/* xsns_48_solaxX1.ino - Solax X1 inverter RS485 support for Sonoff-Tasmota Copyright (C) 2019 Pablo Zerón This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_SOLAX_X1 #define XSNS_49 49 #define solaxX1_SPEED 9600 // default solax rs485 speed #define PV2 // comment this line if you use only one PV input #include enum solaxX1_Error { solaxX1_ERR_NO_ERROR, solaxX1_ERR_CRC_ERROR }; union { uint32_t ErrMessage; struct { //BYTE0 uint8_t TzProtectFault:1;//0 uint8_t MainsLostFault:1;//1 uint8_t GridVoltFault:1;//2 uint8_t GridFreqFault:1;//3 uint8_t PLLLostFault:1;//4 uint8_t BusVoltFault:1;//5 uint8_t ErrBit06:1;//6 uint8_t OciFault:1;//7 //BYTE1 uint8_t Dci_OCP_Fault:1;//8 uint8_t ResidualCurrentFault:1;//9 uint8_t PvVoltFault:1;//10 uint8_t Ac10Mins_Voltage_Fault:1;//11 uint8_t IsolationFault:1;//12 uint8_t TemperatureOverFault:1;//13 uint8_t FanFault:1;//14 uint8_t ErrBit15:1;//15 //BYTE2 uint8_t SpiCommsFault:1;//16 uint8_t SciCommsFault:1;//17 uint8_t ErrBit18:1;//18 uint8_t InputConfigFault:1;//19 uint8_t EepromFault:1;//20 uint8_t RelayFault:1;//21 uint8_t SampleConsistenceFault:1;//22 uint8_t ResidualCurrent_DeviceFault:1;//23 //BYTE3 uint8_t ErrBit24:1;//24 uint8_t ErrBit25:1;//25 uint8_t ErrBit26:1;//26 uint8_t ErrBit27:1;//27 uint8_t ErrBit28:1;//28 uint8_t DCI_DeviceFault:1;//29 uint8_t OtherDeviceFault:1;//30 uint8_t ErrBit31:1;//31 }; } ErrCode; const char solax_mode_0[] PROGMEM = D_WAITING; const char solax_mode_1[] PROGMEM = D_CHECKING; const char solax_mode_2[] PROGMEM = D_WORKING; const char solax_mode_3[] PROGMEM = D_FAILURE; const char *const solaxX1_Mode[] PROGMEM = {solax_mode_0, solax_mode_1, solax_mode_2, solax_mode_3}; const char solax_error_0[] PROGMEM = D_SOLAX_ERROR_0; const char solax_error_1[] PROGMEM = D_SOLAX_ERROR_1; const char solax_error_2[] PROGMEM = D_SOLAX_ERROR_2; const char solax_error_3[] PROGMEM = D_SOLAX_ERROR_3; const char solax_error_4[] PROGMEM = D_SOLAX_ERROR_4; const char solax_error_5[] PROGMEM = D_SOLAX_ERROR_5; const char solax_error_6[] PROGMEM = D_SOLAX_ERROR_6; const char solax_error_7[] PROGMEM = D_SOLAX_ERROR_7; const char solax_error_8[] PROGMEM = D_SOLAX_ERROR_8; const char *const solaxX1_ErrCode[] PROGMEM = {solax_error_0, solax_error_1, solax_error_2, solax_error_3, solax_error_4, solax_error_5, solax_error_6, solax_error_7, solax_error_8}; /*********************************************************************************************/ TasmotaSerial *solaxX1Serial; uint8_t solaxX1_Init = 1; uint8_t solaxX1_status = 0; uint32_t solaxX1_errorCode = 0; float solaxX1_temperature = 0; float solaxX1_energy_today = 0; float solaxX1_dc1_voltage = 0; float solaxX1_dc2_voltage = 0; float solaxX1_dc1_current = 0; float solaxX1_dc2_current = 0; float solaxX1_ac_current = 0; float solaxX1_ac_voltage = 0; float solaxX1_frequency = 0; float solaxX1_power = 0; float solaxX1_energy_total = 0; float solaxX1_runtime_total = 0; float solaxX1_dc1_power = 0; float solaxX1_dc2_power = 0; bool queryOffline = false; bool queryOfflineSend = false; bool hasAddress = true; bool inverterAddressSend = false; bool inverterSnReceived = false; uint8_t header[2] = {0xAA, 0x55}; uint8_t source[2] = {0x00, 0x00}; uint8_t destination[2] = {0x00, 0x00}; uint8_t controlCode[1] = {0x00}; uint8_t functionCode[1] = {0x00}; uint8_t dataLength[1] = {0x00}; uint8_t data[16] = {0}; uint8_t message[30]; #define INVERTER_ADDRESS 0x0A /*********************************************************************************************/ bool solaxX1_RS485ReceiveReady(void) { return (solaxX1Serial->available() > 1); } void solaxX1_RS485Send(uint8_t *msg, uint16_t msgLen) { uint16_t crc = solaxX1_calculateCRC(msg, msgLen - 1); // calculate out crc bytes while (solaxX1Serial->available() > 0) { // read serial if any old data is available solaxX1Serial->read(); } solaxX1Serial->flush(); solaxX1Serial->write(msg, msgLen); solaxX1Serial->write(highByte(crc)); solaxX1Serial->write(lowByte(crc)); } uint8_t solaxX1_RS485Receive(uint8_t *value) { uint8_t len = 0; while (solaxX1Serial->available() > 0) { value[len++] = (uint8_t)solaxX1Serial->read(); } uint16_t crc = solaxX1_calculateCRC(value, len - 3); // calculate out crc bytes if (value[len - 1] == lowByte(crc) && value[len - 2] == highByte(crc)) { // check calc crc with received crc return solaxX1_ERR_NO_ERROR; } else { return solaxX1_ERR_CRC_ERROR; } } uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen) { uint8_t i; uint16_t wChkSum; wChkSum = 0; for (i = 0; i <= bLen; i++) { wChkSum = wChkSum + bExternTxPackage[i]; } return wChkSum; } void solaxX1_setMessage(uint8_t *message) { memcpy(message, header, 2); memcpy(message + 2, source, 2); memcpy(message + 4, destination, 2); memcpy(message + 6, controlCode, 1); memcpy(message + 7, functionCode, 1); memcpy(message + 8, dataLength, 1); memcpy(message + 9, data, sizeof(data)); } void solaxX1_SendInverterAddress() { source[0] = 0x00; destination[0] = 0x00; destination[1] = 0x00; controlCode[0] = 0x10; functionCode[0] = 0x01; dataLength[0] = 0x0F; // Inverter Address, It must be unique in case of more inverters in the same rs485 net. data[14] = INVERTER_ADDRESS; solaxX1_setMessage(message); solaxX1_RS485Send(message, 24); } void solaxX1_QueryLiveData() { source[0] = 0x01; destination[0] = 0x00; destination[1] = INVERTER_ADDRESS; controlCode[0] = 0x11; functionCode[0] = 0x02; dataLength[0] = 0x00; solaxX1_setMessage(message); solaxX1_RS485Send(message, 9); } uint8_t solaxX1_ParseErrorCode(uint32_t code){ ErrCode.ErrMessage = code; if (code == 0) return 0; if (ErrCode.MainsLostFault) return 1; if (ErrCode.GridVoltFault) return 2; if (ErrCode.GridFreqFault) return 3; if (ErrCode.PvVoltFault) return 4; if (ErrCode.IsolationFault) return 5; if (ErrCode.TemperatureOverFault) return 6; if (ErrCode.FanFault) return 7; if (ErrCode.OtherDeviceFault) return 8; } /*********************************************************************************************/ uint8_t solaxX1_send_retry = 0; uint8_t solaxX1_nodata_count = 0; void solaxX1_Update(void) // Every Second { uint8_t value[61] = {0}; bool data_ready = solaxX1_RS485ReceiveReady(); AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "queryOffline: %d , queryOfflineSend: %d, hasAddress: %d, inverterAddressSend: %d, solaxX1_send_retry: %d"), queryOffline, queryOfflineSend, hasAddress, inverterAddressSend, solaxX1_send_retry); if (!hasAddress && (data_ready || solaxX1_send_retry == 0)) { if (data_ready) { // check address confirmation from inverter if (inverterAddressSend) { uint8_t error = solaxX1_RS485Receive(value); if (error) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Address confirmation response CRC error")); } else { if (value[6] == 0x10 && value[7] == 0x81 && value[9] == 0x06) { inverterAddressSend = false; queryOfflineSend = false; hasAddress = true; } } } // Check inverter serial number and send the set address request if (queryOfflineSend) { uint8_t error = solaxX1_RS485Receive(value); if (error) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Query Offline response CRC error")); } else { // Serial number from query response if (value[6] == 0x10 && value[7] == 0x80 && inverterSnReceived == false) { for (uint8_t i = 9; i <= 22; i++) { data[i - 9] = value[i]; } inverterSnReceived = true; } solaxX1_SendInverterAddress(); inverterAddressSend = true; queryOfflineSend = false; queryOffline = false; } } } // request to the inverter the serial number if offline if (queryOffline) { // We sent the message to query inverters in offline status source[0] = 0x01; destination[1] = 0x00; controlCode[0] = 0x10; functionCode[0] = 0x00; dataLength[0] = 0x00; solaxX1_setMessage(message); solaxX1_RS485Send(message, 9); queryOfflineSend = true; queryOffline = false; } if (solaxX1_send_retry == 0) { if (inverterAddressSend) { solaxX1_SendInverterAddress(); } if (queryOfflineSend) { queryOffline = true; queryOfflineSend = false; } solaxX1_send_retry = 2; } } // end !hasAddress && (data_ready || solaxX1_send_retry == 0) if (hasAddress && (data_ready || solaxX1_send_retry == 0)) { if (data_ready) { uint8_t error = solaxX1_RS485Receive(value); if (error) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Data response CRC error")); } else { /* char hexCar[2]; for(int i=0; ibegin(solaxX1_SPEED)) { if (solaxX1Serial->hardwareSerial()) { ClaimSerial(); } solaxX1_Init = 1; } } } #ifdef USE_WEBSERVER const char HTTP_SNS_solaxX1_DATA[] PROGMEM = "{s}solaxX1 " D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}solaxX1 " D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}solaxX1 " D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}" "{s}solaxX1 " D_INVERTER_POWER "{m}%s " D_UNIT_WATT "{e}" "{s}solaxX1 " D_SOLAR_POWER "{m}%s " D_UNIT_WATT "{e}" "{s}solaxX1 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}" "{s}solaxX1 " D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}" "{s}solaxX1 " D_PV1_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}solaxX1 " D_PV1_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}solaxX1 " D_PV1_POWER "{m}%s " D_UNIT_WATT "{e}" #ifdef PV2 "{s}solaxX1 " D_PV2_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}solaxX1 " D_PV2_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}solaxX1 " D_PV2_POWER "{m}%s " D_UNIT_WATT "{e}" #endif "{s}solaxX1 " D_TEMPERATURE "{m}%s " D_UNIT_TEMPERATURE "{e}" "{s}solaxX1 " D_WORKTIME "{m}%s " D_UNIT_HOUR "{e}" "{s}solaxX1 " D_STATUS "{m}%s" "{s}solaxX1 " D_ERROR "{m}%s"; #endif // USE_WEBSERVER void solaxX1Show(bool json) { char voltage[33]; dtostrfd(solaxX1_ac_voltage, 2, voltage); char current[33]; dtostrfd(solaxX1_ac_current, 3, current); char inverter_power[33]; dtostrfd(solaxX1_power, 2, inverter_power); char solar_power[33]; dtostrfd(solaxX1_dc1_power + solaxX1_dc2_power, 2, solar_power); char frequency[33]; dtostrfd(solaxX1_frequency, 2, frequency); char energy_total[33]; dtostrfd(solaxX1_energy_total, 1, energy_total); char energy_today[33]; dtostrfd(solaxX1_energy_today, 1, energy_today); char pv1_voltage[33]; dtostrfd(solaxX1_dc1_voltage, 2, pv1_voltage); char pv1_current[33]; dtostrfd(solaxX1_dc1_current, 3, pv1_current); char pv1_power[33]; dtostrfd(solaxX1_dc1_power, 2, pv1_power); #ifdef PV2 char pv2_voltage[33]; dtostrfd(solaxX1_dc2_voltage, 2, pv2_voltage); char pv2_current[33]; dtostrfd(solaxX1_dc2_current, 3, pv2_current); char pv2_power[33]; dtostrfd(solaxX1_dc2_power, 2, pv2_power); #endif char temperature[33]; dtostrfd(solaxX1_temperature, 1, temperature); char runtime[33]; dtostrfd(solaxX1_runtime_total, 0, runtime); char status[33]; strcpy_P(status, (PGM_P)solaxX1_Mode[solaxX1_status]); char errorCode[33]; char errorCodeString[33]; dtostrfd(solaxX1_errorCode, 0, errorCode); strcpy_P(errorCodeString, (PGM_P)solaxX1_ErrCode[solaxX1_ParseErrorCode(solaxX1_errorCode)]); if (json) { #ifdef PV2 ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_TOTAL "\":%s,\"" D_JSON_TODAY "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s,\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s,\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%s}"), voltage, current, inverter_power, solar_power, frequency, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, pv2_voltage, pv2_current, pv2_power, temperature, runtime, status, errorCode); #else ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_TOTAL "\":%s,\"" D_JSON_TODAY "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s,\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\"}"), voltage, current, inverter_power, solar_power, frequency, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, temperature, runtime, status, errorCode); #endif #ifdef USE_DOMOTICZ if (0 == tele_period) { char energy_total_chr[33]; dtostrfd(solaxX1_energy_total * 1000, 1, energy_total_chr); DomoticzSensor(DZ_VOLTAGE, voltage); DomoticzSensor(DZ_CURRENT, current); // Only do the updates if the values are greater than 0, to avoid wrong data representation in domoticz if (solaxX1_temperature > 0) DomoticzSensor(DZ_TEMP, temperature); if (solaxX1_energy_total > 0) DomoticzSensorPowerEnergy((int)solaxX1_power, energy_total_chr); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { #ifdef PV2 WSContentSend_PD(HTTP_SNS_solaxX1_DATA, voltage, current, frequency, inverter_power, solar_power, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, pv2_voltage, pv2_current, pv2_power, temperature, runtime, status, errorCodeString); #else WSContentSend_PD(HTTP_SNS_solaxX1_DATA, voltage, current, frequency, inverter_power, solar_power, energy_total, energy_today, pv1_voltage, pv1_current, pv1_power, temperature, runtime, status, errorCodeString); #endif #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns49(uint8_t function) { bool result = false; if (solaxX1_Init) { switch (function) { case FUNC_INIT: solaxX1Init(); break; case FUNC_EVERY_SECOND: solaxX1_Update(); break; case FUNC_JSON_APPEND: solaxX1Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: solaxX1Show(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_solaxX1