/* settings.ino - user settings for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*********************************************************************************************\ * RTC memory \*********************************************************************************************/ const uint16_t RTC_MEM_VALID = 0xA55A; uint32_t rtc_settings_crc = 0; uint32_t GetRtcSettingsCrc(void) { uint32_t crc = 0; uint8_t *bytes = (uint8_t*)&RtcSettings; for (uint32_t i = 0; i < sizeof(RtcSettings); i++) { crc += bytes[i]*(i+1); } return crc; } void RtcSettingsSave(void) { if (GetRtcSettingsCrc() != rtc_settings_crc) { RtcSettings.valid = RTC_MEM_VALID; #ifdef ESP8266 ESP.rtcUserMemoryWrite(100, (uint32_t*)&RtcSettings, sizeof(RtcSettings)); #else RtcDataSettings = RtcSettings; #endif rtc_settings_crc = GetRtcSettingsCrc(); } } void RtcSettingsLoad(void) { #ifdef ESP8266 ESP.rtcUserMemoryRead(100, (uint32_t*)&RtcSettings, sizeof(RtcSettings)); // 0x290 #else RtcSettings = RtcDataSettings; #endif if (RtcSettings.valid != RTC_MEM_VALID) { memset(&RtcSettings, 0, sizeof(RtcSettings)); RtcSettings.valid = RTC_MEM_VALID; RtcSettings.energy_kWhtoday = Settings.energy_kWhtoday; RtcSettings.energy_kWhtotal = Settings.energy_kWhtotal; RtcSettings.energy_usage = Settings.energy_usage; for (uint32_t i = 0; i < MAX_COUNTERS; i++) { RtcSettings.pulse_counter[i] = Settings.pulse_counter[i]; } RtcSettings.power = Settings.power; RtcSettingsSave(); } rtc_settings_crc = GetRtcSettingsCrc(); } bool RtcSettingsValid(void) { return (RTC_MEM_VALID == RtcSettings.valid); } /********************************************************************************************/ uint32_t rtc_reboot_crc = 0; uint32_t GetRtcRebootCrc(void) { uint32_t crc = 0; uint8_t *bytes = (uint8_t*)&RtcReboot; for (uint32_t i = 0; i < sizeof(RtcReboot); i++) { crc += bytes[i]*(i+1); } return crc; } void RtcRebootSave(void) { if (GetRtcRebootCrc() != rtc_reboot_crc) { RtcReboot.valid = RTC_MEM_VALID; #ifdef ESP8266 ESP.rtcUserMemoryWrite(100 - sizeof(RtcReboot), (uint32_t*)&RtcReboot, sizeof(RtcReboot)); #else RtcDataReboot = RtcReboot; #endif rtc_reboot_crc = GetRtcRebootCrc(); } } void RtcRebootReset(void) { RtcReboot.fast_reboot_count = 0; RtcRebootSave(); } void RtcRebootLoad(void) { #ifdef ESP8266 ESP.rtcUserMemoryRead(100 - sizeof(RtcReboot), (uint32_t*)&RtcReboot, sizeof(RtcReboot)); // 0x280 #else RtcReboot = RtcDataReboot; #endif if (RtcReboot.valid != RTC_MEM_VALID) { memset(&RtcReboot, 0, sizeof(RtcReboot)); RtcReboot.valid = RTC_MEM_VALID; // RtcReboot.fast_reboot_count = 0; // Explicit by memset RtcRebootSave(); } rtc_reboot_crc = GetRtcRebootCrc(); } bool RtcRebootValid(void) { return (RTC_MEM_VALID == RtcReboot.valid); } /*********************************************************************************************\ * Config - Flash * * Tasmota 1M flash usage * 0x00000000 - Unzipped binary bootloader * 0x00001000 - Unzipped binary code start * :::: * 0x000xxxxx - Unzipped binary code end * 0x000x1000 - First page used by Core OTA * :::: * 0x000F3000 - Tasmota Quick Power Cycle counter (SETTINGS_LOCATION - CFG_ROTATES) - First four bytes only * 0x000F4000 - First Tasmota rotating settings page * :::: * 0x000FA000 - Last Tasmota rotating settings page = Last page used by Core OTA * 0x000FB000 - Core SPIFFS end = Core EEPROM = Tasmota settings page during OTA and when no flash rotation is active (SETTINGS_LOCATION) * 0x000FC000 - SDK - Uses first 128 bytes for phy init data mirrored by Core in RAM. See core_esp8266_phy.cpp phy_init_data[128] = Core user_rf_cal_sector * 0x000FD000 - SDK - Uses scattered bytes from 0x340 (iTead use as settings storage from 0x000FD000) * 0x000FE000 - SDK - Uses scattered bytes from 0x340 (iTead use as mirrored settings storage from 0x000FE000) * 0x000FF000 - SDK - Uses at least first 32 bytes of this page - Tasmota Zigbee persistence from 0x000FF800 to 0x000FFFFF \*********************************************************************************************/ extern "C" { #include "spi_flash.h" } #include "eboot_command.h" #ifdef ESP8266 #if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2) || defined(ARDUINO_ESP8266_RELEASE_2_5_0) || defined(ARDUINO_ESP8266_RELEASE_2_5_1) || defined(ARDUINO_ESP8266_RELEASE_2_5_2) extern "C" uint32_t _SPIFFS_end; // From libraries/EEPROM/EEPROM.cpp EEPROMClass const uint32_t SPIFFS_END = ((uint32_t)&_SPIFFS_end - 0x40200000) / SPI_FLASH_SEC_SIZE; #else // Core > 2.5.2 and STAGE #if AUTOFLASHSIZE #include "flash_hal.h" // From libraries/EEPROM/EEPROM.cpp EEPROMClass const uint32_t SPIFFS_END = (FS_end - 0x40200000) / SPI_FLASH_SEC_SIZE; #else extern "C" uint32_t _FS_end; // From libraries/EEPROM/EEPROM.cpp EEPROMClass const uint32_t SPIFFS_END = ((uint32_t)&_FS_end - 0x40200000) / SPI_FLASH_SEC_SIZE; #endif // AUTOFLASHSIZE #endif // All cores < pre-2.6.0 // Version 4.2 config = eeprom area const uint32_t SETTINGS_LOCATION = SPIFFS_END; // No need for SPIFFS as it uses EEPROM area #endif // ESP8266 // Version 5.2 allow for more flash space const uint8_t CFG_ROTATES = 8; // Number of flash sectors used (handles uploads) uint32_t settings_location = SETTINGS_LOCATION; uint32_t settings_crc32 = 0; uint8_t *settings_buffer = nullptr; /********************************************************************************************/ /* * Based on cores/esp8266/Updater.cpp */ void SetFlashModeDout(void) { #ifdef ESP8266 uint8_t *_buffer; uint32_t address; eboot_command ebcmd; eboot_command_read(&ebcmd); address = ebcmd.args[0]; _buffer = new uint8_t[FLASH_SECTOR_SIZE]; if (ESP.flashRead(address, (uint32_t*)_buffer, FLASH_SECTOR_SIZE)) { if (_buffer[2] != 3) { // DOUT _buffer[2] = 3; if (ESP.flashEraseSector(address / FLASH_SECTOR_SIZE)) { ESP.flashWrite(address, (uint32_t*)_buffer, FLASH_SECTOR_SIZE); } } } delete[] _buffer; #endif // ESP8266 } bool VersionCompatible(void) { #ifdef ESP8266 if (Settings.flag3.compatibility_check) { return true; } eboot_command ebcmd; eboot_command_read(&ebcmd); uint32_t start_address = ebcmd.args[0]; uint32_t end_address = start_address + (ebcmd.args[2] & 0xFFFFF000) + FLASH_SECTOR_SIZE; uint32_t* buffer = new uint32_t[FLASH_SECTOR_SIZE / 4]; uint32_t version[3] = { 0 }; bool found = false; for (uint32_t address = start_address; address < end_address; address = address + FLASH_SECTOR_SIZE) { ESP.flashRead(address, (uint32_t*)buffer, FLASH_SECTOR_SIZE); if ((address == start_address) && (0x1F == (buffer[0] & 0xFF))) { version[1] = 0xFFFFFFFF; // Ota file is gzipped and can not be checked for compatibility found = true; } else { for (uint32_t i = 0; i < (FLASH_SECTOR_SIZE / 4); i++) { version[0] = version[1]; version[1] = version[2]; version[2] = buffer[i]; if ((MARKER_START == version[0]) && (MARKER_END == version[2])) { found = true; break; } } } if (found) { break; } } delete[] buffer; if (!found) { version[1] = 0; } AddLog_P2(LOG_LEVEL_DEBUG, PSTR("OTA: Version 0x%08X, Compatible 0x%08X"), version[1], VERSION_COMPATIBLE); if (version[1] < VERSION_COMPATIBLE) { uint32_t eboot_magic = 0; // Abandon OTA result ESP.rtcUserMemoryWrite(0, (uint32_t*)&eboot_magic, sizeof(eboot_magic)); return false; } #endif // ESP8266 return true; } void SettingsBufferFree(void) { if (settings_buffer != nullptr) { free(settings_buffer); settings_buffer = nullptr; } } bool SettingsBufferAlloc(void) { SettingsBufferFree(); if (!(settings_buffer = (uint8_t *)malloc(sizeof(Settings)))) { AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_UPLOAD_ERR_2)); // Not enough (memory) space return false; } return true; } uint16_t GetCfgCrc16(uint8_t *bytes, uint32_t size) { uint16_t crc = 0; for (uint32_t i = 0; i < size; i++) { if ((i < 14) || (i > 15)) { crc += bytes[i]*(i+1); } // Skip crc } return crc; } uint16_t GetSettingsCrc(void) { // Fix miscalculation if previous Settings was 3584 and current Settings is 4096 between 0x06060007 and 0x0606000A uint32_t size = ((Settings.version < 0x06060007) || (Settings.version > 0x0606000A)) ? 3584 : sizeof(Settings); return GetCfgCrc16((uint8_t*)&Settings, size); } uint32_t GetCfgCrc32(uint8_t *bytes, uint32_t size) { // https://create.stephan-brumme.com/crc32/#bitwise uint32_t crc = 0; while (size--) { crc ^= *bytes++; for (uint32_t j = 0; j < 8; j++) { crc = (crc >> 1) ^ (-int(crc & 1) & 0xEDB88320); } } return ~crc; } uint32_t GetSettingsCrc32(void) { return GetCfgCrc32((uint8_t*)&Settings, sizeof(Settings) -4); // Skip crc32 } void SettingsSaveAll(void) { if (Settings.flag.save_state) { Settings.power = power; } else { Settings.power = 0; } XsnsCall(FUNC_SAVE_BEFORE_RESTART); XdrvCall(FUNC_SAVE_BEFORE_RESTART); SettingsSave(0); } /*********************************************************************************************\ * Quick power cycle monitoring \*********************************************************************************************/ void UpdateQuickPowerCycle(bool update) { #ifndef FIRMWARE_MINIMAL if (Settings.flag3.fast_power_cycle_disable) { return; } // SetOption65 - Disable fast power cycle detection for device reset uint32_t pc_register; uint32_t pc_location = SETTINGS_LOCATION - CFG_ROTATES; #ifdef ESP8266 ESP.flashRead(pc_location * SPI_FLASH_SEC_SIZE, (uint32*)&pc_register, sizeof(pc_register)); #else // ESP32 QPCRead(&pc_register, sizeof(pc_register)); #endif // ESP8266 - ESP32 if (update && ((pc_register & 0xFFFFFFF0) == 0xFFA55AB0)) { uint32_t counter = ((pc_register & 0xF) << 1) & 0xF; if (0 == counter) { // 4 power cycles in a row SettingsErase(3); // Quickly reset all settings including QuickPowerCycle flag EspRestart(); // And restart } else { pc_register = 0xFFA55AB0 | counter; #ifdef ESP8266 ESP.flashWrite(pc_location * SPI_FLASH_SEC_SIZE, (uint32*)&pc_register, sizeof(pc_register)); #else // ESP32 QPCWrite(&pc_register, sizeof(pc_register)); #endif // ESP8266 - ESP32 AddLog_P2(LOG_LEVEL_DEBUG, PSTR("QPC: Flag %02X"), counter); } } else if (pc_register != 0xFFA55ABF) { pc_register = 0xFFA55ABF; #ifdef ESP8266 // Assume flash is default all ones and setting a bit to zero does not need an erase if (ESP.flashEraseSector(pc_location)) { ESP.flashWrite(pc_location * SPI_FLASH_SEC_SIZE, (uint32*)&pc_register, sizeof(pc_register)); } #else // ESP32 QPCWrite(&pc_register, sizeof(pc_register)); #endif // ESP8266 - ESP32 AddLog_P2(LOG_LEVEL_DEBUG, PSTR("QPC: Reset")); } #endif // FIRMWARE_MINIMAL } /*********************************************************************************************\ * Config Settings.text char array support \*********************************************************************************************/ uint32_t GetSettingsTextLen(void) { char* position = Settings.text_pool; for (uint32_t size = 0; size < SET_MAX; size++) { while (*position++ != '\0') { } } return position - Settings.text_pool; } bool SettingsUpdateText(uint32_t index, const char* replace_me) { if (index >= SET_MAX) { return false; // Setting not supported - internal error } // Make a copy first in case we use source from Settings.text uint32_t replace_len = strlen_P(replace_me); char replace[replace_len +1]; memcpy_P(replace, replace_me, sizeof(replace)); uint32_t start_pos = 0; uint32_t end_pos = 0; char* position = Settings.text_pool; for (uint32_t size = 0; size < SET_MAX; size++) { while (*position++ != '\0') { } if (1 == index) { start_pos = position - Settings.text_pool; } else if (0 == index) { end_pos = position - Settings.text_pool -1; } index--; } uint32_t char_len = position - Settings.text_pool; uint32_t current_len = end_pos - start_pos; int diff = replace_len - current_len; // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TST: start %d, end %d, len %d, current %d, replace %d, diff %d"), // start_pos, end_pos, char_len, current_len, replace_len, diff); int too_long = (char_len + diff) - settings_text_size; if (too_long > 0) { AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_CONFIG "Text overflow by %d char(s)"), too_long); return false; // Replace text too long } if (diff != 0) { // Shift Settings.text up or down memmove_P(Settings.text_pool + start_pos + replace_len, Settings.text_pool + end_pos, char_len - end_pos); } // Replace text memmove_P(Settings.text_pool + start_pos, replace, replace_len); // Fill for future use memset(Settings.text_pool + char_len + diff, 0x00, settings_text_size - char_len - diff); AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "CR %d/%d"), GetSettingsTextLen(), settings_text_size); return true; } char* SettingsText(uint32_t index) { char* position = Settings.text_pool; if (index >= SET_MAX) { position += settings_text_size -1; // Setting not supported - internal error - return empty string } else { for (;index > 0; index--) { while (*position++ != '\0') { } } } return position; } /*********************************************************************************************\ * Config Save - Save parameters to Flash ONLY if any parameter has changed \*********************************************************************************************/ void UpdateBackwardCompatibility(void) { // Perform updates for backward compatibility strlcpy(Settings.user_template_name, SettingsText(SET_TEMPLATE_NAME), sizeof(Settings.user_template_name)); } uint32_t GetSettingsAddress(void) { return settings_location * SPI_FLASH_SEC_SIZE; } void SettingsSave(uint8_t rotate) { /* Save configuration in eeprom or one of 7 slots below * * rotate 0 = Save in next flash slot * rotate 1 = Save only in eeprom flash slot until SetOption12 0 or restart * rotate 2 = Save in eeprom flash slot, erase next flash slots and continue depending on stop_flash_rotate * stop_flash_rotate 0 = Allow flash slot rotation (SetOption12 0) * stop_flash_rotate 1 = Allow only eeprom flash slot use (SetOption12 1) */ #ifndef FIRMWARE_MINIMAL UpdateBackwardCompatibility(); if ((GetSettingsCrc32() != settings_crc32) || rotate) { if (1 == rotate) { // Use eeprom flash slot only and disable flash rotate from now on (upgrade) stop_flash_rotate = 1; } if (2 == rotate) { // Use eeprom flash slot and erase next flash slots if stop_flash_rotate is off (default) settings_location = SETTINGS_LOCATION +1; } if (stop_flash_rotate) { settings_location = SETTINGS_LOCATION; } else { settings_location--; if (settings_location <= (SETTINGS_LOCATION - CFG_ROTATES)) { settings_location = SETTINGS_LOCATION; } } Settings.save_flag++; if (UtcTime() > START_VALID_TIME) { Settings.cfg_timestamp = UtcTime(); } else { Settings.cfg_timestamp++; } Settings.cfg_size = sizeof(Settings); Settings.cfg_crc = GetSettingsCrc(); // Keep for backward compatibility in case of fall-back just after upgrade Settings.cfg_crc32 = GetSettingsCrc32(); #ifdef ESP8266 if (ESP.flashEraseSector(settings_location)) { ESP.flashWrite(settings_location * SPI_FLASH_SEC_SIZE, (uint32*)&Settings, sizeof(Settings)); } if (!stop_flash_rotate && rotate) { for (uint32_t i = 1; i < CFG_ROTATES; i++) { ESP.flashEraseSector(settings_location -i); // Delete previous configurations by resetting to 0xFF delay(1); } } AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG D_SAVED_TO_FLASH_AT " %X, " D_COUNT " %d, " D_BYTES " %d"), settings_location, Settings.save_flag, sizeof(Settings)); #else // ESP32 SettingsWrite(&Settings, sizeof(Settings)); AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "Saved, " D_COUNT " %d, " D_BYTES " %d"), Settings.save_flag, sizeof(Settings)); #endif // ESP8266 settings_crc32 = Settings.cfg_crc32; } #endif // FIRMWARE_MINIMAL RtcSettingsSave(); } void SettingsLoad(void) { #ifdef ESP8266 // Load configuration from eeprom or one of 7 slots below if first valid load does not stop_flash_rotate struct { uint16_t cfg_holder; // 000 uint16_t cfg_size; // 002 unsigned long save_flag; // 004 } _SettingsH; unsigned long save_flag = 0; settings_location = 0; uint32_t flash_location = SETTINGS_LOCATION +1; uint16_t cfg_holder = 0; for (uint32_t i = 0; i < CFG_ROTATES; i++) { flash_location--; ESP.flashRead(flash_location * SPI_FLASH_SEC_SIZE, (uint32*)&Settings, sizeof(Settings)); bool valid = false; if (Settings.version > 0x06000000) { bool almost_valid = (Settings.cfg_crc32 == GetSettingsCrc32()); if (Settings.version < 0x0606000B) { almost_valid = (Settings.cfg_crc == GetSettingsCrc()); } // Sometimes CRC on pages below FB, overwritten by OTA, is fine but Settings are still invalid. So check cfg_holder too if (almost_valid && (0 == cfg_holder)) { cfg_holder = Settings.cfg_holder; } // At FB always active cfg_holder valid = (cfg_holder == Settings.cfg_holder); } else { ESP.flashRead((flash_location -1) * SPI_FLASH_SEC_SIZE, (uint32*)&_SettingsH, sizeof(_SettingsH)); valid = (Settings.cfg_holder == _SettingsH.cfg_holder); } if (valid) { if (Settings.save_flag > save_flag) { save_flag = Settings.save_flag; settings_location = flash_location; if (Settings.flag.stop_flash_rotate && (0 == i)) { // Stop only if eeprom area should be used and it is valid break; } } } delay(1); } if (settings_location > 0) { ESP.flashRead(settings_location * SPI_FLASH_SEC_SIZE, (uint32*)&Settings, sizeof(Settings)); AddLog_P2(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG D_LOADED_FROM_FLASH_AT " %X, " D_COUNT " %lu"), settings_location, Settings.save_flag); } #else // ESP32 SettingsRead(&Settings, sizeof(Settings)); AddLog_P2(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded, " D_COUNT " %lu"), Settings.save_flag); #endif // ESP8266 - ESP32 #ifndef FIRMWARE_MINIMAL if (!settings_location || (Settings.cfg_holder != (uint16_t)CFG_HOLDER)) { // Init defaults if cfg_holder differs from user settings in my_user_config.h SettingsDefault(); } settings_crc32 = GetSettingsCrc32(); #endif // FIRMWARE_MINIMAL RtcSettingsLoad(); } void EspErase(uint32_t start_sector, uint32_t end_sector) { bool serial_output = (LOG_LEVEL_DEBUG_MORE <= seriallog_level); for (uint32_t sector = start_sector; sector < end_sector; sector++) { bool result = ESP.flashEraseSector(sector); // Arduino core - erases flash as seen by SDK // bool result = !SPIEraseSector(sector); // SDK - erases flash as seen by SDK // bool result = EsptoolEraseSector(sector); // Esptool - erases flash completely (slow) if (serial_output) { #ifdef ARDUINO_ESP8266_RELEASE_2_3_0 Serial.printf(D_LOG_APPLICATION D_ERASED_SECTOR " %d %s\n", sector, (result) ? D_OK : D_ERROR); #else Serial.printf_P(PSTR(D_LOG_APPLICATION D_ERASED_SECTOR " %d %s\n"), sector, (result) ? D_OK : D_ERROR); #endif delay(10); } else { yield(); } OsWatchLoop(); } } #ifdef ESP8266 void SettingsErase(uint8_t type) { /* For Arduino core and SDK: Erase only works from flash start address to SDK recognized flash end address (flashchip->chip_size = ESP.getFlashChipSize). Addresses above SDK recognized size (up to ESP.getFlashChipRealSize) are not accessable. For Esptool: The only way to erase whole flash is esptool which uses direct SPI writes to flash. The default erase function is EspTool (EsptoolErase) 0 = Erase from program end until end of flash as seen by SDK 1 = Erase 16k SDK parameter area near end of flash as seen by SDK (0x0xFCxxx - 0x0xFFFFF) solving possible wifi errors 2 = Erase Tasmota parameter area (0x0xF3xxx - 0x0xFBFFF) 3 = Erase Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF) 4 = Erase SDK parameter area used for wifi calibration (0x0FCxxx - 0x0FCFFF) */ #ifndef FIRMWARE_MINIMAL uint32_t _sectorStart = (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 1; uint32_t _sectorEnd = ESP.getFlashChipRealSize() / SPI_FLASH_SEC_SIZE; // Flash size as reported by hardware if (1 == type) { // source Esp.cpp and core_esp8266_phy.cpp _sectorStart = (ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE) - 4; // SDK parameter area } else if (2 == type) { _sectorStart = SETTINGS_LOCATION - CFG_ROTATES; // Tasmota parameter area (0x0F3xxx - 0x0FBFFF) _sectorEnd = SETTINGS_LOCATION +1; } else if (3 == type) { _sectorStart = SETTINGS_LOCATION - CFG_ROTATES; // Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF) _sectorEnd = ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE; // Flash size as seen by SDK } else if (4 == type) { // _sectorStart = (ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE) - 4; // SDK phy area and Core calibration sector (0x0FC000) _sectorStart = SETTINGS_LOCATION +1; // SDK phy area and Core calibration sector (0x0FC000) _sectorEnd = _sectorStart +1; // SDK end of phy area and Core calibration sector (0x0FCFFF) } /* else if (5 == type) { _sectorStart = (ESP.getFlashChipRealSize() / SPI_FLASH_SEC_SIZE) -4; // SDK phy area and Core calibration sector (0xxFC000) _sectorEnd = _sectorStart +1; // SDK end of phy area and Core calibration sector (0xxFCFFF) } */ else { return; } AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " from 0x%08X to 0x%08X"), _sectorStart * SPI_FLASH_SEC_SIZE, (_sectorEnd * SPI_FLASH_SEC_SIZE) -1); // EspErase(_sectorStart, _sectorEnd); // Arduino core and SDK - erases flash as seen by SDK EsptoolErase(_sectorStart, _sectorEnd); // Esptool - erases flash completely #endif // FIRMWARE_MINIMAL } #endif // ESP8266 void SettingsSdkErase(void) { WiFi.disconnect(false); // Delete SDK wifi config SettingsErase(1); delay(1000); } /********************************************************************************************/ void SettingsDefault(void) { AddLog_P(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG D_USE_DEFAULTS)); SettingsDefaultSet1(); SettingsDefaultSet2(); SettingsSave(2); } void SettingsDefaultSet1(void) { memset(&Settings, 0x00, sizeof(Settings)); Settings.cfg_holder = (uint16_t)CFG_HOLDER; Settings.cfg_size = sizeof(Settings); // Settings.save_flag = 0; Settings.version = VERSION; // Settings.bootcount = 0; // Settings.cfg_crc = 0; } void SettingsDefaultSet2(void) { memset((char*)&Settings +16, 0x00, sizeof(Settings) -16); // this little trick allows GCC to optimize the assignment by grouping values and doing only ORs SysBitfield flag = { 0 }; SysBitfield2 flag2 = { 0 }; SysBitfield3 flag3 = { 0 }; SysBitfield4 flag4 = { 0 }; #ifdef ESP8266 // Settings.config_version = 0; // ESP8266 (Has been 0 for long time) #endif // ESP8266 #ifdef ESP32 Settings.config_version = 1; // ESP32 #endif // ESP32 flag.stop_flash_rotate |= APP_FLASH_CYCLE; flag.global_state |= APP_ENABLE_LEDLINK; flag3.sleep_normal |= APP_NORMAL_SLEEP; flag3.no_power_feedback |= APP_NO_RELAY_SCAN; flag3.fast_power_cycle_disable |= APP_DISABLE_POWERCYCLE; flag3.bootcount_update |= DEEPSLEEP_BOOTCOUNT; flag3.compatibility_check |= OTA_COMPATIBILITY; Settings.save_data = SAVE_DATA; Settings.param[P_BACKLOG_DELAY] = MIN_BACKLOG_DELAY; Settings.param[P_BOOT_LOOP_OFFSET] = BOOT_LOOP_OFFSET; // SetOption36 Settings.param[P_RGB_REMAP] = RGB_REMAP_RGBW; Settings.sleep = APP_SLEEP; if (Settings.sleep < 50) { Settings.sleep = 50; // Default to 50 for sleep, for now } // Module // flag.interlock |= 0; Settings.interlock[0] = 0xFF; // Legacy support using all relays in one interlock group Settings.module = MODULE; ModuleDefault(WEMOS); // for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) { Settings.my_gp.io[i] = GPIO_NONE; } SettingsUpdateText(SET_FRIENDLYNAME1, PSTR(FRIENDLY_NAME)); SettingsUpdateText(SET_FRIENDLYNAME2, PSTR(FRIENDLY_NAME"2")); SettingsUpdateText(SET_FRIENDLYNAME3, PSTR(FRIENDLY_NAME"3")); SettingsUpdateText(SET_FRIENDLYNAME4, PSTR(FRIENDLY_NAME"4")); SettingsUpdateText(SET_OTAURL, PSTR(OTA_URL)); // Power flag.save_state |= SAVE_STATE; Settings.power = APP_POWER; Settings.poweronstate = APP_POWERON_STATE; Settings.blinktime = APP_BLINKTIME; Settings.blinkcount = APP_BLINKCOUNT; Settings.ledstate = APP_LEDSTATE; Settings.ledmask = APP_LEDMASK; Settings.pulse_timer[0] = APP_PULSETIME; // for (uint32_t i = 1; i < MAX_PULSETIMERS; i++) { Settings.pulse_timer[i] = 0; } // Serial Settings.serial_config = TS_SERIAL_8N1; Settings.baudrate = APP_BAUDRATE / 300; Settings.sbaudrate = SOFT_BAUDRATE / 300; Settings.serial_delimiter = 0xff; Settings.seriallog_level = SERIAL_LOG_LEVEL; // Wifi flag3.use_wifi_scan |= WIFI_SCAN_AT_RESTART; flag3.use_wifi_rescan |= WIFI_SCAN_REGULARLY; Settings.wifi_output_power = 170; Settings.param[P_ARP_GRATUITOUS] = WIFI_ARP_INTERVAL; ParseIp(&Settings.ip_address[0], WIFI_IP_ADDRESS); ParseIp(&Settings.ip_address[1], WIFI_GATEWAY); ParseIp(&Settings.ip_address[2], WIFI_SUBNETMASK); ParseIp(&Settings.ip_address[3], WIFI_DNS); Settings.sta_config = WIFI_CONFIG_TOOL; // Settings.sta_active = 0; SettingsUpdateText(SET_STASSID1, PSTR(STA_SSID1)); SettingsUpdateText(SET_STASSID2, PSTR(STA_SSID2)); SettingsUpdateText(SET_STAPWD1, PSTR(STA_PASS1)); SettingsUpdateText(SET_STAPWD2, PSTR(STA_PASS2)); SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME); // Syslog SettingsUpdateText(SET_SYSLOG_HOST, PSTR(SYS_LOG_HOST)); Settings.syslog_port = SYS_LOG_PORT; Settings.syslog_level = SYS_LOG_LEVEL; // Webserver flag2.emulation |= EMULATION; flag3.gui_hostname_ip |= GUI_SHOW_HOSTNAME; flag3.mdns_enabled |= MDNS_ENABLED; Settings.webserver = WEB_SERVER; Settings.weblog_level = WEB_LOG_LEVEL; SettingsUpdateText(SET_WEBPWD, PSTR(WEB_PASSWORD)); SettingsUpdateText(SET_CORS, PSTR(CORS_DOMAIN)); // Button flag.button_restrict |= KEY_DISABLE_MULTIPRESS; flag.button_swap |= KEY_SWAP_DOUBLE_PRESS; flag.button_single |= KEY_ONLY_SINGLE_PRESS; Settings.param[P_HOLD_TIME] = KEY_HOLD_TIME; // Default 4 seconds hold time // Switch for (uint32_t i = 0; i < MAX_SWITCHES; i++) { Settings.switchmode[i] = SWITCH_MODE; } // MQTT flag.mqtt_enabled |= MQTT_USE; flag.mqtt_response |= MQTT_RESULT_COMMAND; flag.mqtt_offline |= MQTT_LWT_MESSAGE; flag.mqtt_power_retain |= MQTT_POWER_RETAIN; flag.mqtt_button_retain |= MQTT_BUTTON_RETAIN; flag.mqtt_switch_retain |= MQTT_SWITCH_RETAIN; flag.mqtt_sensor_retain |= MQTT_SENSOR_RETAIN; // flag.mqtt_serial |= 0; flag.device_index_enable |= MQTT_POWER_FORMAT; flag3.time_append_timezone |= MQTT_APPEND_TIMEZONE; flag3.button_switch_force_local |= MQTT_BUTTON_SWITCH_FORCE_LOCAL; flag3.no_hold_retain |= MQTT_NO_HOLD_RETAIN; flag3.use_underscore |= MQTT_INDEX_SEPARATOR; flag3.grouptopic_mode |= MQTT_GROUPTOPIC_FORMAT; SettingsUpdateText(SET_MQTT_HOST, MQTT_HOST); Settings.mqtt_port = MQTT_PORT; SettingsUpdateText(SET_MQTT_CLIENT, MQTT_CLIENT_ID); SettingsUpdateText(SET_MQTT_USER, MQTT_USER); SettingsUpdateText(SET_MQTT_PWD, MQTT_PASS); SettingsUpdateText(SET_MQTT_TOPIC, MQTT_TOPIC); SettingsUpdateText(SET_MQTT_BUTTON_TOPIC, MQTT_BUTTON_TOPIC); SettingsUpdateText(SET_MQTT_SWITCH_TOPIC, MQTT_SWITCH_TOPIC); SettingsUpdateText(SET_MQTT_GRP_TOPIC, MQTT_GRPTOPIC); SettingsUpdateText(SET_MQTT_FULLTOPIC, MQTT_FULLTOPIC); Settings.mqtt_retry = MQTT_RETRY_SECS; SettingsUpdateText(SET_MQTTPREFIX1, SUB_PREFIX); SettingsUpdateText(SET_MQTTPREFIX2, PUB_PREFIX); SettingsUpdateText(SET_MQTTPREFIX3, PUB_PREFIX2); SettingsUpdateText(SET_STATE_TXT1, MQTT_STATUS_OFF); SettingsUpdateText(SET_STATE_TXT2, MQTT_STATUS_ON); SettingsUpdateText(SET_STATE_TXT3, MQTT_CMND_TOGGLE); SettingsUpdateText(SET_STATE_TXT4, MQTT_CMND_HOLD); char fingerprint[64]; strncpy_P(fingerprint, PSTR(MQTT_FINGERPRINT1), sizeof(fingerprint)); char *p = fingerprint; for (uint32_t i = 0; i < 20; i++) { Settings.mqtt_fingerprint[0][i] = strtol(p, &p, 16); } strncpy_P(fingerprint, PSTR(MQTT_FINGERPRINT2), sizeof(fingerprint)); p = fingerprint; for (uint32_t i = 0; i < 20; i++) { Settings.mqtt_fingerprint[1][i] = strtol(p, &p, 16); } Settings.tele_period = TELE_PERIOD; Settings.mqttlog_level = MQTT_LOG_LEVEL; // Energy flag.no_power_on_check |= ENERGY_VOLTAGE_ALWAYS; flag2.current_resolution |= 3; // flag2.voltage_resolution |= 0; // flag2.wattage_resolution |= 0; flag2.energy_resolution |= ENERGY_RESOLUTION; flag3.dds2382_model |= ENERGY_DDS2382_MODE; flag3.hardware_energy_total |= ENERGY_HARDWARE_TOTALS; Settings.param[P_MAX_POWER_RETRY] = MAX_POWER_RETRY; // Settings.energy_power_delta = 0; Settings.energy_power_calibration = HLW_PREF_PULSE; Settings.energy_voltage_calibration = HLW_UREF_PULSE; Settings.energy_current_calibration = HLW_IREF_PULSE; // Settings.energy_kWhtoday = 0; // Settings.energy_kWhyesterday = 0; // Settings.energy_kWhdoy = 0; // Settings.energy_min_power = 0; // Settings.energy_max_power = 0; // Settings.energy_min_voltage = 0; // Settings.energy_max_voltage = 0; // Settings.energy_min_current = 0; // Settings.energy_max_current = 0; // Settings.energy_max_power_limit = 0; // MaxPowerLimit Settings.energy_max_power_limit_hold = MAX_POWER_HOLD; Settings.energy_max_power_limit_window = MAX_POWER_WINDOW; // Settings.energy_max_power_safe_limit = 0; // MaxSafePowerLimit Settings.energy_max_power_safe_limit_hold = SAFE_POWER_HOLD; Settings.energy_max_power_safe_limit_window = SAFE_POWER_WINDOW; // Settings.energy_max_energy = 0; // MaxEnergy // Settings.energy_max_energy_start = 0; // MaxEnergyStart // Settings.energy_kWhtotal = 0; RtcSettings.energy_kWhtotal = 0; // memset((char*)&Settings.energy_usage, 0x00, sizeof(Settings.energy_usage)); memset((char*)&RtcSettings.energy_usage, 0x00, sizeof(RtcSettings.energy_usage)); Settings.param[P_OVER_TEMP] = ENERGY_OVERTEMP; // IRRemote flag.ir_receive_decimal |= IR_DATA_RADIX; flag3.receive_raw |= IR_ADD_RAW_DATA; Settings.param[P_IR_UNKNOW_THRESHOLD] = IR_RCV_MIN_UNKNOWN_SIZE; // RF Bridge flag.rf_receive_decimal |= RF_DATA_RADIX; // for (uint32_t i = 0; i < 17; i++) { Settings.rf_code[i][0] = 0; } memcpy_P(Settings.rf_code[0], kDefaultRfCode, 9); // Domoticz Settings.domoticz_update_timer = DOMOTICZ_UPDATE_TIMER; // for (uint32_t i = 0; i < MAX_DOMOTICZ_IDX; i++) { // Settings.domoticz_relay_idx[i] = 0; // Settings.domoticz_key_idx[i] = 0; // Settings.domoticz_switch_idx[i] = 0; // } // for (uint32_t i = 0; i < MAX_DOMOTICZ_SNS_IDX; i++) { // Settings.domoticz_sensor_idx[i] = 0; // } // Sensor flag.temperature_conversion |= TEMP_CONVERSION; flag.pressure_conversion |= PRESSURE_CONVERSION; flag2.pressure_resolution |= PRESSURE_RESOLUTION; flag2.humidity_resolution |= HUMIDITY_RESOLUTION; flag2.temperature_resolution |= TEMP_RESOLUTION; flag3.ds18x20_internal_pullup |= DS18X20_PULL_UP; flag3.counter_reset_on_tele |= COUNTER_RESET; // Settings.altitude = 0; // Rules // Settings.rule_enabled = 0; // Settings.rule_once = 0; // for (uint32_t i = 1; i < MAX_RULE_SETS; i++) { Settings.rules[i][0] = '\0'; } flag2.calc_resolution |= CALC_RESOLUTION; // Timer flag3.timers_enable |= TIMERS_ENABLED; // Home Assistant flag.hass_light |= HASS_AS_LIGHT; flag.hass_discovery |= HOME_ASSISTANT_DISCOVERY_ENABLE; flag3.hass_tele_on_power |= TELE_ON_POWER; // Knx flag.knx_enabled |= KNX_ENABLED; flag.knx_enable_enhancement |= KNX_ENHANCED; // Light flag.pwm_control |= LIGHT_MODE; flag.ws_clock_reverse |= LIGHT_CLOCK_DIRECTION; flag.light_signal |= LIGHT_PAIRS_CO2; flag.not_power_linked |= LIGHT_POWER_CONTROL; flag.decimal_text |= LIGHT_COLOR_RADIX; flag3.pwm_multi_channels |= LIGHT_CHANNEL_MODE; flag3.slider_dimmer_stay_on |= LIGHT_SLIDER_POWER; flag4.alexa_ct_range |= LIGHT_ALEXA_CT_RANGE; flag4.pwm_ct_mode |= LIGHT_PWM_CT_MODE; Settings.pwm_frequency = PWM_FREQ; Settings.pwm_range = PWM_RANGE; for (uint32_t i = 0; i < MAX_PWMS; i++) { Settings.light_color[i] = DEFAULT_LIGHT_COMPONENT; // Settings.pwm_value[i] = 0; } Settings.light_correction = 1; Settings.light_dimmer = DEFAULT_LIGHT_DIMMER; // Settings.light_fade = 0; Settings.light_speed = 1; // Settings.light_scheme = 0; Settings.light_width = 1; // Settings.light_wakeup = 0; Settings.light_pixels = WS2812_LEDS; // Settings.light_rotation = 0; Settings.ws_width[WS_SECOND] = 1; Settings.ws_color[WS_SECOND][WS_RED] = 255; // Settings.ws_color[WS_SECOND][WS_GREEN] = 0; Settings.ws_color[WS_SECOND][WS_BLUE] = 255; Settings.ws_width[WS_MINUTE] = 3; // Settings.ws_color[WS_MINUTE][WS_RED] = 0; Settings.ws_color[WS_MINUTE][WS_GREEN] = 255; // Settings.ws_color[WS_MINUTE][WS_BLUE] = 0; Settings.ws_width[WS_HOUR] = 5; Settings.ws_color[WS_HOUR][WS_RED] = 255; // Settings.ws_color[WS_HOUR][WS_GREEN] = 0; // Settings.ws_color[WS_HOUR][WS_BLUE] = 0; Settings.dimmer_hw_max = DEFAULT_DIMMER_MAX; Settings.dimmer_hw_min = DEFAULT_DIMMER_MIN; // Display // Settings.display_model = 0; Settings.display_mode = 1; Settings.display_refresh = 2; Settings.display_rows = 2; Settings.display_cols[0] = 16; Settings.display_cols[1] = 8; Settings.display_dimmer = 1; Settings.display_size = 1; Settings.display_font = 1; // Settings.display_rotate = 0; Settings.display_address[0] = MTX_ADDRESS1; Settings.display_address[1] = MTX_ADDRESS2; Settings.display_address[2] = MTX_ADDRESS3; Settings.display_address[3] = MTX_ADDRESS4; Settings.display_address[4] = MTX_ADDRESS5; Settings.display_address[5] = MTX_ADDRESS6; Settings.display_address[6] = MTX_ADDRESS7; Settings.display_address[7] = MTX_ADDRESS8; // Time if (((APP_TIMEZONE > -14) && (APP_TIMEZONE < 15)) || (99 == APP_TIMEZONE)) { Settings.timezone = APP_TIMEZONE; Settings.timezone_minutes = 0; } else { Settings.timezone = APP_TIMEZONE / 60; Settings.timezone_minutes = abs(APP_TIMEZONE % 60); } SettingsUpdateText(SET_NTPSERVER1, PSTR(NTP_SERVER1)); SettingsUpdateText(SET_NTPSERVER2, PSTR(NTP_SERVER2)); SettingsUpdateText(SET_NTPSERVER3, PSTR(NTP_SERVER3)); for (uint32_t i = 0; i < MAX_NTP_SERVERS; i++) { SettingsUpdateText(SET_NTPSERVER1 +i, ReplaceCommaWithDot(SettingsText(SET_NTPSERVER1 +i))); } Settings.latitude = (int)((double)LATITUDE * 1000000); Settings.longitude = (int)((double)LONGITUDE * 1000000); SettingsResetStd(); SettingsResetDst(); Settings.button_debounce = KEY_DEBOUNCE_TIME; Settings.switch_debounce = SWITCH_DEBOUNCE_TIME; for (uint32_t j = 0; j < 5; j++) { Settings.rgbwwTable[j] = 255; } Settings.novasds_startingoffset = STARTING_OFFSET; SettingsDefaultWebColor(); memset(&Settings.monitors, 0xFF, 20); // Enable all possible monitors, displays and sensors SettingsEnableAllI2cDrivers(); // Tuya flag3.tuya_apply_o20 |= TUYA_SETOPTION_20; flag3.tuya_serial_mqtt_publish |= MQTT_TUYA_RECEIVED; flag3.buzzer_enable |= BUZZER_ENABLE; flag3.shutter_mode |= SHUTTER_SUPPORT; flag3.pcf8574_ports_inverted |= PCF8574_INVERT_PORTS; flag4.zigbee_use_names |= ZIGBEE_FRIENDLY_NAMES; Settings.flag = flag; Settings.flag2 = flag2; Settings.flag3 = flag3; Settings.flag4 = flag4; } /********************************************************************************************/ void SettingsResetStd(void) { Settings.tflag[0].hemis = TIME_STD_HEMISPHERE; Settings.tflag[0].week = TIME_STD_WEEK; Settings.tflag[0].dow = TIME_STD_DAY; Settings.tflag[0].month = TIME_STD_MONTH; Settings.tflag[0].hour = TIME_STD_HOUR; Settings.toffset[0] = TIME_STD_OFFSET; } void SettingsResetDst(void) { Settings.tflag[1].hemis = TIME_DST_HEMISPHERE; Settings.tflag[1].week = TIME_DST_WEEK; Settings.tflag[1].dow = TIME_DST_DAY; Settings.tflag[1].month = TIME_DST_MONTH; Settings.tflag[1].hour = TIME_DST_HOUR; Settings.toffset[1] = TIME_DST_OFFSET; } void SettingsDefaultWebColor(void) { char scolor[10]; for (uint32_t i = 0; i < COL_LAST; i++) { WebHexCode(i, GetTextIndexed(scolor, sizeof(scolor), i, kWebColors)); } } void SettingsEnableAllI2cDrivers(void) { Settings.i2c_drivers[0] = 0xFFFFFFFF; Settings.i2c_drivers[1] = 0xFFFFFFFF; Settings.i2c_drivers[2] = 0xFFFFFFFF; } /********************************************************************************************/ void SettingsDelta(void) { if (Settings.version != VERSION) { // Fix version dependent changes #ifdef ESP8266 if (Settings.version < 0x06000000) { Settings.cfg_size = sizeof(Settings); Settings.cfg_crc = GetSettingsCrc(); } if (Settings.version < 0x06000002) { for (uint32_t i = 0; i < MAX_SWITCHES; i++) { if (i < 4) { Settings.switchmode[i] = Settings.interlock[i]; } else { Settings.switchmode[i] = SWITCH_MODE; } } for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) { if (Settings.my_gp.io[i] >= GPIO_SWT5) { // Move up from GPIO_SWT5 to GPIO_KEY1 Settings.my_gp.io[i] += 4; } } } if (Settings.version < 0x06000003) { Settings.flag.mqtt_serial_raw = 0; // Was rules_enabled until 5.14.0b Settings.flag.pressure_conversion = 0; // Was rules_once until 5.14.0b Settings.flag3.data = 0; } if (Settings.version < 0x06010103) { Settings.flag3.timers_enable = 1; } if (Settings.version < 0x0601010C) { Settings.button_debounce = KEY_DEBOUNCE_TIME; Settings.switch_debounce = SWITCH_DEBOUNCE_TIME; } if (Settings.version < 0x0602010A) { for (uint32_t j = 0; j < 5; j++) { Settings.rgbwwTable[j] = 255; } } if (Settings.version < 0x06030002) { Settings.timezone_minutes = 0; } if (Settings.version < 0x06030004) { memset(&Settings.monitors, 0xFF, 20); // Enable all possible monitors, displays and sensors } if (Settings.version < 0x0603000E) { Settings.flag2.calc_resolution = CALC_RESOLUTION; } if (Settings.version < 0x0603000F) { if (Settings.sleep < 50) { Settings.sleep = 50; // Default to 50 for sleep, for now } } if (Settings.version < 0x06040105) { Settings.flag3.mdns_enabled = MDNS_ENABLED; Settings.param[P_MDNS_DELAYED_START] = 0; } if (Settings.version < 0x0604010B) { Settings.interlock[0] = 0xFF; // Legacy support using all relays in one interlock group for (uint32_t i = 1; i < MAX_INTERLOCKS; i++) { Settings.interlock[i] = 0; } } if (Settings.version < 0x0604010D) { Settings.param[P_BOOT_LOOP_OFFSET] = BOOT_LOOP_OFFSET; // SetOption36 } if (Settings.version < 0x06040110) { ModuleDefault(WEMOS); } if (Settings.version < 0x06040113) { Settings.param[P_RGB_REMAP] = RGB_REMAP_RGBW; } if (Settings.version < 0x06050003) { Settings.novasds_startingoffset = STARTING_OFFSET; } if (Settings.version < 0x06050006) { SettingsDefaultWebColor(); } if (Settings.version < 0x06050007) { Settings.ledmask = APP_LEDMASK; } if (Settings.version < 0x0605000A) { Settings.my_adc0 = ADC0_NONE; } if (Settings.version < 0x0605000D) { Settings.param[P_IR_UNKNOW_THRESHOLD] = IR_RCV_MIN_UNKNOWN_SIZE; } if (Settings.version < 0x06060001) { Settings.param[P_OVER_TEMP] = ENERGY_OVERTEMP; } if (Settings.version < 0x06060007) { memset((char*)&Settings +0xE00, 0x00, sizeof(Settings) -0xE00); } if (Settings.version < 0x06060008) { // Move current tuya dimmer range to the new param. if (Settings.flag3.tuya_serial_mqtt_publish) { // ex Settings.flag3.ex_tuya_dimmer_range_255 SetOption Settings.param[P_ex_DIMMER_MAX] = 100; } else { Settings.param[P_ex_DIMMER_MAX] = 255; } } if (Settings.version < 0x06060009) { Settings.baudrate = APP_BAUDRATE / 300; Settings.sbaudrate = SOFT_BAUDRATE / 300; } if (Settings.version < 0x0606000A) { uint8_t tuyaindex = 0; if (Settings.param[P_BACKLOG_DELAY] > 0) { // ex SetOption34 Settings.tuya_fnid_map[tuyaindex].fnid = 21; // TUYA_MCU_FUNC_DIMMER - Move Tuya Dimmer Id to Map Settings.tuya_fnid_map[tuyaindex].dpid = Settings.param[P_BACKLOG_DELAY]; tuyaindex++; } else if (Settings.flag3.fast_power_cycle_disable == 1) { // ex SetOption65 Settings.tuya_fnid_map[tuyaindex].fnid = 11; // TUYA_MCU_FUNC_REL1 - Create FnID for Switches Settings.tuya_fnid_map[tuyaindex].dpid = 1; tuyaindex++; } if (Settings.param[P_ARP_GRATUITOUS] > 0) { // Was P_ex_TUYA_RELAYS for (uint8_t i = 0 ; i < Settings.param[P_ARP_GRATUITOUS]; i++) { // ex SetOption41 Settings.tuya_fnid_map[tuyaindex].fnid = 12 + i; // TUYA_MCU_FUNC_REL2 - Create FnID for Switches Settings.tuya_fnid_map[tuyaindex].dpid = i + 2; tuyaindex++; } } if (Settings.param[P_ex_TUYA_POWER_ID] > 0) { // ex SetOption46 Settings.tuya_fnid_map[tuyaindex].fnid = 31; // TUYA_MCU_FUNC_POWER - Move Tuya Power Id to Map Settings.tuya_fnid_map[tuyaindex].dpid = Settings.param[P_ex_TUYA_POWER_ID]; tuyaindex++; } if (Settings.param[P_ex_TUYA_VOLTAGE_ID] > 0) { // ex SetOption44 Settings.tuya_fnid_map[tuyaindex].fnid = 33; // TUYA_MCU_FUNC_VOLTAGE - Move Tuya Voltage Id to Map Settings.tuya_fnid_map[tuyaindex].dpid = Settings.param[P_ex_TUYA_VOLTAGE_ID]; tuyaindex++; } if (Settings.param[P_ex_TUYA_CURRENT_ID] > 0) { // ex SetOption45 Settings.tuya_fnid_map[tuyaindex].fnid = 32; // TUYA_MCU_FUNC_CURRENT - Move Tuya Current Id to Map Settings.tuya_fnid_map[tuyaindex].dpid = Settings.param[P_ex_TUYA_CURRENT_ID]; } } if (Settings.version < 0x0606000C) { memset((char*)&Settings +0x1D6, 0x00, 16); } if (Settings.version < 0x0606000F) { Settings.ex_shutter_accuracy = 0; Settings.ex_mqttlog_level = MQTT_LOG_LEVEL; } if (Settings.version < 0x06060011) { Settings.param[P_BACKLOG_DELAY] = MIN_BACKLOG_DELAY; } if (Settings.version < 0x06060012) { Settings.dimmer_hw_min = DEFAULT_DIMMER_MIN; Settings.dimmer_hw_max = DEFAULT_DIMMER_MAX; if (TUYA_DIMMER == Settings.module) { if (Settings.flag3.ex_tuya_dimmer_min_limit) { Settings.dimmer_hw_min = 25; } else { Settings.dimmer_hw_min = 1; } Settings.dimmer_hw_max = Settings.param[P_ex_DIMMER_MAX]; } else if (PS_16_DZ == Settings.module) { Settings.dimmer_hw_min = 10; Settings.dimmer_hw_max = Settings.param[P_ex_DIMMER_MAX]; } } if (Settings.version < 0x06060014) { // Clear unused parameters for future use /* Settings.flag3.tuya_serial_mqtt_publish = 0; // ex Settings.flag3.ex_tuya_dimmer_range_255 Settings.flag3.ex_tuya_dimmer_min_limit = 0; Settings.param[P_ex_TUYA_RELAYS] = 0; Settings.param[P_ex_DIMMER_MAX] = 0; Settings.param[P_ex_TUYA_VOLTAGE_ID] = 0; Settings.param[P_ex_TUYA_CURRENT_ID] = 0; Settings.param[P_ex_TUYA_POWER_ID] = 0; Settings.ex_baudrate = 0; Settings.ex_sbaudrate = 0; */ Settings.flag3.fast_power_cycle_disable = 0; Settings.energy_power_delta = Settings.ex_energy_power_delta; Settings.ex_energy_power_delta = 0; } if (Settings.version < 0x06060015) { if ((EX_WIFI_SMARTCONFIG == Settings.ex_sta_config) || (EX_WIFI_WPSCONFIG == Settings.ex_sta_config)) { Settings.ex_sta_config = WIFI_MANAGER; } } if (Settings.version < 0x07000002) { Settings.web_color2[0][0] = Settings.web_color[0][0]; Settings.web_color2[0][1] = Settings.web_color[0][1]; Settings.web_color2[0][2] = Settings.web_color[0][2]; } if (Settings.version < 0x07000003) { SettingsEnableAllI2cDrivers(); } if (Settings.version < 0x07000004) { Settings.ex_wifi_output_power = 170; } if (Settings.version < 0x07010202) { Settings.ex_serial_config = TS_SERIAL_8N1; } if (Settings.version < 0x07010204) { if (Settings.flag3.mqtt_buttons == 1) { strlcpy(Settings.ex_cors_domain, CORS_ENABLED_ALL, sizeof(Settings.ex_cors_domain)); } else { Settings.ex_cors_domain[0] = 0; } } if (Settings.version < 0x07010205) { Settings.seriallog_level = Settings.ex_seriallog_level; // 09E -> 452 Settings.sta_config = Settings.ex_sta_config; // 09F -> EC7 Settings.sta_active = Settings.ex_sta_active; // 0A0 -> EC8 memcpy((char*)&Settings.rule_stop, (char*)&Settings.ex_rule_stop, 47); // 1A7 -> EC9 } if (Settings.version < 0x07010206) { Settings.flag4 = Settings.ex_flag4; // 1E0 -> EF8 Settings.mqtt_port = Settings.ex_mqtt_port; // 20A -> EFC memcpy((char*)&Settings.serial_config, (char*)&Settings.ex_serial_config, 5); // 1E4 -> EFE } if (Settings.version < 0x08000000) { char temp[strlen(Settings.text_pool) +1]; strncpy(temp, Settings.text_pool, sizeof(temp)); // Was ota_url char temp21[strlen(Settings.ex_mqtt_prefix[0]) +1]; strncpy(temp21, Settings.ex_mqtt_prefix[0], sizeof(temp21)); char temp22[strlen(Settings.ex_mqtt_prefix[1]) +1]; strncpy(temp22, Settings.ex_mqtt_prefix[1], sizeof(temp22)); char temp23[strlen(Settings.ex_mqtt_prefix[2]) +1]; strncpy(temp23, Settings.ex_mqtt_prefix[2], sizeof(temp23)); char temp31[strlen(Settings.ex_sta_ssid[0]) +1]; strncpy(temp31, Settings.ex_sta_ssid[0], sizeof(temp31)); char temp32[strlen(Settings.ex_sta_ssid[1]) +1]; strncpy(temp32, Settings.ex_sta_ssid[1], sizeof(temp32)); char temp41[strlen(Settings.ex_sta_pwd[0]) +1]; strncpy(temp41, Settings.ex_sta_pwd[0], sizeof(temp41)); char temp42[strlen(Settings.ex_sta_pwd[1]) +1]; strncpy(temp42, Settings.ex_sta_pwd[1], sizeof(temp42)); char temp5[strlen(Settings.ex_hostname) +1]; strncpy(temp5, Settings.ex_hostname, sizeof(temp5)); char temp6[strlen(Settings.ex_syslog_host) +1]; strncpy(temp6, Settings.ex_syslog_host, sizeof(temp6)); char temp7[strlen(Settings.ex_mqtt_host) +1]; strncpy(temp7, Settings.ex_mqtt_host, sizeof(temp7)); char temp8[strlen(Settings.ex_mqtt_client) +1]; strncpy(temp8, Settings.ex_mqtt_client, sizeof(temp8)); char temp9[strlen(Settings.ex_mqtt_user) +1]; strncpy(temp9, Settings.ex_mqtt_user, sizeof(temp9)); char temp10[strlen(Settings.ex_mqtt_pwd) +1]; strncpy(temp10, Settings.ex_mqtt_pwd, sizeof(temp10)); char temp11[strlen(Settings.ex_mqtt_topic) +1]; strncpy(temp11, Settings.ex_mqtt_topic, sizeof(temp11)); char temp12[strlen(Settings.ex_button_topic) +1]; strncpy(temp12, Settings.ex_button_topic, sizeof(temp12)); char temp13[strlen(Settings.ex_mqtt_grptopic) +1]; strncpy(temp13, Settings.ex_mqtt_grptopic, sizeof(temp13)); memset(Settings.text_pool, 0x00, settings_text_size); SettingsUpdateText(SET_OTAURL, temp); SettingsUpdateText(SET_MQTTPREFIX1, temp21); SettingsUpdateText(SET_MQTTPREFIX2, temp22); SettingsUpdateText(SET_MQTTPREFIX3, temp23); SettingsUpdateText(SET_STASSID1, temp31); SettingsUpdateText(SET_STASSID2, temp32); SettingsUpdateText(SET_STAPWD1, temp41); SettingsUpdateText(SET_STAPWD2, temp42); SettingsUpdateText(SET_HOSTNAME, temp5); SettingsUpdateText(SET_SYSLOG_HOST, temp6); #if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT) if (!strlen(Settings.ex_mqtt_user)) { SettingsUpdateText(SET_MQTT_HOST, temp7); SettingsUpdateText(SET_MQTT_USER, temp9); } else { char aws_mqtt_host[66]; snprintf_P(aws_mqtt_host, sizeof(aws_mqtt_host), PSTR("%s%s"), temp9, temp7); SettingsUpdateText(SET_MQTT_HOST, aws_mqtt_host); SettingsUpdateText(SET_MQTT_USER, ""); } #else SettingsUpdateText(SET_MQTT_HOST, temp7); SettingsUpdateText(SET_MQTT_USER, temp9); #endif SettingsUpdateText(SET_MQTT_CLIENT, temp8); SettingsUpdateText(SET_MQTT_PWD, temp10); SettingsUpdateText(SET_MQTT_TOPIC, temp11); SettingsUpdateText(SET_MQTT_BUTTON_TOPIC, temp12); SettingsUpdateText(SET_MQTT_GRP_TOPIC, temp13); SettingsUpdateText(SET_WEBPWD, Settings.ex_web_password); SettingsUpdateText(SET_CORS, Settings.ex_cors_domain); SettingsUpdateText(SET_MQTT_FULLTOPIC, Settings.ex_mqtt_fulltopic); SettingsUpdateText(SET_MQTT_SWITCH_TOPIC, Settings.ex_switch_topic); SettingsUpdateText(SET_STATE_TXT1, Settings.ex_state_text[0]); SettingsUpdateText(SET_STATE_TXT2, Settings.ex_state_text[1]); SettingsUpdateText(SET_STATE_TXT3, Settings.ex_state_text[2]); SettingsUpdateText(SET_STATE_TXT4, Settings.ex_state_text[3]); SettingsUpdateText(SET_NTPSERVER1, Settings.ex_ntp_server[0]); SettingsUpdateText(SET_NTPSERVER2, Settings.ex_ntp_server[1]); SettingsUpdateText(SET_NTPSERVER3, Settings.ex_ntp_server[2]); SettingsUpdateText(SET_MEM1, Settings.script_pram[0]); SettingsUpdateText(SET_MEM2, Settings.script_pram[1]); SettingsUpdateText(SET_MEM3, Settings.script_pram[2]); SettingsUpdateText(SET_MEM4, Settings.script_pram[3]); SettingsUpdateText(SET_MEM5, Settings.script_pram[4]); SettingsUpdateText(SET_FRIENDLYNAME1, Settings.ex_friendlyname[0]); SettingsUpdateText(SET_FRIENDLYNAME2, Settings.ex_friendlyname[1]); SettingsUpdateText(SET_FRIENDLYNAME3, Settings.ex_friendlyname[2]); SettingsUpdateText(SET_FRIENDLYNAME4, Settings.ex_friendlyname[3]); } if (Settings.version < 0x08020003) { SettingsUpdateText(SET_TEMPLATE_NAME, Settings.user_template_name); Settings.zb_channel = 0; // set channel to zero to force reinit of zigbee parameters } #endif // ESP8266 if (Settings.version < 0x08020004) { #ifdef ESP8266 Settings.config_version = 0; // ESP8266 (Has been 0 for long time) #endif // ESP8266 #ifdef ESP32 Settings.config_version = 1; // ESP32 #endif // ESP32 } if (Settings.version < 0x08020006) { #ifdef ESP32 Settings.module = WEMOS; ModuleDefault(WEMOS); #endif // ESP32 // make sure the empty rules have two consecutive NULLs, to be compatible with compressed rules if (Settings.rules[0][0] == 0) { Settings.rules[0][1] = 0; } if (Settings.rules[1][0] == 0) { Settings.rules[1][1] = 0; } if (Settings.rules[2][0] == 0) { Settings.rules[2][1] = 0; } } Settings.version = VERSION; SettingsSave(1); } }