/*
xsns_101_hmc5883l.ino - HMC5883L 3-Axis Digital Compass sensor support for Tasmota
Copyright (C) 2022 Andreas Achtzehn (inspired by Helge Scheunemann)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_I2C
#ifdef USE_HMC5883L
/*********************************************************************************************\
* HMC5883L is 3-Axis Digital Compass sensor
*
* Datasheet: https://cdn-shop.adafruit.com/datasheets/HMC5883L_3-Axis_Digital_Compass_IC.pdf
* I2C Address: 0x1E
\*********************************************************************************************/
// Define driver ID
#define XSNS_101 101
#define XI2C_73 73 // See I2CDEVICES.md
/* The default I2C address of this chip */
#define HMC5883L_ADDR 0x1E
/* Register locations */
#define HMC5883L_X_LSB 0x04
#define HMC5883L_X_MSB 0x03
#define HMC5883L_Y_LSB 0x08
#define HMC5883L_Y_MSB 0x07
#define HMC5883L_Z_LSB 0x06
#define HMC5883L_Z_MSB 0x05
#define HMC5883L_STATUS 0x09
#define HMC5883L_CONFIG_A 0x00
#define HMC5883L_CONFIG_B 0x01
#define HMC5883L_MODE 0x02
#define HMC5883L_CHIP_ID_A 0x0A
#define HMC5883L_CHIP_ID_B 0x0B
#define HMC5883L_CHIP_ID_C 0x0C
/* Bit values for the STATUS register */
const uint8_t HMC5883L_STATUS_RDY = 0b00000001;
const uint8_t HMC5883L_STATUS_LOCK = 0b00000010;
/* Modes for the sampling in the MODE register */
const uint8_t HMC5883L_MODE_CONT = 0b00000000;
const uint8_t HMC5883L_MODE_SINGLE = 0b00000001;
const uint8_t HMC5883L_MODE_IDLE = 0b00000010;
/* Gain value mask for CONFIG B register */
const uint8_t HMC5883L_CONFIG_B_GAIN_MASK = 0b11100000; // shift operation, values 0-7
const uint8_t HMC5883L_CONFIG_B_GAIN_SHIFT = 5;
/* Averaging value for CONFIG A register: pow(2,N) */
const uint8_t HMC5883L_CONFIG_A_AVG_MASK = 0b01100000;
const uint8_t HMC5883L_CONFIG_A_AVG_SHIFT = 5;
/* Data output rate */
const uint8_t HMC5883L_CONFIG_A_RATE_MASK = 0b00011100;
const uint8_t HMC5883L_CONFIG_A_RATE_SHIFT = 2;
/* Data measurement mode */
const uint8_t HMC5883L_CONFIG_A_MMODE_NORM = 0;
const uint8_t HMC5883L_CONFIG_A_MMODE_POSBIAS = 1;
const uint8_t HMC5883L_CONFIG_A_MMODE_NEGBIAS = 2;
const uint8_t HMC5883L_CONFIG_A_MMODE_MASK = 0b00000011;
const uint8_t HMC5883L_CONFIG_A_MMODE_SHIFT = 0;
/* Data output X register A contains the MSB from the measurement result,
and data output X register B contains the LSB from the measurement result. The value stored in these two registers is a
16-bit value in 2’s complement form, whose range is 0xF800 to 0x07FF. */
// data field
struct HMC5883L_s {
int16_t MX, MY, MZ;
uint16_t magnitude;
int8_t measurement_mode;
int8_t data_rate;
int8_t average_mode;
int8_t gain;
int8_t mode;
} *HMC5883L = nullptr;
// Change configuration registers of the device
bool HMC5883L_SetConfig() {
if ( HMC5883L == nullptr ) { return false; }
uint8_t cfgA = (( (HMC5883L->measurement_mode) << HMC5883L_CONFIG_A_MMODE_SHIFT ) & HMC5883L_CONFIG_A_MMODE_MASK ) |
(( (HMC5883L->data_rate ) << HMC5883L_CONFIG_A_RATE_SHIFT ) & HMC5883L_CONFIG_A_RATE_MASK ) |
(( (HMC5883L->average_mode ) << HMC5883L_CONFIG_A_AVG_SHIFT ) & HMC5883L_CONFIG_A_AVG_MASK );
uint8_t cfgB = (( (HMC5883L->gain ) << HMC5883L_CONFIG_B_GAIN_SHIFT ) & HMC5883L_CONFIG_B_GAIN_MASK );
AddLog(LOG_LEVEL_INFO,"HMC: CONFIG A: %#X CONFIG B: %#X MODE: %#X", cfgA, cfgB, HMC5883L->mode);
if (I2cWrite8(HMC5883L_ADDR, HMC5883L_CONFIG_A, cfgA ) == false) {
AddLog(LOG_LEVEL_INFO,"HMC: Setting CONFIG A failed");
return false;
}
if (I2cWrite8(HMC5883L_ADDR, HMC5883L_CONFIG_B, cfgB ) == false) {
AddLog(LOG_LEVEL_INFO,"HMC: Setting CONFIG B failed");
return false;
}
if (HMC5883L->mode == HMC5883L_MODE_CONT) {
if (I2cWrite8(HMC5883L_ADDR, HMC5883L_MODE, HMC5883L_MODE_CONT ) == false) {
AddLog(LOG_LEVEL_INFO,"HMC: Setting continuous mode failed");
return false;
}
}
return true;
}
// Initialize the device
void HMC5883L_Init() {
if (!I2cSetDevice(HMC5883L_ADDR)) { return; }
HMC5883L = (HMC5883L_s *)calloc(1, sizeof(struct HMC5883L_s));
// standard configuration
HMC5883L->gain = 5;
HMC5883L->average_mode = 3;
HMC5883L->data_rate = 2;
HMC5883L->measurement_mode = HMC5883L_CONFIG_A_MMODE_NORM;
HMC5883L->mode = HMC5883L_MODE_SINGLE;
HMC5883L_SetConfig();
I2cSetActiveFound(HMC5883L_ADDR, "HMC5883L");
}
//Read the magnetic data
void HMC5883L_ReadData(void) {
if (HMC5883L->mode == HMC5883L_MODE_SINGLE) {
if (I2cWrite8(HMC5883L_ADDR, HMC5883L_MODE, HMC5883L_MODE_SINGLE ) == false) { return; }
}
uint32_t timeout = millis() + 20;
while (!(I2cRead8(HMC5883L_ADDR, HMC5883L_STATUS) & HMC5883L_STATUS_RDY)) {
if (millis() > timeout) { return; } // Chip not yet ready, next round try again
}
HMC5883L->MX = I2cReadS16(HMC5883L_ADDR, HMC5883L_X_MSB); // Select starting with MSB register
HMC5883L->MY = I2cReadS16(HMC5883L_ADDR, HMC5883L_Y_MSB);
HMC5883L->MZ = I2cReadS16(HMC5883L_ADDR, HMC5883L_Z_MSB);
// calculate magnetic induction magnitude
HMC5883L->magnitude = SqrtInt((HMC5883L->MX * HMC5883L->MX) + (HMC5883L->MY * HMC5883L->MY) + (HMC5883L->MZ * HMC5883L->MZ));
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
#ifdef USE_WEBSERVER
const char HTTP_SNS_HMC5883L[] PROGMEM =
"{s}HMC5883L " D_MX "{m}%d " D_UNIT_MICROTESLA "{e}" // {s} =
, {m} = | , {e} = |
"{s}HMC5883L " D_MY "{m}%d " D_UNIT_MICROTESLA "{e}" // {s} = , {m} = | , {e} = |
"{s}HMC5883L " D_MZ "{m}%d " D_UNIT_MICROTESLA "{e}" // {s} = , {m} = | , {e} = |
"{s}HMC5883L " D_MAGNETICFLD "{m}%d " D_UNIT_MICROTESLA "{e}"; // {s} = , {m} = | , {e} = |
#endif
void HMC5883L_Show(uint8_t json) {
if (json) {
ResponseAppend_P(PSTR(",\"HMC5883L\":{\"" D_JSON_MX "\":%d,\"" D_JSON_MY "\":%d,\"" D_JSON_MZ "\":%d,\"" D_JSON_MAGNETICFLD "\":%u}"),
HMC5883L->MX, HMC5883L->MY, HMC5883L->MZ, HMC5883L->magnitude);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_HMC5883L, HMC5883L->MX, HMC5883L->MY, HMC5883L->MZ, HMC5883L->magnitude);
#endif
}
}
// Process configuration commands
bool HMC5883L_Command() {
bool commandKnown = false;
char cmd[20];
char ss2[20];
subStr(cmd, XdrvMailbox.data, ",", 1);
int8_t value = atoi(subStr(ss2, XdrvMailbox.data, ",", 2));
if (strcmp(cmd,"GAIN")) {
HMC5883L->gain = value;
commandKnown = true;
}
if (strcmp(cmd,"AVG")) {
HMC5883L->average_mode = value;
commandKnown = true;
}
if (strcmp(cmd,"RATE")) {
HMC5883L->data_rate = value;
commandKnown = true;
}
if (strcmp(cmd,"MMODE")) {
HMC5883L->measurement_mode = value;
commandKnown = true;
}
//AddLog(LOG_LEVEL_INFO,PSTR(D_LOG_I2C "HMC: cmd: (%s) value: %d cmdKnown: %d"), cmd, value,commandKnown);
if (commandKnown == false) { return false; }
AddLog(LOG_LEVEL_INFO,PSTR(D_LOG_I2C "HMC: Reconfiguring."));
return HMC5883L_SetConfig();
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns101(uint32_t function) {
if (!I2cEnabled(XI2C_73)) { return false; }
if (FUNC_INIT == function) {
HMC5883L_Init();
}
else if (HMC5883L != nullptr) {
switch (function) {
case FUNC_COMMAND_SENSOR:
if (XSNS_101 == XdrvMailbox.index) {
return HMC5883L_Command(); // Return true on success
}
break;
case FUNC_JSON_APPEND:
HMC5883L_Show(1);
break;
case FUNC_EVERY_SECOND:
HMC5883L_ReadData();
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
HMC5883L_Show(0);
break;
#endif // USE_WEBSERVER
}
}
return true;
}
#endif // USE_HMC5883L
#endif // USE_I2C