/** * @file esp_littlefs.c * @brief Maps LittleFS <-> ESP_VFS * @author Brian Pugh * * @note Modified and used by lorol for Arduino esp32 core * * Copyright 2020 Brian Pugh * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ //#define LOG_LOCAL_LEVEL 5 #if __has_include("esp_arduino_version.h") #include "esp_arduino_version.h" #if ESP_ARDUINO_VERSION >= ESP_ARDUINO_VERSION_VAL(2, 0, 0) #warning("Use the built-in LITTLEFS library") #endif #else //#warning("LITTLEFS: no esp_arduino_version.h file, likely 1.0.x") #endif #if __has_include("esp_idf_version.h") #include "esp_idf_version.h" #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(3, 3, 0) //#warning("IDF is 3.3 or later, LittleFS file timestamps are enabled") #endif #else #define CONFIG_LITTLEFS_FOR_IDF_3_2 /* For old IDF 3.2 compatibility, core release 1.0.4 - no timestamps */ //#warning("IDF < 3.3, no LittleFS file timestamps") #endif //#define CONFIG_LITTLEFS_USE_ONLY_HASH #define CONFIG_LITTLEFS_HUMAN_READABLE 0 /* Use 1 for verbose errors */ #define CONFIG_LITTLEFS_SPIFFS_COMPAT 0 /* Use 1 for better drop-in replacement of SPIFFS */ #define CONFIG_LITTLEFS_MAX_PARTITIONS 3 #define CONFIG_LITTLEFS_PAGE_SIZE 256 #define CONFIG_LITTLEFS_OBJ_NAME_LEN 64 #define CONFIG_LITTLEFS_READ_SIZE 128 #define CONFIG_LITTLEFS_WRITE_SIZE 128 #define CONFIG_LITTLEFS_LOOKAHEAD_SIZE 128 #define CONFIG_LITTLEFS_CACHE_SIZE 512 /* Old value was 128 */ #define CONFIG_LITTLEFS_BLOCK_CYCLES 512 #ifdef CONFIG_LITTLEFS_FOR_IDF_3_2 #define CONFIG_LITTLEFS_USE_MTIME 0 #else #define CONFIG_LITTLEFS_USE_MTIME 1 #define CONFIG_LITTLEFS_MTIME_USE_SECONDS 1 #endif #include "esp_log.h" #include "esp_spi_flash.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include #include #include #include #include #include #if __has_include("esp32/rom/spi_flash.h") //#warning("LITTLEFS: IDF 4, spi_flash.h file location different from IDF 3") #include "esp32/rom/spi_flash.h" #else //#warning("LITTLEFS: IDF 3") #include "rom/spi_flash.h" #endif #include "esp_system.h" #include "esp_littlefs.h" #include "littlefs_api.h" static const char TAG[] = "esp_littlefs"; #define CONFIG_LITTLEFS_BLOCK_SIZE 4096 /* ESP32 can only operate at 4kb */ /* File Descriptor Caching Params */ #define CONFIG_LITTLEFS_FD_CACHE_REALLOC_FACTOR 2 /* Amount to resize FD cache by */ #define CONFIG_LITTLEFS_FD_CACHE_MIN_SIZE 4 /* Minimum size of FD cache */ #define CONFIG_LITTLEFS_FD_CACHE_HYST 4 /* When shrinking, leave this many trailing FD slots available */ /** * @brief littlefs DIR structure */ typedef struct { DIR dir; /*!< VFS DIR struct */ lfs_dir_t d; /*!< littlefs DIR struct */ struct dirent e; /*!< Last open dirent */ long offset; /*!< Offset of the current dirent */ char *path; /*!< Requested directory name */ } vfs_littlefs_dir_t; static int vfs_littlefs_open(void* ctx, const char * path, int flags, int mode); static ssize_t vfs_littlefs_write(void* ctx, int fd, const void * data, size_t size); static ssize_t vfs_littlefs_read(void* ctx, int fd, void * dst, size_t size); static int vfs_littlefs_close(void* ctx, int fd); static off_t vfs_littlefs_lseek(void* ctx, int fd, off_t offset, int mode); static int vfs_littlefs_stat(void* ctx, const char * path, struct stat * st); static int vfs_littlefs_unlink(void* ctx, const char *path); static int vfs_littlefs_rename(void* ctx, const char *src, const char *dst); static DIR* vfs_littlefs_opendir(void* ctx, const char* name); static int vfs_littlefs_closedir(void* ctx, DIR* pdir); static struct dirent* vfs_littlefs_readdir(void* ctx, DIR* pdir); static int vfs_littlefs_readdir_r(void* ctx, DIR* pdir, struct dirent* entry, struct dirent** out_dirent); static long vfs_littlefs_telldir(void* ctx, DIR* pdir); static void vfs_littlefs_seekdir(void* ctx, DIR* pdir, long offset); static int vfs_littlefs_mkdir(void* ctx, const char* name, mode_t mode); static int vfs_littlefs_rmdir(void* ctx, const char* name); static int vfs_littlefs_fsync(void* ctx, int fd); static esp_err_t esp_littlefs_init(const esp_vfs_littlefs_conf_t* conf); static esp_err_t esp_littlefs_erase_partition(const char *partition_label); static esp_err_t esp_littlefs_by_label(const char* label, int * index); static esp_err_t esp_littlefs_get_empty(int *index); static void esp_littlefs_free(esp_littlefs_t ** efs); static void esp_littlefs_dir_free(vfs_littlefs_dir_t *dir); static int esp_littlefs_flags_conv(int m); #if CONFIG_LITTLEFS_USE_MTIME static int vfs_littlefs_utime(void *ctx, const char *path, const struct utimbuf *times); static void vfs_littlefs_update_mtime(esp_littlefs_t *efs, const char *path); static int vfs_littlefs_update_mtime_value(esp_littlefs_t *efs, const char *path, time_t t); static time_t vfs_littlefs_get_mtime(esp_littlefs_t *efs, const char *path); #endif #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH /* The only way in LittleFS to get info is via a path (lfs_stat), so it cannot * be done if the path isn't stored. */ static int vfs_littlefs_fstat(void* ctx, int fd, struct stat * st); #endif #if CONFIG_LITTLEFS_SPIFFS_COMPAT static void mkdirs(esp_littlefs_t * efs, const char *dir); static void rmdirs(esp_littlefs_t * efs, const char *dir); #endif // CONFIG_LITTLEFS_SPIFFS_COMPAT static int sem_take(esp_littlefs_t *efs); static int sem_give(esp_littlefs_t *efs); static SemaphoreHandle_t _efs_lock = NULL; static esp_littlefs_t * _efs[CONFIG_LITTLEFS_MAX_PARTITIONS] = { 0 }; /******************** * Helper Functions * ********************/ void esp_littlefs_free_fds(esp_littlefs_t * efs) { /* Need to free all files that were opened */ while (efs->file) { vfs_littlefs_file_t * next = efs->file->next; free(efs->file); efs->file = next; } free(efs->cache); efs->cache = 0; efs->cache_size = efs->fd_count = 0; } /******************** * Public Functions * ********************/ bool esp_littlefs_mounted(const char* partition_label) { int index; esp_err_t err; err = esp_littlefs_by_label(partition_label, &index); if(err != ESP_OK) return false; return _efs[index]->cache_size > 0; } esp_err_t esp_littlefs_info(const char* partition_label, size_t *total_bytes, size_t *used_bytes){ int index; esp_err_t err; esp_littlefs_t *efs = NULL; err = esp_littlefs_by_label(partition_label, &index); if(err != ESP_OK) return false; efs = _efs[index]; if(total_bytes) *total_bytes = efs->cfg.block_size * efs->cfg.block_count; if(used_bytes) *used_bytes = efs->cfg.block_size * lfs_fs_size(efs->fs); return ESP_OK; } esp_err_t esp_vfs_littlefs_register(const esp_vfs_littlefs_conf_t * conf) { assert(conf->base_path); const esp_vfs_t vfs = { .flags = ESP_VFS_FLAG_CONTEXT_PTR, .write_p = &vfs_littlefs_write, .lseek_p = &vfs_littlefs_lseek, .read_p = &vfs_littlefs_read, .open_p = &vfs_littlefs_open, .close_p = &vfs_littlefs_close, #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH .fstat_p = &vfs_littlefs_fstat, #else .fstat_p = NULL, /* Not supported */ #endif .stat_p = &vfs_littlefs_stat, .link_p = NULL, /* Not Supported */ .unlink_p = &vfs_littlefs_unlink, .rename_p = &vfs_littlefs_rename, .opendir_p = &vfs_littlefs_opendir, .closedir_p = &vfs_littlefs_closedir, .readdir_p = &vfs_littlefs_readdir, .readdir_r_p = &vfs_littlefs_readdir_r, .seekdir_p = &vfs_littlefs_seekdir, .telldir_p = &vfs_littlefs_telldir, .mkdir_p = &vfs_littlefs_mkdir, .rmdir_p = &vfs_littlefs_rmdir, .fsync_p = &vfs_littlefs_fsync, #ifndef CONFIG_LITTLEFS_FOR_IDF_3_2 #if CONFIG_LITTLEFS_USE_MTIME .utime_p = &vfs_littlefs_utime, #else .utime_p = NULL, #endif // CONFIG_LITTLEFS_USE_MTIME #endif //CONFIG_LITTLEFS_FOR_IDF_3_2 }; esp_err_t err = esp_littlefs_init(conf); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to initialize LittleFS"); return err; } int index; if (esp_littlefs_by_label(conf->partition_label, &index) != ESP_OK) { ESP_LOGE(TAG, "Unable to find partition \"%s\"", conf->partition_label); return ESP_ERR_NOT_FOUND; } strlcat(_efs[index]->base_path, conf->base_path, ESP_VFS_PATH_MAX + 1); err = esp_vfs_register(conf->base_path, &vfs, _efs[index]); if (err != ESP_OK) { esp_littlefs_free(&_efs[index]); ESP_LOGE(TAG, "Failed to register Littlefs to \"%s\"", conf->base_path); return err; } ESP_LOGV(TAG, "Successfully registered LittleFS to \"%s\"", conf->base_path); return ESP_OK; } esp_err_t esp_vfs_littlefs_unregister(const char* partition_label) { assert(partition_label); int index; if (esp_littlefs_by_label(partition_label, &index) != ESP_OK) { ESP_LOGE(TAG, "Partition was never registered."); return ESP_ERR_INVALID_STATE; } ESP_LOGV(TAG, "Unregistering \"%s\"", partition_label); esp_err_t err = esp_vfs_unregister(_efs[index]->base_path); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to unregister \"%s\"", partition_label); return err; } esp_littlefs_free(&_efs[index]); _efs[index] = NULL; return ESP_OK; } esp_err_t esp_littlefs_format(const char* partition_label) { assert( partition_label ); bool was_mounted = false; bool efs_free = false; int index = -1; esp_err_t err; esp_littlefs_t *efs = NULL; ESP_LOGV(TAG, "Formatting \"%s\"", partition_label); /* Get a context */ err = esp_littlefs_by_label(partition_label, &index); if( err != ESP_OK ){ /* Create a tmp context */ ESP_LOGV(TAG, "Temporarily creating EFS context."); efs_free = true; const esp_vfs_littlefs_conf_t conf = { /* base_name not necessary for initializing */ .dont_mount = true, .partition_label = partition_label, }; err = esp_littlefs_init(&conf); /* Internally MIGHT call esp_littlefs_format */ if( err != ESP_OK ) { ESP_LOGE(TAG, "Failed to initialize to format."); goto exit; } err = esp_littlefs_by_label(partition_label, &index); if ( err != ESP_OK) { ESP_LOGE(TAG, "Error obtaining context."); goto exit; } } efs = _efs[index]; assert( efs ); /* Unmount if mounted */ if(efs->cache_size > 0){ int res; ESP_LOGV(TAG, "Partition was mounted. Unmounting..."); was_mounted = true; res = lfs_unmount(efs->fs); if(res != LFS_ERR_OK){ ESP_LOGE(TAG, "Failed to unmount."); return ESP_FAIL; } esp_littlefs_free_fds(efs); } /* Erase and Format */ { int res; ESP_LOGV(TAG, "Formatting filesystem"); esp_littlefs_erase_partition(partition_label); res = lfs_format(efs->fs, &efs->cfg); if( res != LFS_ERR_OK ) { ESP_LOGE(TAG, "Failed to format filesystem"); return ESP_FAIL; } } /* Mount filesystem */ if( was_mounted ) { int res; /* Remount the partition */ ESP_LOGV(TAG, "Remounting formatted partition"); res = lfs_mount(efs->fs, &efs->cfg); if( res != LFS_ERR_OK ) { ESP_LOGE(TAG, "Failed to re-mount filesystem"); return ESP_FAIL; } efs->cache_size = CONFIG_LITTLEFS_FD_CACHE_MIN_SIZE; // Initial size of cache; will resize ondemand efs->cache = calloc(sizeof(*efs->cache), efs->cache_size); } ESP_LOGV(TAG, "Format Success!"); err = ESP_OK; exit: if(efs_free && index>=0) esp_littlefs_free(&_efs[index]); return err; } #if CONFIG_LITTLEFS_HUMAN_READABLE /** * @brief converts an enumerated lfs error into a string. * @param lfs_error The littlefs error. */ const char * esp_littlefs_errno(enum lfs_error lfs_errno) { switch(lfs_errno){ case LFS_ERR_OK: return "LFS_ERR_OK"; case LFS_ERR_IO: return "LFS_ERR_IO"; case LFS_ERR_CORRUPT: return "LFS_ERR_CORRUPT"; case LFS_ERR_NOENT: return "LFS_ERR_NOENT"; case LFS_ERR_EXIST: return "LFS_ERR_EXIST"; case LFS_ERR_NOTDIR: return "LFS_ERR_NOTDIR"; case LFS_ERR_ISDIR: return "LFS_ERR_ISDIR"; case LFS_ERR_NOTEMPTY: return "LFS_ERR_NOTEMPTY"; case LFS_ERR_BADF: return "LFS_ERR_BADF"; case LFS_ERR_FBIG: return "LFS_ERR_FBIG"; case LFS_ERR_INVAL: return "LFS_ERR_INVAL"; case LFS_ERR_NOSPC: return "LFS_ERR_NOSPC"; case LFS_ERR_NOMEM: return "LFS_ERR_NOMEM"; case LFS_ERR_NOATTR: return "LFS_ERR_NOATTR"; case LFS_ERR_NAMETOOLONG: return "LFS_ERR_NAMETOOLONG"; default: return "LFS_ERR_UNDEFINED"; } return ""; } #else #define esp_littlefs_errno(x) "" #endif /******************** * Static Functions * ********************/ /*** Helpers ***/ /** * @brief Free and clear a littlefs definition structure. * @param efs Pointer to pointer to struct. Done this way so we can also zero * out the pointer. */ static void esp_littlefs_free(esp_littlefs_t ** efs) { esp_littlefs_t * e = *efs; if (e == NULL) return; *efs = NULL; if (e->fs) { if(e->cache_size > 0) lfs_unmount(e->fs); free(e->fs); } if(e->lock) vSemaphoreDelete(e->lock); esp_littlefs_free_fds(e); free(e); } /** * @brief Free a vfs_littlefs_dir_t struct. */ static void esp_littlefs_dir_free(vfs_littlefs_dir_t *dir){ if(dir == NULL) return; if(dir->path) free(dir->path); free(dir); } /** * Get a mounted littlefs filesystem by label. * @param[in] label * @param[out] index index into _efs * @return ESP_OK on success */ static esp_err_t esp_littlefs_by_label(const char* label, int * index){ int i; esp_littlefs_t * p; if(!label || !index) return ESP_ERR_INVALID_ARG; ESP_LOGV(TAG, "Searching for existing filesystem for partition \"%s\"", label); for (i = 0; i < CONFIG_LITTLEFS_MAX_PARTITIONS; i++) { p = _efs[i]; if (p) { if (strncmp(label, p->partition->label, 17) == 0) { *index = i; ESP_LOGV(TAG, "Found existing filesystem \"%s\" at index %d", label, *index); return ESP_OK; } } } ESP_LOGV(TAG, "Existing filesystem \"%s\" not found", label); return ESP_ERR_NOT_FOUND; } /** * @brief Get the index of an unallocated LittleFS slot. * @param[out] index Indexd of free LittleFS slot * @return ESP_OK on success */ static esp_err_t esp_littlefs_get_empty(int *index) { assert(index); for(uint8_t i=0; i < CONFIG_LITTLEFS_MAX_PARTITIONS; i++){ if( _efs[i] == NULL ){ *index = i; return ESP_OK; } } ESP_LOGE(TAG, "No more free partitions available."); return ESP_FAIL; } /** * @brief erase a partition; make sure LittleFS is unmounted first. * @param partition_label NULL-terminated string of partition to erase * @return ESP_OK on success */ static esp_err_t esp_littlefs_erase_partition(const char *partition_label) { ESP_LOGV(TAG, "Erasing partition..."); const esp_partition_t* partition = esp_partition_find_first( ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, partition_label); if (!partition) { ESP_LOGE(TAG, "partition \"%s\" could not be found", partition_label); return ESP_ERR_NOT_FOUND; } if( esp_partition_erase_range(partition, 0, partition->size) != ESP_OK ) { ESP_LOGE(TAG, "Failed to erase partition"); return ESP_FAIL; } return ESP_OK; } /** * @brief Convert fcntl flags to littlefs flags * @param m fcntl flags * @return lfs flags */ static int esp_littlefs_flags_conv(int m) { int lfs_flags = 0; if (m == O_APPEND) {ESP_LOGV(TAG, "O_APPEND"); lfs_flags |= LFS_O_APPEND;} if (m == O_RDONLY) {ESP_LOGV(TAG, "O_RDONLY"); lfs_flags |= LFS_O_RDONLY;} if (m & O_WRONLY) {ESP_LOGV(TAG, "O_WRONLY"); lfs_flags |= LFS_O_WRONLY;} if (m & O_RDWR) {ESP_LOGV(TAG, "O_RDWR"); lfs_flags |= LFS_O_RDWR;} if (m & O_EXCL) {ESP_LOGV(TAG, "O_EXCL"); lfs_flags |= LFS_O_EXCL;} if (m & O_CREAT) {ESP_LOGV(TAG, "O_CREAT"); lfs_flags |= LFS_O_CREAT;} if (m & O_TRUNC) {ESP_LOGV(TAG, "O_TRUNC"); lfs_flags |= LFS_O_TRUNC;} return lfs_flags; } /** * @brief Initialize and mount littlefs * @param[in] conf Filesystem Configuration * @return ESP_OK on success */ static esp_err_t esp_littlefs_init(const esp_vfs_littlefs_conf_t* conf) { int index = -1; esp_err_t err = ESP_FAIL; const esp_partition_t* partition = NULL; esp_littlefs_t * efs = NULL; if( _efs_lock == NULL ){ static portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED; portENTER_CRITICAL(&mux); if( _efs_lock == NULL ){ _efs_lock = xSemaphoreCreateMutex(); assert(_efs_lock); } portEXIT_CRITICAL(&mux); } xSemaphoreTake(_efs_lock, portMAX_DELAY); if (esp_littlefs_get_empty(&index) != ESP_OK) { ESP_LOGE(TAG, "max mounted partitions reached"); err = ESP_ERR_INVALID_STATE; goto exit; } /* Input and Environment Validation */ if (esp_littlefs_by_label(conf->partition_label, &index) == ESP_OK) { ESP_LOGE(TAG, "Partition already used"); err = ESP_ERR_INVALID_STATE; goto exit; } { uint32_t flash_page_size = g_rom_flashchip.page_size; uint32_t log_page_size = CONFIG_LITTLEFS_PAGE_SIZE; if (log_page_size % flash_page_size != 0) { ESP_LOGE(TAG, "LITTLEFS_PAGE_SIZE is not multiple of flash chip page size (%d)", flash_page_size); err = ESP_ERR_INVALID_ARG; goto exit; } } if ( NULL == conf->partition_label ) { ESP_LOGE(TAG, "Partition label must be provided."); err = ESP_ERR_INVALID_ARG; goto exit; } partition = esp_partition_find_first( ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, conf->partition_label); if (!partition) { ESP_LOGE(TAG, "partition \"%s\" could not be found", conf->partition_label); err = ESP_ERR_NOT_FOUND; goto exit; } /* Allocate Context */ efs = calloc(1, sizeof(esp_littlefs_t)); if (efs == NULL) { ESP_LOGE(TAG, "esp_littlefs could not be malloced"); err = ESP_ERR_NO_MEM; goto exit; } efs->partition = partition; { /* LittleFS Configuration */ efs->cfg.context = efs; // block device operations efs->cfg.read = littlefs_api_read; efs->cfg.prog = littlefs_api_prog; efs->cfg.erase = littlefs_api_erase; efs->cfg.sync = littlefs_api_sync; // block device configuration efs->cfg.read_size = CONFIG_LITTLEFS_READ_SIZE; efs->cfg.prog_size = CONFIG_LITTLEFS_WRITE_SIZE; efs->cfg.block_size = CONFIG_LITTLEFS_BLOCK_SIZE;; efs->cfg.block_count = efs->partition->size / efs->cfg.block_size; efs->cfg.cache_size = CONFIG_LITTLEFS_CACHE_SIZE; efs->cfg.lookahead_size = CONFIG_LITTLEFS_LOOKAHEAD_SIZE; efs->cfg.block_cycles = CONFIG_LITTLEFS_BLOCK_CYCLES; } efs->lock = xSemaphoreCreateRecursiveMutex(); if (efs->lock == NULL) { ESP_LOGE(TAG, "mutex lock could not be created"); err = ESP_ERR_NO_MEM; goto exit; } efs->fs = calloc(1, sizeof(lfs_t)); if (efs->fs == NULL) { ESP_LOGE(TAG, "littlefs could not be malloced"); err = ESP_ERR_NO_MEM; goto exit; } // Mount and Error Check _efs[index] = efs; if(!conf->dont_mount){ int res = lfs_mount(efs->fs, &efs->cfg); if (conf->format_if_mount_failed && res != LFS_ERR_OK) { esp_err_t err; ESP_LOGW(TAG, "mount failed, %s (%i). formatting...", esp_littlefs_errno(res), res); err = esp_littlefs_format(efs->partition->label); if(err != ESP_OK) { ESP_LOGE(TAG, "format failed"); err = ESP_FAIL; goto exit; } res = lfs_mount(efs->fs, &efs->cfg); } if (res != LFS_ERR_OK) { ESP_LOGE(TAG, "mount failed, %s (%i)", esp_littlefs_errno(res), res); err = ESP_FAIL; goto exit; } efs->cache_size = 4; efs->cache = calloc(sizeof(*efs->cache), efs->cache_size); } err = ESP_OK; exit: if(err != ESP_OK){ if( index >= 0 ) { esp_littlefs_free(&_efs[index]); } else{ esp_littlefs_free(&efs); } } xSemaphoreGive(_efs_lock); return err; } /** * @brief * @parameter efs file system context */ static inline int sem_take(esp_littlefs_t *efs) { int res; #if LOG_LOCAL_LEVEL >= 5 ESP_LOGV(TAG, "------------------------ Sem Taking [%s]", pcTaskGetTaskName(NULL)); #endif res = xSemaphoreTakeRecursive(efs->lock, portMAX_DELAY); #if LOG_LOCAL_LEVEL >= 5 ESP_LOGV(TAG, "--------------------->>> Sem Taken [%s]", pcTaskGetTaskName(NULL)); #endif return res; } /** * @brief * @parameter efs file system context */ static inline int sem_give(esp_littlefs_t *efs) { #if LOG_LOCAL_LEVEL >= 5 ESP_LOGV(TAG, "---------------------<<< Sem Give [%s]", pcTaskGetTaskName(NULL)); #endif return xSemaphoreGiveRecursive(efs->lock); } /* We are using a double allocation system here, which an array and a linked list. The array contains the pointer to the file descriptor (the index in the array is what's returned to the user). The linked list is used for file descriptors. This means that position of nodes in the list must stay consistent: - Allocation is obvious (append to the list from the head, and realloc the pointers array) There is still a O(N) search in the cache for a free position to store - Searching is a O(1) process (good) - Deallocation is more tricky. That is, for example, if you need to remove node 5 in a 12 nodes list, you'll have to: 1) Mark the 5th position as freed (if it's the last position of the array realloc smaller) 2) Walk the list until finding the pointer to the node O(N) and scrub the node so the chained list stays consistent 3) Deallocate the node */ /** * @brief Get a file descriptor * @param[in,out] efs file system context * @param[out] file pointer to a file that'll be filled with a file object * @param[in] path_len the length of the filepath in bytes (including terminating zero byte) * @return integer file descriptor. Returns -1 if a FD cannot be obtained. * @warning This must be called with lock taken */ static int esp_littlefs_allocate_fd(esp_littlefs_t *efs, vfs_littlefs_file_t ** file #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH , const size_t path_len #endif ) { int i = -1; assert( efs->fd_count < UINT16_MAX ); assert( efs->cache_size < UINT16_MAX ); /* Make sure there is enough space in the cache to store new fd */ if (efs->fd_count + 1 > efs->cache_size) { uint16_t new_size = (uint16_t)MIN(UINT16_MAX, CONFIG_LITTLEFS_FD_CACHE_REALLOC_FACTOR * efs->cache_size); /* Resize the cache */ vfs_littlefs_file_t ** new_cache = realloc(efs->cache, new_size * sizeof(*efs->cache)); if (!new_cache) { ESP_LOGE(TAG, "Unable to allocate file cache"); return -1; /* If it fails here, no harm is done to the filesystem, so it's safe */ } /* Zero out the new portions of the cache */ memset(&new_cache[efs->cache_size], 0, (new_size - efs->cache_size) * sizeof(*efs->cache)); efs->cache = new_cache; efs->cache_size = new_size; } /* Allocate file descriptor here now */ #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH *file = calloc(1, sizeof(**file) + path_len); #else *file = calloc(1, sizeof(**file)); #endif if (*file == NULL) { /* If it fails here, the file system might have a larger cache, but it's harmless, no need to reverse it */ ESP_LOGE(TAG, "Unable to allocate FD"); return -1; } /* Starting from here, nothing can fail anymore */ #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH /* The trick here is to avoid dual allocation so the path pointer should point to the next byte after it: file => [ lfs_file | # | next | path | free_space ] | /\ |__/ */ (*file)->path = (char*)(*file) + sizeof(**file); #endif /* Now find a free place in cache */ for(i=0; i < efs->cache_size; i++) { if (efs->cache[i] == NULL) { efs->cache[i] = *file; break; } } /* Save file in the list */ (*file)->next = efs->file; efs->file = *file; efs->fd_count++; return i; } /** * @brief Release a file descriptor * @param[in,out] efs file system context * @param[in] fd File Descriptor to release * @return 0 on success. -1 if a FD cannot be obtained. * @warning This must be called with lock taken */ static int esp_littlefs_free_fd(esp_littlefs_t *efs, int fd){ vfs_littlefs_file_t * file, * head; if((uint32_t)fd >= efs->cache_size) { ESP_LOGE(TAG, "FD %d must be <%d.", fd, efs->cache_size); return -1; } /* Get the file descriptor to free it */ file = efs->cache[fd]; head = efs->file; /* Search for file in SLL to remove it */ if (file == head) { /* Last file, can't fail */ efs->file = efs->file->next; } else { while (head && head->next != file) { head = head->next; } if (!head) { ESP_LOGE(TAG, "Inconsistent list"); return -1; } /* Transaction starts here and can't fail anymore */ head->next = file->next; } efs->cache[fd] = NULL; efs->fd_count--; ESP_LOGV(TAG, "Clearing FD"); free(file); #if 0 /* Realloc smaller if its possible * * Find and realloc based on number of trailing NULL ptrs in cache * * Leave some hysteris to prevent thrashing around resize points * This is disabled for now because it adds unnecessary complexity * and binary size increase that outweights its ebenfits. */ if(efs->cache_size > CONFIG_LITTLEFS_FD_CACHE_MIN_SIZE) { uint16_t n_free; uint16_t new_size = efs->cache_size / CONFIG_LITTLEFS_FD_CACHE_REALLOC_FACTOR; if(new_size >= CONFIG_LITTLEFS_FD_CACHE_MIN_SIZE) { /* Count number of trailing NULL ptrs */ for(n_free=0; n_free < efs->cache_size; n_free++) { if(efs->cache[efs->cache_size - n_free - 1] != NULL) { break; } } if(n_free >= (efs->cache_size - new_size)){ new_size += CONFIG_LITTLEFS_FD_CACHE_HYST; ESP_LOGV(TAG, "Reallocating cache %i -> %i", efs->cache_size, new_size); vfs_littlefs_file_t ** new_cache; new_cache = realloc(efs->cache, new_size * sizeof(*efs->cache)); /* No harm on realloc failure, continue using the oversized cache */ if(new_cache) { efs->cache = new_cache; efs->cache_size = new_size; } } } } #endif return 0; } /** * @brief Compute the 32bit DJB2 hash of the given string. * @param[in] path the path to hash * @returns the hash for this path */ static uint32_t compute_hash(const char * path) { uint32_t hash = 5381; char c; while ((c = *path++)) hash = ((hash << 5) + hash) + c; /* hash * 33 + c */ return hash; } /** * @brief finds an open file descriptor by file name. * @param[in,out] efs file system context * @param[in] path File path to check. * @returns integer file descriptor. Returns -1 if not found. * @warning This must be called with lock taken * @warning if CONFIG_LITTLEFS_USE_ONLY_HASH, there is a slim chance an * erroneous FD may be returned on hash collision. */ static int esp_littlefs_get_fd_by_name(esp_littlefs_t *efs, const char *path){ uint32_t hash = compute_hash(path); for(uint16_t i=0, j=0; i < efs->cache_size && j < efs->fd_count; i++){ if (efs->cache[i]) { ++j; if ( efs->cache[i]->hash == hash // Faster than strcmp #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH && strcmp(path, efs->cache[i]->path) == 0 // May as well check incase of hash collision. Usually short-circuited. #endif ) { ESP_LOGV(TAG, "Found \"%s\" at FD %d.", path, i); return i; } } } ESP_LOGV(TAG, "Unable to get a find FD for \"%s\"", path); return -1; } /*** Filesystem Hooks ***/ static int vfs_littlefs_open(void* ctx, const char * path, int flags, int mode) { /* Note: mode is currently unused */ int fd=-1, lfs_flags, res; esp_littlefs_t *efs = (esp_littlefs_t *)ctx; vfs_littlefs_file_t *file = NULL; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH size_t path_len = strlen(path) + 1; // include NULL terminator #endif assert(path); ESP_LOGV(TAG, "Opening %s", path); /* Convert flags to lfs flags */ lfs_flags = esp_littlefs_flags_conv(flags); /* Get a FD */ sem_take(efs); fd = esp_littlefs_allocate_fd(efs, &file #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH , path_len #endif ); if(fd < 0) { errno = -fd; sem_give(efs); ESP_LOGV(TAG, "Error obtaining FD"); return LFS_ERR_INVAL; } #if CONFIG_LITTLEFS_SPIFFS_COMPAT /* Create all parent directories (if necessary) */ ESP_LOGV(TAG, "LITTLEFS_SPIFFS_COMPAT attempting to create all directories for %s", path); mkdirs(efs, path); #endif // CONFIG_LITTLEFS_SPIFFS_COMPAT /* Open File */ res = lfs_file_open(efs->fs, &file->file, path, lfs_flags); if( res < 0 ) { errno = -res; esp_littlefs_free_fd(efs, fd); sem_give(efs); #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to open file %s. Error %s (%d)", path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to open file. Error %s (%d)", esp_littlefs_errno(res), res); #endif return LFS_ERR_INVAL; } /* Sync after opening. If we are overwriting a file, this will free that * file's blocks in storage, prevent OOS errors. * See TEST_CASE: * "Rewriting file frees space immediately (#7426)" */ res = lfs_file_sync(efs->fs, &file->file); if(res < 0){ errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to sync at opening file \"%s\". Error %s (%d)", file->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to sync at opening file %d. Error %d", fd, res); #endif } file->hash = compute_hash(path); #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH memcpy(file->path, path, path_len); #endif #if CONFIG_LITTLEFS_USE_MTIME if (lfs_flags != LFS_O_RDONLY) { /* If this is being opened as not read-only */ vfs_littlefs_update_mtime(efs, path); } #endif sem_give(efs); ESP_LOGV(TAG, "Done opening %s", path); return fd; } static ssize_t vfs_littlefs_write(void* ctx, int fd, const void * data, size_t size) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; ssize_t res; vfs_littlefs_file_t *file = NULL; sem_take(efs); if((uint32_t)fd > efs->cache_size) { sem_give(efs); ESP_LOGE(TAG, "FD %d must be <%d.", fd, efs->cache_size); return LFS_ERR_BADF; } file = efs->cache[fd]; res = lfs_file_write(efs->fs, &file->file, data, size); sem_give(efs); if(res < 0){ errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to write FD %d; path \"%s\". Error %s (%d)", fd, file->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to write FD %d. Error %s (%d)", fd, esp_littlefs_errno(res), res); #endif return res; } return res; } static ssize_t vfs_littlefs_read(void* ctx, int fd, void * dst, size_t size) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; ssize_t res; vfs_littlefs_file_t *file = NULL; sem_take(efs); if((uint32_t)fd > efs->cache_size) { sem_give(efs); ESP_LOGE(TAG, "FD %d must be <%d.", fd, efs->cache_size); return LFS_ERR_BADF; } file = efs->cache[fd]; res = lfs_file_read(efs->fs, &file->file, dst, size); sem_give(efs); if(res < 0){ errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to read file \"%s\". Error %s (%d)", file->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to read FD %d. Error %s (%d)", fd, esp_littlefs_errno(res), res); #endif return res; } return res; } static int vfs_littlefs_close(void* ctx, int fd) { // TODO update mtime on close? SPIFFS doesn't do this esp_littlefs_t * efs = (esp_littlefs_t *)ctx; int res; vfs_littlefs_file_t *file = NULL; sem_take(efs); if((uint32_t)fd > efs->cache_size) { sem_give(efs); ESP_LOGE(TAG, "FD %d must be <%d.", fd, efs->cache_size); return LFS_ERR_BADF; } file = efs->cache[fd]; res = lfs_file_close(efs->fs, &file->file); if(res < 0){ errno = -res; sem_give(efs); #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to close file \"%s\". Error %s (%d)", file->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to close Fd %d. Error %s (%d)", fd, esp_littlefs_errno(res), res); #endif return res; } esp_littlefs_free_fd(efs, fd); sem_give(efs); return res; } static off_t vfs_littlefs_lseek(void* ctx, int fd, off_t offset, int mode) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; lfs_soff_t res; vfs_littlefs_file_t *file = NULL; int whence; switch (mode) { case SEEK_SET: whence = LFS_SEEK_SET; break; case SEEK_CUR: whence = LFS_SEEK_CUR; break; case SEEK_END: whence = LFS_SEEK_END; break; default: ESP_LOGE(TAG, "Invalid mode"); return -1; } sem_take(efs); if((uint32_t)fd > efs->cache_size) { sem_give(efs); ESP_LOGE(TAG, "FD %d must be <%d.", fd, efs->cache_size); return LFS_ERR_BADF; } file = efs->cache[fd]; res = lfs_file_seek(efs->fs, &file->file, offset, whence); sem_give(efs); if(res < 0){ errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to seek file \"%s\" to offset %08x. Error %s (%d)", file->path, (unsigned int)offset, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to seek FD %d to offset %08x. Error (%d)", fd, (unsigned int)offset, res); #endif return res; } return res; } static int vfs_littlefs_fsync(void* ctx, int fd) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; ssize_t res; vfs_littlefs_file_t *file = NULL; sem_take(efs); if((uint32_t)fd > efs->cache_size) { sem_give(efs); ESP_LOGE(TAG, "FD %d must be <%d.", fd, efs->cache_size); return LFS_ERR_BADF; } file = efs->cache[fd]; res = lfs_file_sync(efs->fs, &file->file); sem_give(efs); if(res < 0){ errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to sync file \"%s\". Error %s (%d)", file->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to sync file %d. Error %d", fd, res); #endif return res; } return res; } #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH static int vfs_littlefs_fstat(void* ctx, int fd, struct stat * st) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; struct lfs_info info; int res; vfs_littlefs_file_t *file = NULL; memset(st, 0, sizeof(struct stat)); st->st_blksize = efs->cfg.block_size; sem_take(efs); if((uint32_t)fd > efs->cache_size) { sem_give(efs); ESP_LOGE(TAG, "FD must be <%d.", efs->cache_size); return LFS_ERR_BADF; } file = efs->cache[fd]; res = lfs_stat(efs->fs, file->path, &info); if (res < 0) { errno = -res; sem_give(efs); ESP_LOGV(TAG, "Failed to stat file \"%s\". Error %s (%d)", file->path, esp_littlefs_errno(res), res); return res; } #if CONFIG_LITTLEFS_USE_MTIME st->st_mtime = vfs_littlefs_get_mtime(efs, file->path); #endif sem_give(efs); st->st_size = info.size; st->st_mode = ((info.type==LFS_TYPE_REG)?S_IFREG:S_IFDIR); return 0; } #endif static int vfs_littlefs_stat(void* ctx, const char * path, struct stat * st) { assert(path); esp_littlefs_t * efs = (esp_littlefs_t *)ctx; struct lfs_info info; int res; memset(st, 0, sizeof(struct stat)); st->st_blksize = efs->cfg.block_size; sem_take(efs); res = lfs_stat(efs->fs, path, &info); if (res < 0) { errno = -res; sem_give(efs); /* Not strictly an error, since stat can be used to check * if a file exists */ ESP_LOGV(TAG, "Failed to stat path \"%s\". Error %s (%d)", path, esp_littlefs_errno(res), res); return res; } #if CONFIG_LITTLEFS_USE_MTIME st->st_mtime = vfs_littlefs_get_mtime(efs, path); #endif sem_give(efs); st->st_size = info.size; st->st_mode = ((info.type==LFS_TYPE_REG)?S_IFREG:S_IFDIR); return 0; } static int vfs_littlefs_unlink(void* ctx, const char *path) { #define fail_str_1 "Failed to unlink path \"%s\"." assert(path); esp_littlefs_t * efs = (esp_littlefs_t *)ctx; struct lfs_info info; int res; sem_take(efs); res = lfs_stat(efs->fs, path, &info); if (res < 0) { errno = -res; sem_give(efs); ESP_LOGV(TAG, fail_str_1 " Error %s (%d)", path, esp_littlefs_errno(res), res); return res; } if(esp_littlefs_get_fd_by_name(efs, path) >= 0) { sem_give(efs); ESP_LOGE(TAG, fail_str_1 " Has open FD.", path); return -1; } /* commented for old core revisions compatibility */ /* if (info.type == LFS_TYPE_DIR) { sem_give(efs); ESP_LOGV(TAG, "Cannot unlink a directory."); return LFS_ERR_ISDIR; } */ res = lfs_remove(efs->fs, path); if (res < 0) { errno = -res; sem_give(efs); ESP_LOGV(TAG, fail_str_1 " Error %s (%d)", path, esp_littlefs_errno(res), res); return res; } #if CONFIG_LITTLEFS_SPIFFS_COMPAT /* Attempt to delete all parent directories that are empty */ rmdirs(efs, path); #endif // CONFIG_LITTLEFS_SPIFFS_COMPAT sem_give(efs); return 0; #undef fail_str_1 } static int vfs_littlefs_rename(void* ctx, const char *src, const char *dst) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; int res; sem_take(efs); if(esp_littlefs_get_fd_by_name(efs, src) >= 0){ sem_give(efs); ESP_LOGE(TAG, "Cannot rename; src \"%s\" is open.", src); return -1; } else if(esp_littlefs_get_fd_by_name(efs, dst) >= 0){ sem_give(efs); ESP_LOGE(TAG, "Cannot rename; dst \"%s\" is open.", dst); return -1; } res = lfs_rename(efs->fs, src, dst); sem_give(efs); if (res < 0) { errno = -res; ESP_LOGV(TAG, "Failed to rename \"%s\" -> \"%s\". Error %s (%d)", src, dst, esp_littlefs_errno(res), res); return res; } return 0; } static DIR* vfs_littlefs_opendir(void* ctx, const char* name) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; int res; vfs_littlefs_dir_t *dir = NULL; dir = calloc(1, sizeof(vfs_littlefs_dir_t)); if( dir == NULL ) { ESP_LOGE(TAG, "dir struct could not be malloced"); goto exit; } dir->path = strdup(name); if(dir->path == NULL){ ESP_LOGE(TAG, "dir path name could not be malloced"); goto exit; } sem_take(efs); res = lfs_dir_open(efs->fs, &dir->d, dir->path); sem_give(efs); if (res < 0) { errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to opendir \"%s\". Error %s (%d)", dir->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to opendir \"%s\". Error %d", dir->path, res); #endif goto exit; } return (DIR *)dir; exit: esp_littlefs_dir_free(dir); return NULL; } static int vfs_littlefs_closedir(void* ctx, DIR* pdir) { assert(pdir); esp_littlefs_t * efs = (esp_littlefs_t *)ctx; vfs_littlefs_dir_t * dir = (vfs_littlefs_dir_t *) pdir; int res; sem_take(efs); res = lfs_dir_close(efs->fs, &dir->d); sem_give(efs); if (res < 0) { errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to closedir \"%s\". Error %s (%d)", dir->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to closedir \"%s\". Error %d", dir->path, res); #endif return res; } esp_littlefs_dir_free(dir); return 0; } static struct dirent* vfs_littlefs_readdir(void* ctx, DIR* pdir) { assert(pdir); vfs_littlefs_dir_t * dir = (vfs_littlefs_dir_t *) pdir; int res; struct dirent* out_dirent; res = vfs_littlefs_readdir_r(ctx, pdir, &dir->e, &out_dirent); if (res != 0) return NULL; return out_dirent; } static int vfs_littlefs_readdir_r(void* ctx, DIR* pdir, struct dirent* entry, struct dirent** out_dirent) { assert(pdir); esp_littlefs_t * efs = (esp_littlefs_t *)ctx; vfs_littlefs_dir_t * dir = (vfs_littlefs_dir_t *) pdir; int res; struct lfs_info info = { 0 }; sem_take(efs); do{ /* Read until we get a real object name */ res = lfs_dir_read(efs->fs, &dir->d, &info); }while( res>0 && (strcmp(info.name, ".") == 0 || strcmp(info.name, "..") == 0)); sem_give(efs); if (res < 0) { errno = -res; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to readdir \"%s\". Error %s (%d)", dir->path, esp_littlefs_errno(res), res); #else ESP_LOGV(TAG, "Failed to readdir \"%s\". Error %d", dir->path, res); #endif return -1; } if(info.type == LFS_TYPE_REG) { ESP_LOGV(TAG, "readdir a file of size %d named \"%s\"", info.size, info.name); } else { ESP_LOGV(TAG, "readdir a dir named \"%s\"", info.name); } if(res == 0) { /* End of Objs */ ESP_LOGV(TAG, "Reached the end of the directory."); *out_dirent = NULL; } else { entry->d_ino = 0; entry->d_type = info.type == LFS_TYPE_REG ? DT_REG : DT_DIR; strncpy(entry->d_name, info.name, sizeof(entry->d_name)); *out_dirent = entry; } dir->offset++; return 0; } static long vfs_littlefs_telldir(void* ctx, DIR* pdir) { assert(pdir); vfs_littlefs_dir_t * dir = (vfs_littlefs_dir_t *) pdir; return dir->offset; } static void vfs_littlefs_seekdir(void* ctx, DIR* pdir, long offset) { assert(pdir); esp_littlefs_t * efs = (esp_littlefs_t *)ctx; vfs_littlefs_dir_t * dir = (vfs_littlefs_dir_t *) pdir; int res; if (offset < dir->offset) { /* close and re-open dir to rewind to beginning */ sem_take(efs); res = lfs_dir_rewind(efs->fs, &dir->d); sem_give(efs); if (res < 0) { errno = -res; ESP_LOGV(TAG, "Failed to rewind dir \"%s\". Error %s (%d)", dir->path, esp_littlefs_errno(res), res); return; } dir->offset = 0; } while(dir->offset < offset){ struct dirent *out_dirent; res = vfs_littlefs_readdir_r(ctx, pdir, &dir->e, &out_dirent); if( res != 0 ){ ESP_LOGE(TAG, "Error readdir_r"); return; } } } static int vfs_littlefs_mkdir(void* ctx, const char* name, mode_t mode) { /* Note: mode is currently unused */ esp_littlefs_t * efs = (esp_littlefs_t *)ctx; int res; ESP_LOGV(TAG, "mkdir \"%s\"", name); sem_take(efs); res = lfs_mkdir(efs->fs, name); sem_give(efs); if (res < 0) { errno = -res; ESP_LOGV(TAG, "Failed to mkdir \"%s\". Error %s (%d)", name, esp_littlefs_errno(res), res); return res; } return 0; } static int vfs_littlefs_rmdir(void* ctx, const char* name) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; struct lfs_info info; int res; /* Error Checking */ sem_take(efs); res = lfs_stat(efs->fs, name, &info); if (res < 0) { errno = -res; sem_give(efs); ESP_LOGV(TAG, "\"%s\" doesn't exist.", name); return -1; } if (info.type != LFS_TYPE_DIR) { sem_give(efs); ESP_LOGV(TAG, "\"%s\" is not a directory.", name); return -1; } /* Unlink the dir */ res = lfs_remove(efs->fs, name); sem_give(efs); if ( res < 0) { errno = -res; ESP_LOGV(TAG, "Failed to unlink path \"%s\". Error %s (%d)", name, esp_littlefs_errno(res), res); return -1; } return 0; } #if CONFIG_LITTLEFS_USE_MTIME /** * Sets the mtime attr to t. */ static int vfs_littlefs_update_mtime_value(esp_littlefs_t *efs, const char *path, time_t t) { int res; res = lfs_setattr(efs->fs, path, LITTLEFS_ATTR_MTIME, &t, sizeof(t)); if( res < 0 ) { errno = -res; ESP_LOGV(TAG, "Failed to update mtime (%d)", res); } return res; } /** * Sets the mtime attr to an appropriate value */ static void vfs_littlefs_update_mtime(esp_littlefs_t *efs, const char *path) { vfs_littlefs_utime(efs, path, NULL); } static int vfs_littlefs_utime(void *ctx, const char *path, const struct utimbuf *times) { esp_littlefs_t * efs = (esp_littlefs_t *)ctx; time_t t; assert(path); if (times) { t = times->modtime; } else { #if CONFIG_LITTLEFS_MTIME_USE_SECONDS // use current time t = time(NULL); #elif CONFIG_LITTLEFS_MTIME_USE_NONCE assert( sizeof(time_t) == 4 ); t = vfs_littlefs_get_mtime(efs, path); if( 0 == t ) t = esp_random(); else t += 1; if( 0 == t ) t = 1; #else #error "Invalid MTIME configuration" #endif } int ret = vfs_littlefs_update_mtime_value(efs, path, t); return ret; } static time_t vfs_littlefs_get_mtime(esp_littlefs_t *efs, const char *path) { time_t t = 0; int size; size = lfs_getattr(efs->fs, path, LITTLEFS_ATTR_MTIME, &t, sizeof(t)); if( size < 0 ) { errno = -size; #ifndef CONFIG_LITTLEFS_USE_ONLY_HASH ESP_LOGV(TAG, "Failed to get mtime attribute %s (%d)", esp_littlefs_errno(size), size); #else ESP_LOGV(TAG, "Failed to get mtime attribute %d", size); #endif } return t; } #endif //CONFIG_LITTLEFS_USE_MTIME #if CONFIG_LITTLEFS_SPIFFS_COMPAT /** * @brief Recursively make all parent directories for a file. * @param[in] dir Path of directories to make up to. The last element * of the path is assumed to be the file and IS NOT created. * e.g. * "foo/bar/baz" * will create directories "foo" and "bar" */ static void mkdirs(esp_littlefs_t * efs, const char *dir) { char tmp[CONFIG_LITTLEFS_OBJ_NAME_LEN]; char *p = NULL; strlcpy(tmp, dir, sizeof(tmp)); for(p = tmp + 1; *p; p++) { if(*p == '/') { *p = '\0'; vfs_littlefs_mkdir((void*)efs, tmp, S_IRWXU); *p = '/'; } } } /** * @brief Recursively attempt to delete all empty directories for a file. * @param[in] dir Path of directories to delete. The last element of the path * is assumed to be the file and IS NOT deleted. * e.g. * "foo/bar/baz" * will attempt to delete directories (in order): * 1. "foo/bar/baz" * 2. "foo/bar" * 3. "foo" */ static void rmdirs(esp_littlefs_t * efs, const char *dir) { char tmp[CONFIG_LITTLEFS_OBJ_NAME_LEN]; char *p = NULL; strlcpy(tmp, dir, sizeof(tmp)); for(p = tmp + strlen(tmp) - 1; p != tmp; p--) { if(*p == '/') { *p = '\0'; vfs_littlefs_rmdir((void*)efs, tmp); *p = '/'; } } } #endif // CONFIG_LITTLEFS_SPIFFS_COMPAT