buf.get16(2); uint8_t status = buf.get8(4); const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr); if (friendlyName) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_NAME "\":\"%s\"" ",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), nwkAddr, friendlyName, status, getZigbeeStatusMessage(status).c_str()); } else { Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), nwkAddr, status, getZigbeeStatusMessage(status).c_str()); } MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); return -1; } // // Handle Unbind Rsp incoming message // int32_t Z_UnbindRsp(int32_t res, const class SBuffer &buf) { Z_ShortAddress nwkAddr = buf.get16(2); uint8_t status = buf.get8(4); const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr); if (friendlyName) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_UNBIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_NAME "\":\"%s\"" ",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), nwkAddr, friendlyName, status, getZigbeeStatusMessage(status).c_str()); } else { Response_P(PSTR("{\"" D_JSON_ZIGBEE_UNBIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), nwkAddr, status, getZigbeeStatusMessage(status).c_str()); } MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); return -1; } // // Handle MgMt Bind Rsp incoming message // int32_t Z_MgmtBindRsp(int32_t res, const class SBuffer &buf) { uint16_t shortaddr = buf.get16(2); uint8_t status = buf.get8(4); uint8_t bind_total = buf.get8(5); uint8_t bind_start = buf.get8(6); uint8_t bind_len = buf.get8(7); const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND_STATE "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), shortaddr); if (friendlyName) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName); } ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" ",\"BindingsTotal\":%d" //",\"BindingsStart\":%d" ",\"Bindings\":[" ), status, getZigbeeStatusMessage(status).c_str(), bind_total); uint32_t idx = 8; for (uint32_t i = 0; i < bind_len; i++) { if (idx + 14 > buf.len()) { break; } // overflow, frame size is between 14 and 21 //uint64_t srcaddr = buf.get16(idx); // unused uint8_t srcep = buf.get8(idx + 8); uint8_t cluster = buf.get16(idx + 9); uint8_t addrmode = buf.get8(idx + 11); uint16_t group = 0x0000; uint64_t dstaddr = 0; uint8_t dstep = 0x00; if (Z_Addr_Group == addrmode) { // Group address mode group = buf.get16(idx + 12); idx += 14; } else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode dstaddr = buf.get64(idx + 12); dstep = buf.get8(idx + 20); idx += 21; } else { //AddLog_P2(LOG_LEVEL_INFO, PSTR("Z_MgmtBindRsp unknwon address mode %d"), addrmode); break; // abort for any other value since we don't know the length of the field } if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("{\"Cluster\":\"0x%04X\",\"Endpoint\":%d,"), cluster, srcep); if (Z_Addr_Group == addrmode) { // Group address mode ResponseAppend_P(PSTR("\"ToGroup\":%d}"), group); } else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode char hex[20]; Uint64toHex(dstaddr, hex, 64); ResponseAppend_P(PSTR("\"ToDevice\":\"0x%s\",\"ToEndpoint\":%d}"), hex, dstep); } } ResponseAppend_P(PSTR("]}}")); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_BIND_STATE)); XdrvRulesProcess(); return -1; } /*********************************************************************************************\ * Send specific ZNP messages \*********************************************************************************************/ // // Send ZDO_IEEE_ADDR_REQ request to get IEEE long address // void Z_SendIEEEAddrReq(uint16_t shortaddr) { uint8_t IEEEAddrReq[] = { Z_SREQ | Z_ZDO, ZDO_IEEE_ADDR_REQ, Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 }; ZigbeeZNPSend(IEEEAddrReq, sizeof(IEEEAddrReq)); } // // Send ACTIVE_EP_REQ to collect active endpoints for this address // void Z_SendActiveEpReq(uint16_t shortaddr) { uint8_t ActiveEpReq[] = { Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ, Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) }; ZigbeeZNPSend(ActiveEpReq, sizeof(ActiveEpReq)); } // // Send AF Info Request // void Z_SendAFInfoRequest(uint16_t shortaddr) { uint8_t endpoint = zigbee_devices.findFirstEndpoint(shortaddr); if (0x00 == endpoint) { endpoint = 0x01; } // if we don't know the endpoint, try 0x01 uint8_t transacid = zigbee_devices.getNextSeqNumber(shortaddr); uint8_t AFInfoReq[] = { Z_SREQ | Z_AF, AF_DATA_REQUEST, Z_B0(shortaddr), Z_B1(shortaddr), endpoint, 0x01, 0x00, 0x00, transacid, 0x30, 0x1E, 3 + 2*sizeof(uint16_t), 0x00, transacid, ZCL_READ_ATTRIBUTES, 0x04, 0x00, 0x05, 0x00 }; ZigbeeZNPSend(AFInfoReq, sizeof(AFInfoReq)); } /*********************************************************************************************\ * Callbacks \*********************************************************************************************/ // Aqara Occupancy behavior: the Aqara device only sends Occupancy: true events every 60 seconds. // Here we add a timer so if we don't receive a Occupancy event for 90 seconds, we send Occupancy:false void Z_AqaraOccupancy(uint16_t shortaddr, uint16_t cluster, uint8_t endpoint, const JsonObject &json) { static const uint32_t OCCUPANCY_TIMEOUT = 90 * 1000; // 90 s // Read OCCUPANCY value if any const JsonVariant &val_endpoint = getCaseInsensitive(json, PSTR(OCCUPANCY)); if (nullptr != &val_endpoint) { uint32_t occupancy = strToUInt(val_endpoint); if (occupancy) { zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, OCCUPANCY_TIMEOUT, cluster, endpoint, Z_CAT_VIRTUAL_OCCUPANCY, 0, &Z_OccupancyCallback); } else { zigbee_devices.resetTimersForDevice(shortaddr, 0 /* groupaddr */, Z_CAT_VIRTUAL_OCCUPANCY); } } } // Publish the received values once they have been coalesced int32_t Z_PublishAttributes(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { const JsonObject *json = zigbee_devices.jsonGet(shortaddr); if (json == nullptr) { return 0; } // don't crash if not found zigbee_devices.jsonPublishFlush(shortaddr); return 1; } /*********************************************************************************************\ * Global dispatcher for incoming messages \*********************************************************************************************/ int32_t Z_ReceiveAfIncomingMessage(int32_t res, const class SBuffer &buf) { uint16_t groupid = buf.get16(2); uint16_t clusterid = buf.get16(4); Z_ShortAddress srcaddr = buf.get16(6); uint8_t srcendpoint = buf.get8(8); uint8_t dstendpoint = buf.get8(9); uint8_t wasbroadcast = buf.get8(10); uint8_t linkquality = buf.get8(11); uint8_t securityuse = buf.get8(12); uint32_t timestamp = buf.get32(13); uint8_t seqnumber = buf.get8(17); bool defer_attributes = false; // do we defer attributes reporting to coalesce ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 19, buf.get8(18), clusterid, groupid, srcaddr, srcendpoint, dstendpoint, wasbroadcast, linkquality, securityuse, seqnumber, timestamp); zcl_received.log(); char shortaddr[8]; snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%04X"), srcaddr); DynamicJsonBuffer jsonBuffer; JsonObject& json = jsonBuffer.createObject(); if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_DEFAULT_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseResponse(); } else { // Build the ZbReceive json if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId())) { zcl_received.parseRawAttributes(json); if (clusterid) { defer_attributes = true; } // don't defer system Cluster=0 messages } else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseReadAttributes(json); if (clusterid) { defer_attributes = true; } // don't defer system Cluster=0 messages } else if (zcl_received.isClusterSpecificCommand()) { zcl_received.parseClusterSpecificCommand(json); } String msg(""); msg.reserve(100); json.printTo(msg); AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZCL_RAW_RECEIVED ": {\"0x%04X\":%s}"), srcaddr, msg.c_str()); zcl_received.postProcessAttributes(srcaddr, json); // Add Endpoint json[F(D_CMND_ZIGBEE_ENDPOINT)] = srcendpoint; // Add Group if non-zero if (groupid) { json[F(D_CMND_ZIGBEE_GROUP)] = groupid; } // Add linkquality json[F(D_CMND_ZIGBEE_LINKQUALITY)] = linkquality; // since we just receveived data from the device, it is reachable zigbee_devices.resetTimersForDevice(srcaddr, 0 /* groupaddr */, Z_CAT_REACHABILITY); // remove any reachability timer already there zigbee_devices.setReachable(srcaddr, true); // mark device as reachable // Post-provess for Aqara Presence Senson Z_AqaraOccupancy(srcaddr, clusterid, srcendpoint, json); if (defer_attributes) { // Prepare for publish if (zigbee_devices.jsonIsConflict(srcaddr, json)) { // there is conflicting values, force a publish of the previous message now and don't coalesce zigbee_devices.jsonPublishFlush(srcaddr); } zigbee_devices.jsonAppend(srcaddr, json); zigbee_devices.setTimer(srcaddr, 0 /* groupaddr */, USE_ZIGBEE_COALESCE_ATTR_TIMER, clusterid, srcendpoint, Z_CAT_READ_ATTR, 0, &Z_PublishAttributes); } else { // Publish immediately zigbee_devices.jsonPublishNow(srcaddr, json); } } return -1; } // Structure for the Dispatcher callbacks table typedef struct Z_Dispatcher { const uint8_t* match; ZB_RecvMsgFunc func; } Z_Dispatcher; // Ffilters based on ZNP frames ZBM(AREQ_AF_DATA_CONFIRM, Z_AREQ | Z_AF, AF_DATA_CONFIRM) // 4480 ZBM(AREQ_AF_INCOMING_MESSAGE, Z_AREQ | Z_AF, AF_INCOMING_MSG) // 4481 // ZBM(AREQ_STATE_CHANGE_IND, Z_AREQ | Z_ZDO, ZDO_STATE_CHANGE_IND) // 45C0 ZBM(AREQ_END_DEVICE_ANNCE_IND, Z_AREQ | Z_ZDO, ZDO_END_DEVICE_ANNCE_IND) // 45C1 ZBM(AREQ_END_DEVICE_TC_DEV_IND, Z_AREQ | Z_ZDO, ZDO_TC_DEV_IND) // 45CA ZBM(AREQ_PERMITJOIN_OPEN_XX, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND ) // 45CB ZBM(AREQ_ZDO_ACTIVEEPRSP, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP) // 4585 ZBM(AREQ_ZDO_SIMPLEDESCRSP, Z_AREQ | Z_ZDO, ZDO_SIMPLE_DESC_RSP) // 4584 ZBM(AREQ_ZDO_IEEE_ADDR_RSP, Z_AREQ | Z_ZDO, ZDO_IEEE_ADDR_RSP) // 4581 ZBM(AREQ_ZDO_BIND_RSP, Z_AREQ | Z_ZDO, ZDO_BIND_RSP) // 45A1 ZBM(AREQ_ZDO_UNBIND_RSP, Z_AREQ | Z_ZDO, ZDO_UNBIND_RSP) // 45A2 ZBM(AREQ_ZDO_MGMT_BIND_RSP, Z_AREQ | Z_ZDO, ZDO_MGMT_BIND_RSP) // 45B3 // Dispatcher callbacks table const Z_Dispatcher Z_DispatchTable[] PROGMEM = { { AREQ_AF_DATA_CONFIRM, &Z_DataConfirm }, { AREQ_AF_INCOMING_MESSAGE, &Z_ReceiveAfIncomingMessage }, // { AREQ_STATE_CHANGE_IND, &Z_ReceiveStateChange }, { AREQ_END_DEVICE_ANNCE_IND, &Z_ReceiveEndDeviceAnnonce }, { AREQ_END_DEVICE_TC_DEV_IND, &Z_ReceiveTCDevInd }, { AREQ_PERMITJOIN_OPEN_XX, &Z_ReceivePermitJoinStatus }, { AREQ_ZDO_NODEDESCRSP, &Z_ReceiveNodeDesc }, { AREQ_ZDO_ACTIVEEPRSP, &Z_ReceiveActiveEp }, { AREQ_ZDO_IEEE_ADDR_RSP, &Z_ReceiveIEEEAddr }, { AREQ_ZDO_BIND_RSP, &Z_BindRsp }, { AREQ_ZDO_UNBIND_RSP, &Z_UnbindRsp }, { AREQ_ZDO_MGMT_BIND_RSP, &Z_MgmtBindRsp }, }; /*********************************************************************************************\ * Default resolver \*********************************************************************************************/ int32_t Z_Recv_Default(int32_t res, const class SBuffer &buf) { // Default message handler for new messages if (zigbee.init_phase) { // if still during initialization phase, ignore any unexpected message return -1; // ignore message } else { for (uint32_t i = 0; i < sizeof(Z_DispatchTable)/sizeof(Z_Dispatcher); i++) { if (Z_ReceiveMatchPrefix(buf, Z_DispatchTable[i].match)) { (*Z_DispatchTable[i].func)(res, buf); } } return -1; } } /*********************************************************************************************\ * Functions called by State Machine \*********************************************************************************************/ // // Callback for loading Zigbee configuration from Flash, called by the state machine // int32_t Z_Load_Devices(uint8_t value) { // try to hidrate from known devices loadZigbeeDevices(); return 0; // continue } // // Query the state of a bulb (light) if its type allows it // void Z_Query_Bulb(uint16_t shortaddr, uint32_t &wait_ms) { const uint32_t inter_message_ms = 100; // wait 100ms between messages if (0 <= zigbee_devices.getHueBulbtype(shortaddr)) { uint8_t endpoint = zigbee_devices.findFirstEndpoint(shortaddr); if (endpoint) { // send only if we know the endpoint zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0006, endpoint, Z_CAT_NONE, 0 /* value */, &Z_ReadAttrCallback); wait_ms += inter_message_ms; zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0008, endpoint, Z_CAT_NONE, 0 /* value */, &Z_ReadAttrCallback); wait_ms += inter_message_ms; zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0300, endpoint, Z_CAT_NONE, 0 /* value */, &Z_ReadAttrCallback); wait_ms += inter_message_ms; zigbee_devices.setTimer(shortaddr, 0, wait_ms + Z_CAT_REACHABILITY_TIMEOUT, 0, endpoint, Z_CAT_REACHABILITY, 0 /* value */, &Z_Unreachable); wait_ms += 1000; // wait 1 second between devices } } } // // Send messages to query the state of each Hue emulated light // int32_t Z_Query_Bulbs(uint8_t value) { // Scan all devices and send deferred requests to know the state of bulbs uint32_t wait_ms = 1000; // start with 1.0 s delay for (uint32_t i = 0; i < zigbee_devices.devicesSize(); i++) { const Z_Device &device = zigbee_devices.devicesAt(i); Z_Query_Bulb(device.shortaddr, wait_ms); } return 0; // continue } // // Zigbee initialization is complete, let the party begin // int32_t Z_State_Ready(uint8_t value) { zigbee.init_phase = false; // initialization phase complete return 0; // continue } #endif // USE_ZIGBEE