/* xsns_81_seesaw_soil - I2C Capacitance & temperature sensor support for Tasmota Copyright (C) 2021 Wayne Ross, Theo Arends, Peter Franck This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_SEESAW_SOIL /*********************************************************************************************\ * SEESAW_SOIL - Capacitice Soil Moisture & Temperature Sensor * * I2C Address: 0x36, 0x37, 0x38, 0x39 * * This version of the driver replaces all delay loops by a state machine. So the number * of instruction cycles consumed has been reduced dramatically. The sensors are reset, * detected, commanded and read all at once. So the reading times won't increase with the * number of sensors attached. The detection of sensors does not happen in FUNC_INIT any * more. All i2c handling happens in the 50ms state machine. * The memory footprint has suffered a little bit from this redesign, naturally. * * Memory footprint: 1444 bytes flash / 68 bytes RAM * * NOTE: #define SEESAW_SOIL_PUBLISH enables immediate MQTT on soil moisture change * otherwise the moisture value will only be emitted every TelePeriod * #define SEESAW_SOIL_RAW enables displaying analog capacitance input in the * web page for calibration purposes * #define SEESAW_SOIL_PERSISTENT_NAMING to get sensor names indexed by i2c address \*********************************************************************************************/ #define XSNS_81 81 #define XI2C_56 56 // See I2CDEVICES.md #include "Adafruit_seesaw.h" // we only use definitions, no code #define SEESAW_SOIL_MAX_SENSORS 4 #define SEESAW_SOIL_START_ADDRESS 0x36 // I2C state machine #define STATE_IDLE 0x00 #define STATE_RESET 0x01 #define STATE_INIT 0x02 #define STATE_DETECT 0x04 #define STATE_COMMAND_TEMP 0x08 #define STATE_READ_TEMP 0x10 #define STATE_COMMAND_MOIST 0x20 #define STATE_READ_MOIST 0x40 // I2C commands #define COMMAND_RESET 0x01 #define COMMAND_ID 0x02 #define COMMAND_TEMP 0x04 #define COMMAND_MOIST 0x08 // I2C delays #define DELAY_DETECT 1 // ms delay before reading ID #define DELAY_TEMP 1 // ms delay between command and reading #define DELAY_MOIST 5 // ms delay between command and reading #define DELAY_RESET 500 // ms delay after slave reset // Convert capacitance into a moisture. // From observation, a free air reading is at 320, immersed in tap water, reading is 1014 // So let's make a scale that converts those (apparent) facts into a percentage #define MAX_CAPACITANCE 1020.0f // subject to calibration #define MIN_CAPACITANCE 320 // subject to calibration #define CAP_TO_MOIST(c) ((max((int)(c),MIN_CAPACITANCE)-MIN_CAPACITANCE)/(MAX_CAPACITANCE-MIN_CAPACITANCE)*100) struct SEESAW_SOIL { const char name[8] = "SeeSoil"; // spaces not allowed for Homeassistant integration/mqtt topics uint8_t count = 0; // global sensor count (0xFF = not initialized) uint8_t state = STATE_IDLE; // current state bool present = false; // driver active } SeeSoil; struct SEESAW_SOIL_SNS { uint8_t address; // i2c address float moisture; float temperature; #ifdef SEESAW_SOIL_RAW uint16_t capacitance; // raw analog reading #endif // SEESAW_SOIL_RAW } SeeSoilSNS[SEESAW_SOIL_MAX_SENSORS]; /*********************************************************************************************\ * i2c routines \*********************************************************************************************/ void seeSoilInit(void) { for (int i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) { int addr = SEESAW_SOIL_START_ADDRESS + i; if ( ! I2cSetDevice(addr) ) { continue; } seeSoilCommand(COMMAND_RESET); } SeeSoil.state = STATE_RESET; SeeSoil.present = true; } void seeSoilEvery50ms(void){ // i2c state machine static uint32_t state_time; uint32_t time_diff = millis() - state_time; switch (SeeSoil.state) { case STATE_RESET: // reset was just issued SeeSoil.state = STATE_INIT; break; case STATE_INIT: // wait for sensors to settle if (time_diff < DELAY_RESET) { return; } seeSoilCommand(COMMAND_ID); // send hardware id commands SeeSoil.state = STATE_DETECT; break; case STATE_DETECT: // detect sensors if (time_diff < DELAY_DETECT) { return; } seeSoilDetect(); SeeSoil.state=STATE_COMMAND_TEMP; break; case STATE_COMMAND_TEMP: // send temperature commands seeSoilCommand(COMMAND_TEMP); SeeSoil.state = STATE_READ_TEMP; break; case STATE_READ_TEMP: if (time_diff < DELAY_TEMP) { return; } seeSoilRead(COMMAND_TEMP); // read temperature values SeeSoil.state = STATE_COMMAND_MOIST; break; case STATE_COMMAND_MOIST: // send moisture commands seeSoilCommand(COMMAND_MOIST); SeeSoil.state = STATE_READ_MOIST; break; case STATE_READ_MOIST: if (time_diff < DELAY_MOIST) { return; } seeSoilRead(COMMAND_MOIST); // read moisture values SeeSoil.state = STATE_COMMAND_TEMP; break; } state_time = millis(); } void seeSoilDetect(void) { // detect sensors uint8_t buf; SeeSoil.count = 0; SeeSoil.present = false; for (int i = 0; i < SEESAW_SOIL_MAX_SENSORS; i++) { uint32_t addr = SEESAW_SOIL_START_ADDRESS + i; if ( ! I2cSetDevice(addr)) { continue; } if (1 != Wire.requestFrom((uint8_t) addr, (uint8_t) 1)) { continue; } buf = (uint8_t) Wire.read(); if (buf != SEESAW_HW_ID_CODE) { // check hardware id #ifdef DEBUG_SEESAW_SOIL AddLog(LOG_LEVEL_DEBUG, PSTR("SEE: HWID mismatch ADDR=%X, ID=%X"), addr, buf); #endif // DEBUG_SEESAW_SOIL continue; } SeeSoilSNS[SeeSoil.count].address = addr; SeeSoilSNS[SeeSoil.count].temperature = NAN; SeeSoilSNS[SeeSoil.count].moisture = NAN; #ifdef SEESAW_SOIL_RAW SeeSoilSNS[SeeSoil.count].capacitance = 0; // raw analog reading #endif // SEESAW_SOIL_RAW I2cSetActiveFound(SeeSoilSNS[SeeSoil.count].address, SeeSoil.name); SeeSoil.count++; SeeSoil.present = true; #ifdef DEBUG_SEESAW_SOIL AddLog(LOG_LEVEL_DEBUG, PSTR("SEE: FOUND sensor %u at %02X"), i, addr); #endif // DEBUG_SEESAW_SOIL } } void seeSoilCommand(uint32_t command) { // issue commands to sensors uint8_t regLow; uint8_t regHigh = SEESAW_STATUS_BASE; uint32_t count = SeeSoil.count; switch (command) { case COMMAND_RESET: count = SEESAW_SOIL_MAX_SENSORS; regLow = SEESAW_STATUS_SWRST; break; case COMMAND_ID: count = SEESAW_SOIL_MAX_SENSORS; regLow = SEESAW_STATUS_HW_ID; break; case COMMAND_TEMP: regLow = SEESAW_STATUS_TEMP; break; case COMMAND_MOIST: regHigh = SEESAW_TOUCH_BASE; regLow = SEESAW_TOUCH_CHANNEL_OFFSET; break; default: #ifdef DEBUG_SEESAW_SOIL AddLog(LOG_LEVEL_DEBUG, PSTR("SEE: ILL CMD:%02X"), command); #endif // DEBUG_SEESAW_SOIL return; } for (int i = 0; i < count; i++) { uint32_t addr = (command & (COMMAND_RESET|COMMAND_ID)) ? SEESAW_SOIL_START_ADDRESS + i : SeeSoilSNS[i].address; Wire.beginTransmission((uint8_t) addr); Wire.write((uint8_t) regHigh); Wire.write((uint8_t) regLow); uint32_t err = Wire.endTransmission(); #ifdef DEBUG_SEESAW_SOIL AddLog(LOG_LEVEL_DEBUG, PSTR("SEE: SNS=%u ADDR=%02X CMD=%02X ERR=%u"), i, addr, command, err); #endif // DEBUG_SEESAW_SOIL } } void seeSoilRead(uint32_t command) { // read values from sensors uint8_t buf[4]; uint32_t num; int32_t ret; num = (command == COMMAND_TEMP) ? 4 : 2; // response size in bytes for (int i = 0; i < SeeSoil.count; i++) { // for all sensors if (num != Wire.requestFrom((uint8_t) SeeSoilSNS[i].address, (uint8_t) num)) { continue; } bzero(buf, sizeof(buf)); for (int b = 0; b < num; b++) { buf[b] = (uint8_t) Wire.read(); } if (command == COMMAND_TEMP) { ret = ((uint32_t)buf[0] << 24) | ((uint32_t)buf[1] << 16) | ((uint32_t)buf[2] << 8) | (uint32_t)buf[3]; SeeSoilSNS[i].temperature = ConvertTemp((1.0 / (1UL << 16)) * ret); } else { // COMMAND_MOIST ret = (uint32_t)buf[0] << 8 | (uint32_t)buf[1]; SeeSoilSNS[i].moisture = CAP_TO_MOIST(ret); #ifdef SEESAW_SOIL_RAW SeeSoilSNS[i].capacitance = ret; #endif // SEESAW_SOIL_RAW } #ifdef DEBUG_SEESAW_SOIL AddLog(LOG_LEVEL_DEBUG, PSTR("SEE: READ #%u ADDR=%02X NUM=%u RET=%X"), i, SeeSoilSNS[i].address, num, ret); #endif // DEBUG_SEESAW_SOIL } } /*********************************************************************************************\ * JSON routines \*********************************************************************************************/ #ifdef SEESAW_SOIL_PUBLISH void seeSoilEverySecond(void) { // update sensor values and publish if changed static uint16_t old_moist[SEESAW_SOIL_MAX_SENSORS]; static bool firstcall = true; for (int i = 0; i < SeeSoil.count; i++) { if (firstcall) { firstcall = false; } else { if ((uint32_t) SeeSoilSNS[i].moisture != old_moist[i]) { Response_P(PSTR("{")); // send values to MQTT & rules seeSoilJson(i); ResponseJsonEnd(); MqttPublishTeleSensor(); } } old_moist[i] = (uint32_t) SeeSoilSNS[i].moisture; } } #endif // SEESAW_SOIL_PUBLISH void seeSoilShow(bool json) { char sensor_name[sizeof(SeeSoil.name) + 3]; for (uint32_t i = 0; i < SeeSoil.count; i++) { seeSoilName(i, sensor_name, sizeof(sensor_name)); if (json) { ResponseAppend_P(PSTR(",")); // compose tele json seeSoilJson(i); if (0 == TasmotaGlobal.tele_period) { #ifdef USE_DOMOTICZ DomoticzTempHumPressureSensor(SeeSoilSNS[i].temperature, SeeSoilSNS[i].moisture, -42.0f); #endif // USE_DOMOTICZ #ifdef USE_KNX KnxSensor(KNX_TEMPERATURE, SeeSoilSNS[i].temperature); KnxSensor(KNX_HUMIDITY, SeeSoilSNS[i].moisture); #endif // USE_KNX } #ifdef USE_WEBSERVER } else { #ifdef SEESAW_SOIL_RAW WSContentSend_PD(HTTP_SNS_ANALOG, sensor_name, 0, SeeSoilSNS[i].capacitance); #endif // SEESAW_SOIL_RAW WSContentSend_PD(HTTP_SNS_MOISTURE, sensor_name, (uint32_t) SeeSoilSNS[i].moisture); WSContentSend_Temp(sensor_name, SeeSoilSNS[i].temperature); #endif // USE_WEBSERVER } } // for each sensor connected } void seeSoilJson(int no) { // common json char sensor_name[sizeof(SeeSoil.name) + 3]; seeSoilName(no, sensor_name, sizeof(sensor_name)); ResponseAppend_P(PSTR ("\"%s\":{\"" D_JSON_ID "\":\"%02X\",\"" D_JSON_TEMPERATURE "\":%*_f,\"" D_JSON_MOISTURE "\":%u}"), sensor_name, SeeSoilSNS[no].address, Settings->flag2.temperature_resolution, &SeeSoilSNS[no].temperature, (uint32_t) SeeSoilSNS[no].moisture); } void seeSoilName(int no, char *name, int len) // generates a sensor name { #ifdef SEESAW_SOIL_PERSISTENT_NAMING snprintf_P(name, len, PSTR("%s%c%02X"), SeeSoil.name, IndexSeparator(), SeeSoilSNS[no].address); #else if (SeeSoil.count > 1) { snprintf_P(name, len, PSTR("%s%c%u"), SeeSoil.name, IndexSeparator(), no + 1); } else { strlcpy(name, SeeSoil.name, len); } #endif // SEESAW_SOIL_PERSISTENT_NAMING } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns81(uint8_t function) { if (!I2cEnabled(XI2C_56)) { return false; } bool result = false; if (FUNC_INIT == function) { seeSoilInit(); } else if (SeeSoil.present){ switch (function) { case FUNC_EVERY_50_MSECOND: seeSoilEvery50ms(); break; #ifdef SEESAW_SOIL_PUBLISH case FUNC_EVERY_SECOND: seeSoilEverySecond(); break; #endif // SEESAW_SOIL_PUBLISH case FUNC_JSON_APPEND: seeSoilShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: seeSoilShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_SEESAW_SOIL #endif // USE_I2C