/*
xsns_48_solaxX1.ino - Solax X1 inverter RS485 support for Sonoff-Tasmota
Copyright (C) 2019 Pablo Zerón
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_SOLAX_X1
#define XSNS_49 49
#define solaxX1_SPEED 9600 // default solax rs485 speed
#define PV2 // comment this line if you use only one PV input
#include
enum solaxX1_Error
{
solaxX1_ERR_NO_ERROR,
solaxX1_ERR_CRC_ERROR
};
union {
uint32_t ErrMessage;
struct {
//BYTE0
uint8_t TzProtectFault:1;//0
uint8_t MainsLostFault:1;//1
uint8_t GridVoltFault:1;//2
uint8_t GridFreqFault:1;//3
uint8_t PLLLostFault:1;//4
uint8_t BusVoltFault:1;//5
uint8_t ErrBit06:1;//6
uint8_t OciFault:1;//7
//BYTE1
uint8_t Dci_OCP_Fault:1;//8
uint8_t ResidualCurrentFault:1;//9
uint8_t PvVoltFault:1;//10
uint8_t Ac10Mins_Voltage_Fault:1;//11
uint8_t IsolationFault:1;//12
uint8_t TemperatureOverFault:1;//13
uint8_t FanFault:1;//14
uint8_t ErrBit15:1;//15
//BYTE2
uint8_t SpiCommsFault:1;//16
uint8_t SciCommsFault:1;//17
uint8_t ErrBit18:1;//18
uint8_t InputConfigFault:1;//19
uint8_t EepromFault:1;//20
uint8_t RelayFault:1;//21
uint8_t SampleConsistenceFault:1;//22
uint8_t ResidualCurrent_DeviceFault:1;//23
//BYTE3
uint8_t ErrBit24:1;//24
uint8_t ErrBit25:1;//25
uint8_t ErrBit26:1;//26
uint8_t ErrBit27:1;//27
uint8_t ErrBit28:1;//28
uint8_t DCI_DeviceFault:1;//29
uint8_t OtherDeviceFault:1;//30
uint8_t ErrBit31:1;//31
};
} ErrCode;
const char solax_mode_0[] PROGMEM = D_WAITING;
const char solax_mode_1[] PROGMEM = D_CHECKING;
const char solax_mode_2[] PROGMEM = D_WORKING;
const char solax_mode_3[] PROGMEM = D_FAILURE;
const char *const solaxX1_Mode[] PROGMEM = {solax_mode_0, solax_mode_1, solax_mode_2, solax_mode_3};
const char solax_error_0[] PROGMEM = D_SOLAX_ERROR_0;
const char solax_error_1[] PROGMEM = D_SOLAX_ERROR_1;
const char solax_error_2[] PROGMEM = D_SOLAX_ERROR_2;
const char solax_error_3[] PROGMEM = D_SOLAX_ERROR_3;
const char solax_error_4[] PROGMEM = D_SOLAX_ERROR_4;
const char solax_error_5[] PROGMEM = D_SOLAX_ERROR_5;
const char solax_error_6[] PROGMEM = D_SOLAX_ERROR_6;
const char solax_error_7[] PROGMEM = D_SOLAX_ERROR_7;
const char solax_error_8[] PROGMEM = D_SOLAX_ERROR_8;
const char *const solaxX1_ErrCode[] PROGMEM = {solax_error_0, solax_error_1, solax_error_2, solax_error_3, solax_error_4, solax_error_5, solax_error_6, solax_error_7, solax_error_8};
/*********************************************************************************************/
TasmotaSerial *solaxX1Serial;
uint8_t solaxX1_Init = 1;
uint8_t solaxX1_status = 0;
uint32_t solaxX1_errorCode = 0;
float solaxX1_temperature = 0;
float solaxX1_energy_today = 0;
float solaxX1_dc1_voltage = 0;
float solaxX1_dc2_voltage = 0;
float solaxX1_dc1_current = 0;
float solaxX1_dc2_current = 0;
float solaxX1_ac_current = 0;
float solaxX1_ac_voltage = 0;
float solaxX1_frequency = 0;
float solaxX1_power = 0;
float solaxX1_energy_total = 0;
float solaxX1_runtime_total = 0;
float solaxX1_dc1_power = 0;
float solaxX1_dc2_power = 0;
bool queryOffline = false;
bool queryOfflineSend = false;
bool hasAddress = true;
bool inverterAddressSend = false;
bool inverterSnReceived = false;
uint8_t header[2] = {0xAA, 0x55};
uint8_t source[2] = {0x00, 0x00};
uint8_t destination[2] = {0x00, 0x00};
uint8_t controlCode[1] = {0x00};
uint8_t functionCode[1] = {0x00};
uint8_t dataLength[1] = {0x00};
uint8_t data[16] = {0};
uint8_t message[30];
#define INVERTER_ADDRESS 0x0A
/*********************************************************************************************/
bool solaxX1_RS485ReceiveReady(void)
{
return (solaxX1Serial->available() > 1);
}
void solaxX1_RS485Send(uint8_t *msg, uint16_t msgLen)
{
uint16_t crc = solaxX1_calculateCRC(msg, msgLen - 1); // calculate out crc bytes
while (solaxX1Serial->available() > 0)
{ // read serial if any old data is available
solaxX1Serial->read();
}
solaxX1Serial->flush();
solaxX1Serial->write(msg, msgLen);
solaxX1Serial->write(highByte(crc));
solaxX1Serial->write(lowByte(crc));
}
uint8_t solaxX1_RS485Receive(uint8_t *value)
{
uint8_t len = 0;
while (solaxX1Serial->available() > 0)
{
value[len++] = (uint8_t)solaxX1Serial->read();
}
uint16_t crc = solaxX1_calculateCRC(value, len - 3); // calculate out crc bytes
if (value[len - 1] == lowByte(crc) && value[len - 2] == highByte(crc))
{ // check calc crc with received crc
return solaxX1_ERR_NO_ERROR;
}
else
{
return solaxX1_ERR_CRC_ERROR;
}
}
uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen)
{
uint8_t i;
uint16_t wChkSum;
wChkSum = 0;
for (i = 0; i <= bLen; i++)
{
wChkSum = wChkSum + bExternTxPackage[i];
}
return wChkSum;
}
void solaxX1_setMessage(uint8_t *message)
{
memcpy(message, header, 2);
memcpy(message + 2, source, 2);
memcpy(message + 4, destination, 2);
memcpy(message + 6, controlCode, 1);
memcpy(message + 7, functionCode, 1);
memcpy(message + 8, dataLength, 1);
memcpy(message + 9, data, sizeof(data));
}
void solaxX1_SendInverterAddress()
{
source[0] = 0x00;
destination[0] = 0x00;
destination[1] = 0x00;
controlCode[0] = 0x10;
functionCode[0] = 0x01;
dataLength[0] = 0x0F;
// Inverter Address, It must be unique in case of more inverters in the same rs485 net.
data[14] = INVERTER_ADDRESS;
solaxX1_setMessage(message);
solaxX1_RS485Send(message, 24);
}
void solaxX1_QueryLiveData()
{
source[0] = 0x01;
destination[0] = 0x00;
destination[1] = INVERTER_ADDRESS;
controlCode[0] = 0x11;
functionCode[0] = 0x02;
dataLength[0] = 0x00;
solaxX1_setMessage(message);
solaxX1_RS485Send(message, 9);
}
uint8_t solaxX1_ParseErrorCode(uint32_t code){
ErrCode.ErrMessage = code;
if (code == 0) return 0;
if (ErrCode.MainsLostFault) return 1;
if (ErrCode.GridVoltFault) return 2;
if (ErrCode.GridFreqFault) return 3;
if (ErrCode.PvVoltFault) return 4;
if (ErrCode.IsolationFault) return 5;
if (ErrCode.TemperatureOverFault) return 6;
if (ErrCode.FanFault) return 7;
if (ErrCode.OtherDeviceFault) return 8;
}
/*********************************************************************************************/
uint8_t solaxX1_send_retry = 0;
uint8_t solaxX1_nodata_count = 0;
void solaxX1_Update(void) // Every Second
{
uint8_t value[61] = {0};
bool data_ready = solaxX1_RS485ReceiveReady();
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "queryOffline: %d , queryOfflineSend: %d, hasAddress: %d, inverterAddressSend: %d, solaxX1_send_retry: %d"), queryOffline, queryOfflineSend, hasAddress, inverterAddressSend, solaxX1_send_retry);
if (!hasAddress && (data_ready || solaxX1_send_retry == 0))
{
if (data_ready)
{
// check address confirmation from inverter
if (inverterAddressSend)
{
uint8_t error = solaxX1_RS485Receive(value);
if (error)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Address confirmation response CRC error"));
}
else
{
if (value[6] == 0x10 && value[7] == 0x81 && value[9] == 0x06)
{
inverterAddressSend = false;
queryOfflineSend = false;
hasAddress = true;
}
}
}
// Check inverter serial number and send the set address request
if (queryOfflineSend)
{
uint8_t error = solaxX1_RS485Receive(value);
if (error)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Query Offline response CRC error"));
}
else
{
// Serial number from query response
if (value[6] == 0x10 && value[7] == 0x80 && inverterSnReceived == false)
{
for (uint8_t i = 9; i <= 22; i++)
{
data[i - 9] = value[i];
}
inverterSnReceived = true;
}
solaxX1_SendInverterAddress();
inverterAddressSend = true;
queryOfflineSend = false;
queryOffline = false;
}
}
}
// request to the inverter the serial number if offline
if (queryOffline)
{
// We sent the message to query inverters in offline status
source[0] = 0x01;
destination[1] = 0x00;
controlCode[0] = 0x10;
functionCode[0] = 0x00;
dataLength[0] = 0x00;
solaxX1_setMessage(message);
solaxX1_RS485Send(message, 9);
queryOfflineSend = true;
queryOffline = false;
}
if (solaxX1_send_retry == 0)
{
if (inverterAddressSend)
{
solaxX1_SendInverterAddress();
}
if (queryOfflineSend)
{
queryOffline = true;
queryOfflineSend = false;
}
solaxX1_send_retry = 2;
}
} // end !hasAddress && (data_ready || solaxX1_send_retry == 0)
if (hasAddress && (data_ready || solaxX1_send_retry == 0))
{
if (data_ready)
{
uint8_t error = solaxX1_RS485Receive(value);
if (error)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Data response CRC error"));
}
else
{
/* char hexCar[2];
for(int i=0; ibegin(solaxX1_SPEED))
{
if (solaxX1Serial->hardwareSerial())
{
ClaimSerial();
}
solaxX1_Init = 1;
}
}
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_solaxX1_DATA[] PROGMEM =
"{s}solaxX1 " D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}solaxX1 " D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}solaxX1 " D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"
"{s}solaxX1 " D_INVERTER_POWER "{m}%s " D_UNIT_WATT "{e}"
"{s}solaxX1 " D_SOLAR_POWER "{m}%s " D_UNIT_WATT "{e}"
"{s}solaxX1 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}solaxX1 " D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}solaxX1 " D_PV1_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}solaxX1 " D_PV1_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}solaxX1 " D_PV1_POWER "{m}%s " D_UNIT_WATT "{e}"
#ifdef PV2
"{s}solaxX1 " D_PV2_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}solaxX1 " D_PV2_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}solaxX1 " D_PV2_POWER "{m}%s " D_UNIT_WATT "{e}"
#endif
"{s}solaxX1 " D_TEMPERATURE "{m}%s " D_UNIT_TEMPERATURE "{e}"
"{s}solaxX1 " D_WORKTIME "{m}%s " D_UNIT_HOUR "{e}"
"{s}solaxX1 " D_STATUS "{m}%s"
"{s}solaxX1 " D_ERROR "{m}%s";
#endif // USE_WEBSERVER
void solaxX1Show(bool json)
{
char voltage[33];
dtostrfd(solaxX1_ac_voltage, 2, voltage);
char current[33];
dtostrfd(solaxX1_ac_current, 3, current);
char inverter_power[33];
dtostrfd(solaxX1_power, 2, inverter_power);
char solar_power[33];
dtostrfd(solaxX1_dc1_power +
solaxX1_dc2_power, 2, solar_power);
char frequency[33];
dtostrfd(solaxX1_frequency, 2, frequency);
char energy_total[33];
dtostrfd(solaxX1_energy_total, 1, energy_total);
char energy_today[33];
dtostrfd(solaxX1_energy_today, 1, energy_today);
char pv1_voltage[33];
dtostrfd(solaxX1_dc1_voltage, 2, pv1_voltage);
char pv1_current[33];
dtostrfd(solaxX1_dc1_current, 3, pv1_current);
char pv1_power[33];
dtostrfd(solaxX1_dc1_power, 2, pv1_power);
#ifdef PV2
char pv2_voltage[33];
dtostrfd(solaxX1_dc2_voltage, 2, pv2_voltage);
char pv2_current[33];
dtostrfd(solaxX1_dc2_current, 3, pv2_current);
char pv2_power[33];
dtostrfd(solaxX1_dc2_power, 2, pv2_power);
#endif
char temperature[33];
dtostrfd(solaxX1_temperature, 1, temperature);
char runtime[33];
dtostrfd(solaxX1_runtime_total, 0, runtime);
char status[33];
strcpy_P(status, (PGM_P)solaxX1_Mode[solaxX1_status]);
char errorCode[33];
char errorCodeString[33];
dtostrfd(solaxX1_errorCode, 0, errorCode);
strcpy_P(errorCodeString, (PGM_P)solaxX1_ErrCode[solaxX1_ParseErrorCode(solaxX1_errorCode)]);
if (json)
{
#ifdef PV2
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_TOTAL "\":%s,\"" D_JSON_TODAY "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s,\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s,\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%s}"),
voltage, current, inverter_power, solar_power, frequency, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, pv2_voltage, pv2_current, pv2_power, temperature, runtime, status, errorCode);
#else
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_TOTAL "\":%s,\"" D_JSON_TODAY "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s,\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\"}"),
voltage, current, inverter_power, solar_power, frequency, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, temperature, runtime, status, errorCode);
#endif
#ifdef USE_DOMOTICZ
if (0 == tele_period)
{
char energy_total_chr[33];
dtostrfd(solaxX1_energy_total * 1000, 1, energy_total_chr);
DomoticzSensor(DZ_VOLTAGE, voltage);
DomoticzSensor(DZ_CURRENT, current);
// Only do the updates if the values are greater than 0, to avoid wrong data representation in domoticz
if (solaxX1_temperature > 0) DomoticzSensor(DZ_TEMP, temperature);
if (solaxX1_energy_total > 0) DomoticzSensorPowerEnergy((int)solaxX1_power, energy_total_chr);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
}
else
{
#ifdef PV2
WSContentSend_PD(HTTP_SNS_solaxX1_DATA, voltage, current, frequency, inverter_power, solar_power, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, pv2_voltage, pv2_current, pv2_power, temperature, runtime, status, errorCodeString);
#else
WSContentSend_PD(HTTP_SNS_solaxX1_DATA, voltage, current, frequency, inverter_power, solar_power, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, temperature, runtime, status, errorCodeString);
#endif
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns49(uint8_t function)
{
bool result = false;
if (solaxX1_Init)
{
switch (function)
{
case FUNC_INIT:
solaxX1Init();
break;
case FUNC_EVERY_SECOND:
solaxX1_Update();
break;
case FUNC_JSON_APPEND:
solaxX1Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
solaxX1Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_solaxX1