/*
xsns_34_hx711.ino - HX711 load cell support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_HX711
/*********************************************************************************************\
* HX711 - Load cell as used in a scale
*
* Source: Sparkfun and https://github.com/bogde/HX711
*
* To reset the scale:
* - Execute command Sensor34 1
*
* To calibrate the scale perform the following tasks:
* - Set reference weight once using command Sensor34 3
* - Remove any weight from the scale
* - Execute command Sensor34 2 and follow messages shown
\*********************************************************************************************/
#define XSNS_34 34
#ifndef HX_MAX_WEIGHT
#define HX_MAX_WEIGHT 20000 // Default max weight in gram
#endif
#ifndef HX_REFERENCE
#define HX_REFERENCE 250 // Default reference weight for calibration in gram
#endif
#ifndef HX_SCALE
#define HX_SCALE 120 // Default result of measured weight / reference weight when scale is 1
#endif
#ifndef HX711_CAL_PRECISION
#define HX711_CAL_PRECISION 1 // When calibration is to course, raise this value.
#endif
#define HX_TIMEOUT 120 // A reading at default 10Hz (pin RATE to Gnd on HX711) can take up to 100 milliseconds
#define HX_SAMPLES 10 // Number of samples for average calculation
#define HX_CAL_TIMEOUT 15 // Calibration step window in number of seconds
#define HX_GAIN_128 1 // Channel A, gain factor 128
#define HX_GAIN_32 2 // Channel B, gain factor 32
#define HX_GAIN_64 3 // Channel A, gain factor 64
#define D_JSON_WEIGHT_RAW "WeightRaw"
#define D_JSON_WEIGHT_RAW_ABS "AbsRaw"
#define D_JSON_WEIGHT_REF "Ref"
#define D_JSON_WEIGHT_CAL "Cal"
#define D_JSON_WEIGHT_PREC "Prec"
#define D_JSON_WEIGHT_MAX "Max"
#define D_JSON_WEIGHT_ITEM "Item"
#define D_JSON_WEIGHT_CHANGE "Change"
#define D_JSON_WEIGHT_DELTA "Delta"
#define D_JSON_WEIGHT_TARE "Tare"
#define D_JSON_WEIGHT_ABSC_A "AbsConvA"
#define D_JSON_WEIGHT_ABSC_B "AbsConvB"
enum HxCalibrationSteps { HX_CAL_END, HX_CAL_LIMBO, HX_CAL_FINISH, HX_CAL_FAIL, HX_CAL_DONE, HX_CAL_FIRST, HX_CAL_RESET, HX_CAL_START };
const char kHxCalibrationStates[] PROGMEM = D_HX_CAL_FAIL "|" D_HX_CAL_DONE "|" D_HX_CAL_REFERENCE "|" D_HX_CAL_REMOVE;
struct HX {
long reads[HX_SAMPLES];
long raw_empty = 0;
long raw_absolute;
long raw = 0;
long weight = 0;
long last_weight = 0;
long offset = 0;
long scale = 1;
long weight_diff = 0;
uint8_t type = 1;
uint8_t sample_count = 0;
uint8_t calibrate_step = HX_CAL_END;
uint8_t calibrate_timer = 0;
uint8_t calibrate_msg = 0;
int8_t pin_sck;
int8_t pin_dout;
bool tare_flg = false;
bool weight_changed = false;
uint16_t weight_delta = 4;
} Hx;
/*********************************************************************************************/
bool HxIsReady(uint16_t timeout) {
// A reading can take up to 100 mS or 600mS after power on
uint32_t start = millis();
while ((digitalRead(Hx.pin_dout) == HIGH) && (millis() - start < timeout)) {
yield();
}
return (digitalRead(Hx.pin_dout) == LOW);
}
long HxRead(void) {
if (!HxIsReady(HX_TIMEOUT)) { return -1; }
uint8_t data[3] = { 0 };
uint8_t filler = 0x00;
// pulse the clock pin 24 times to read the data
data[2] = TasShiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[1] = TasShiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[0] = TasShiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
// set the channel and the gain factor for the next reading using the clock pin
for (unsigned int i = 0; i < HX_GAIN_128; i++) {
digitalWrite(Hx.pin_sck, HIGH);
#ifdef ESP32
delayMicroseconds(1);
#endif
digitalWrite(Hx.pin_sck, LOW);
#ifdef ESP32
delayMicroseconds(1);
#endif
}
// Replicate the most significant bit to pad out a 32-bit signed integer
if (data[2] & 0x80) { filler = 0xFF; }
// Construct a 32-bit signed integer
unsigned long value = ( static_cast(filler) << 24
| static_cast(data[2]) << 16
| static_cast(data[1]) << 8
| static_cast(data[0]) );
return static_cast(value);
}
/*********************************************************************************************/
void HxTareInit(void) {
Hx.offset = (Settings->weight_user_tare != 0) ? Settings->weight_user_tare * Hx.scale : Settings->weight_offset;
if (0 == Hx.offset) {
Hx.tare_flg = true;
}
}
void HxCalibrationStateTextJson(uint8_t msg_id) {
char cal_text[30];
Hx.calibrate_msg = msg_id;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, GetTextIndexed(cal_text, sizeof(cal_text), Hx.calibrate_msg, kHxCalibrationStates));
if (msg_id < 3) { MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("Sensor34")); }
}
void SetWeightDelta(void) {
// backwards compatible: restore old default value of 4 grams
if (Settings->weight_change == 0) {
Hx.weight_delta = 4;
return;
}
// map upper values 101-255 to
if (Settings->weight_change > 100) {
Hx.weight_delta = (Settings->weight_change - 100) * 10 + 100;
return;
}
// map 1..100 to 0..99 grams
Hx.weight_delta = Settings->weight_change - 1;
}
/*********************************************************************************************\
* Supported commands for Sensor34:
*
* Sensor34 - Show current settings
* Sensor34 1 - Reset display to 0
* Sensor34 2 - Start calibration
* Sensor34 2 - Set reference weight and start calibration
* Sensor34 2 - Set reference weight with larger precision (1..10) and start calibration
* Sensor34 3 - Set reference weight
* Sensor34 4 - Set calibrated scale value
* Sensor34 5 - Set max weight
* Sensor34 6 - Set item weight
* Sensor34 7 - Save current weight to be used as start weight on restart (removed v11.0.0.7)
* Sensor34 8 0 - Disable JSON weight change message
* Sensor34 8 1 - Enable JSON weight change message
* Sensor34 9 - Set minimum delta to trigger JSON message
* Sensor34 10 0 - Disable fixed tare and enable auto tare
* Sensor34 10 1 - Set fixed tare offset using current calibrated raw weight value
* Sensor34 10 - Set fixed tare offset
* Sensor34 11 0 - Disable absolute weight conversion
* Sensor34 11 - Set A = a * 10^9 for raw to absolute weight conversion: y=a*x+b
* Sensor34 12 - Set B = b * 10^6 for raw to absolute weight conversion: y=a*x+b
\*********************************************************************************************/
bool HxCommand(void) {
bool serviced = true;
bool show_parms = true;
char argument[XdrvMailbox.data_len];
long value = 0;
for (uint32_t ca = 0; ca < XdrvMailbox.data_len; ca++) {
if ((' ' == XdrvMailbox.data[ca]) || ('=' == XdrvMailbox.data[ca])) { XdrvMailbox.data[ca] = ','; }
}
bool any_value = (ArgC() > 1);
if (any_value) { value = strtol(ArgV(argument, 2), nullptr, 10); }
switch (XdrvMailbox.payload) {
case 1: // Reset scale
if (0 == Settings->weight_user_tare) {
Hx.tare_flg = true;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, "Reset");
}
show_parms = false;
break;
case 2: // Calibrate
if (any_value) {
Settings->weight_reference = value;
if (ArgC() > 2) {
value = strtol(ArgV(argument, 3), nullptr, 10);
Settings->weight_precision = (value && (value < 11)) ? value : HX711_CAL_PRECISION;
}
}
Hx.scale = 1; // Uncalibrated
Hx.sample_count = 0;
Hx.offset = 0; // Disable tare while calibrating
Hx.calibrate_step = HX_CAL_START;
Hx.calibrate_timer = 1;
// HxCalibrationStateTextJson(3); // D_HX_CAL_REMOVE
HxCalibrationStateTextJson(2); // D_HX_CAL_REFERENCE
show_parms = false;
break;
case 3: // WeightRef to user reference
if (any_value) { Settings->weight_reference = value; }
break;
case 4: // WeightCal to user calculated value
if (any_value) {
Settings->weight_calibration = value; // Allow zero for re-init
Hx.scale = (value) ? Settings->weight_calibration : 1; // Fix divide by zero
}
break;
case 5: // WeightMax
if (any_value) { Settings->weight_max = value; }
break;
case 6: // WeightItem
if (strchr(XdrvMailbox.data, ',') != nullptr) {
Settings->weight_item = (unsigned long)(CharToFloat(ArgV(argument, 2)) * 10);
}
break;
// case 7: // WeightSave
// Settings->energy_frequency_calibration = Hx.weight;
// Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, PSTR(D_JSON_DONE));
// show_parms = false;
// break;
case 8: // Json on weight change
if (any_value) { Settings->SensorBits1.hx711_json_weight_change = value &1; }
break;
case 9: // WeightDelta
if (any_value) {
Settings->weight_change = value;
SetWeightDelta();
}
break;
case 10: // Fixed (user) tare
if (any_value) {
Settings->weight_user_tare = (1 == value) ? Hx.raw : value;
HxTareInit();
Hx.weight_diff = Hx.weight_delta +1; // Force display of current weight
}
break;
case 11: // AbsoluteConversion, A
if (any_value) { Settings->weight_absconv_a = value; }
break;
case 12: // AbsoluteConversion, B
if (any_value) { Settings->weight_absconv_b = value; }
break;
}
if (show_parms) {
char item[33];
dtostrfd((float)Settings->weight_item / 10, 1, item);
Response_P(PSTR("{\"Sensor34\":{\""
D_JSON_WEIGHT_REF "\":%d,\"" D_JSON_WEIGHT_CAL "\":%d,\"" D_JSON_WEIGHT_PREC "\":%d,\""
D_JSON_WEIGHT_MAX "\":%d,\""
D_JSON_WEIGHT_ITEM "\":%s,\"" D_JSON_WEIGHT_CHANGE "\":\"%s\",\"" D_JSON_WEIGHT_DELTA "\":%d,\""
D_JSON_WEIGHT_TARE "\":%d,\"" D_JSON_WEIGHT_ABSC_A "\":%d,\"" D_JSON_WEIGHT_ABSC_B "\":%d}}"),
Settings->weight_reference, Settings->weight_calibration, Settings->weight_precision,
Settings->weight_max * 1000,
item, GetStateText(Settings->SensorBits1.hx711_json_weight_change), Settings->weight_change,
Settings->weight_user_tare, Settings->weight_absconv_a, Settings->weight_absconv_b);
}
return serviced;
}
/*********************************************************************************************/
long HxWeight(void) {
return (Hx.calibrate_step < HX_CAL_FAIL) ? Hx.weight : 0;
}
void HxInit(void) {
Hx.type = 0;
if (PinUsed(GPIO_HX711_DAT) && PinUsed(GPIO_HX711_SCK)) {
Hx.pin_sck = Pin(GPIO_HX711_SCK);
Hx.pin_dout = Pin(GPIO_HX711_DAT);
pinMode(Hx.pin_sck, OUTPUT);
pinMode(Hx.pin_dout, INPUT);
digitalWrite(Hx.pin_sck, LOW);
SetWeightDelta();
if (HxIsReady(8 * HX_TIMEOUT)) { // Can take 600 milliseconds after power on
if (!Settings->weight_max) { Settings->weight_max = HX_MAX_WEIGHT / 1000; }
if (!Settings->weight_precision) { Settings->weight_precision = HX711_CAL_PRECISION; }
if (!Settings->weight_calibration) { Settings->weight_calibration = HX_SCALE * Settings->weight_precision; }
if (!Settings->weight_reference) { Settings->weight_reference = HX_REFERENCE; }
Hx.scale = Settings->weight_calibration;
HxTareInit();
HxRead();
Hx.type = 1;
}
}
}
void HxEvery100mSecond(void) {
long raw = HxRead();
if (-1 == raw) { return; }
if (Hx.sample_count < HX_SAMPLES) { // Test for HxSaveBeforeRestart()
Hx.reads[Hx.sample_count] = raw;
}
Hx.sample_count++;
if (HX_SAMPLES == Hx.sample_count) {
Hx.sample_count = 0;
// Sort HX_SAMPLES
for (uint32_t i = 0; i < HX_SAMPLES; i++) {
for (uint32_t j = i + 1; j < HX_SAMPLES; j++) {
if (Hx.reads[j] > Hx.reads[i]) {
std::swap(Hx.reads[i], Hx.reads[j]);
}
}
}
// Drop two lows and two highs from average
long sum_raw = 0;
for (uint32_t i = 2; i < HX_SAMPLES -2; i++) {
sum_raw += Hx.reads[i];
}
Hx.raw_absolute = (sum_raw / (HX_SAMPLES -4)) * Settings->weight_precision; // Uncalibrated value
Hx.raw = Hx.raw_absolute / Hx.scale; // grams
if ((0 == Settings->weight_user_tare) && Hx.tare_flg) { // Reset scale based on current load
Hx.tare_flg = false;
Settings->weight_offset = Hx.raw_absolute; // Save for restart use
Hx.offset = Hx.raw_absolute;
}
long value = Hx.raw_absolute - Hx.offset; // Uncalibrated value
Hx.weight = value / Hx.scale; // grams
if (Hx.weight < 0) { // We currently do not support negative weight
Hx.weight = 0;
}
if (Hx.calibrate_step) {
Hx.calibrate_timer--;
// AddLog(LOG_LEVEL_DEBUG, PSTR("HX7: Step %d, weight %d, last %d, raw %d, empty %d"), Hx.calibrate_step, Hx.weight, Hx.last_weight, Hx.raw, Hx.raw_empty);
if (HX_CAL_START == Hx.calibrate_step) { // Skip reset just initiated
if (0 == Hx.offset) {
Hx.calibrate_step--; // HX_CAL_RESET
Hx.last_weight = Hx.weight; // Uncalibrated value
Hx.raw_empty = Hx.raw;
}
Hx.calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
}
else if (HX_CAL_RESET == Hx.calibrate_step) { // Wait for stable reset
if (Hx.calibrate_timer) {
if (Hx.weight < Hx.last_weight -100) { // Load decrease detected
Hx.last_weight = Hx.weight;
Hx.raw_empty = Hx.raw;
// HxCalibrationStateTextJson(2); // D_HX_CAL_REFERENCE
}
else if (Hx.weight > Hx.last_weight +100) { // Load increase detected
Hx.calibrate_step--; // HX_CAL_FIRST
Hx.calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
}
} else {
Hx.calibrate_step = HX_CAL_FAIL;
}
}
else if (HX_CAL_FIRST == Hx.calibrate_step) { // Wait for first reference weight
if (Hx.calibrate_timer) {
if (Hx.weight > Hx.last_weight +100) {
Hx.calibrate_step--; // HX_CAL_DONE
}
} else {
Hx.calibrate_step = HX_CAL_FAIL;
}
}
else if (HX_CAL_DONE == Hx.calibrate_step) { // Second stable reference weight
if (Hx.weight > Hx.last_weight +100) {
Hx.calibrate_step = HX_CAL_FINISH; // Calibration done
Settings->weight_offset = Hx.raw_empty;
Hx.offset = Hx.raw_empty;
Settings->weight_calibration = (Hx.weight - Hx.raw_empty) / Settings->weight_reference; // 1 gram
Hx.weight = 0; // Reset calibration value
HxCalibrationStateTextJson(1); // D_HX_CAL_DONE
} else {
Hx.calibrate_step = HX_CAL_FAIL;
}
}
if (HX_CAL_FAIL == Hx.calibrate_step) { // Calibration failed
Hx.calibrate_step--; // HX_CAL_FINISH
HxTareInit();
HxCalibrationStateTextJson(0); // D_HX_CAL_FAIL
}
if (HX_CAL_FINISH == Hx.calibrate_step) { // Calibration finished
Hx.calibrate_step--; // HX_CAL_LIMBO
Hx.calibrate_timer = 3 * (10 / HX_SAMPLES);
Hx.scale = Settings->weight_calibration;
if (Settings->weight_user_tare != 0) { // Re-enable fixed tare if needed
Settings->weight_user_tare = Hx.raw_empty / Hx.scale;
HxTareInit();
}
}
if (!Hx.calibrate_timer) {
Hx.calibrate_step = HX_CAL_END; // End of calibration
Hx.weight_diff = Hx.weight_delta +2;
}
} else {
if (Settings->SensorBits1.hx711_json_weight_change) {
if (abs(Hx.weight - Hx.weight_diff) > Hx.weight_delta) { // Use weight_delta threshold to decrease "ghost" weights
Hx.weight_diff = Hx.weight;
Hx.weight_changed = true;
}
else if (Hx.weight_changed && (abs(Hx.weight - Hx.weight_diff) < Hx.weight_delta)) {
ResponseClear();
ResponseAppendTime();
HxShow(true);
ResponseJsonEnd();
MqttPublishTeleSensor();
Hx.weight_changed = false;
}
}
}
}
}
void HxSaveBeforeRestart(void) {
Hx.sample_count = HX_SAMPLES +1; // Stop updating Hx.weight
}
#ifdef USE_WEBSERVER
const char HTTP_HX711_WEIGHT[] PROGMEM =
"{s}HX711 " D_WEIGHT "{m}%s " D_UNIT_KILOGRAM "{e}"; // {s} = , {m} = | , {e} = |
const char HTTP_HX711_COUNT[] PROGMEM =
"{s}HX711 " D_COUNT "{m}%d{e}";
const char HTTP_HX711_CAL[] PROGMEM =
"{s}HX711 %s{m}{e}";
#endif // USE_WEBSERVER
void HxShow(bool json) {
char scount[30] = { 0 };
uint16_t count = 0;
float weight = 0;
if (Hx.calibrate_step < HX_CAL_FAIL) {
if ((Settings->weight_absconv_a != 0) && (Settings->weight_absconv_b != 0)) {
weight = (float)Settings->weight_absconv_a / 1e9 * Hx.raw_absolute + (float)Settings->weight_absconv_b / 1e6;
}
else {
if (Hx.weight && Settings->weight_item) {
count = (Hx.weight * 10) / Settings->weight_item;
if (count > 1) {
snprintf_P(scount, sizeof(scount), PSTR(",\"" D_JSON_COUNT "\":%d"), count);
}
}
weight = (float)Hx.weight / 1000; // kilograms
}
}
char weight_chr[33];
dtostrfd(weight, Settings->flag2.weight_resolution, weight_chr);
if (json) {
ResponseAppend_P(PSTR(",\"HX711\":{\"" D_JSON_WEIGHT "\":%s%s,\"" D_JSON_WEIGHT_RAW "\":%d,\"" D_JSON_WEIGHT_RAW_ABS "\":%d}"),
weight_chr, scount, Hx.raw, Hx.raw_absolute);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_HX711_WEIGHT, weight_chr);
if (count > 1) {
WSContentSend_PD(HTTP_HX711_COUNT, count);
}
if (Hx.calibrate_step) {
char cal_text[30];
WSContentSend_PD(HTTP_HX711_CAL, GetTextIndexed(cal_text, sizeof(cal_text), Hx.calibrate_msg, kHxCalibrationStates));
}
#endif // USE_WEBSERVER
}
}
#ifdef USE_WEBSERVER
#ifdef USE_HX711_GUI
/*********************************************************************************************\
* Optional GUI
\*********************************************************************************************/
#define WEB_HANDLE_HX711 "s34"
const char HTTP_BTN_MENU_MAIN_HX711[] PROGMEM =
"
";
const char HTTP_BTN_MENU_HX711[] PROGMEM =
"";
const char HTTP_FORM_HX711[] PROGMEM =
"
"
"