/* * Sonoff-Tasmota by Theo Arends * * ==================================================== * Prerequisites: * - Change libraries/PubSubClient/src/PubSubClient.h * #define MQTT_MAX_PACKET_SIZE 512 * * - Select IDE Tools - Flash size: "1M (no SPIFFS)" * ==================================================== */ #define VERSION 0x05000400 // 5.0.4 enum log_t {LOG_LEVEL_NONE, LOG_LEVEL_ERROR, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG_MORE, LOG_LEVEL_ALL}; enum week_t {Last, First, Second, Third, Fourth}; enum dow_t {Sun=1, Mon, Tue, Wed, Thu, Fri, Sat}; enum month_t {Jan=1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}; enum wifi_t {WIFI_RESTART, WIFI_SMARTCONFIG, WIFI_MANAGER, WIFI_WPSCONFIG, WIFI_RETRY, MAX_WIFI_OPTION}; enum swtch_t {TOGGLE, FOLLOW, FOLLOW_INV, PUSHBUTTON, PUSHBUTTON_INV, MAX_SWITCH_OPTION}; enum led_t {LED_OFF, LED_POWER, LED_MQTTSUB, LED_POWER_MQTTSUB, LED_MQTTPUB, LED_POWER_MQTTPUB, LED_MQTT, LED_POWER_MQTT, MAX_LED_OPTION}; enum emul_t {EMUL_NONE, EMUL_WEMO, EMUL_HUE, EMUL_MAX}; #include "sonoff_template.h" #include "user_config.h" #include "user_config_override.h" /*********************************************************************************************\ * No user configurable items below \*********************************************************************************************/ #define MODULE SONOFF_BASIC // [Module] Select default model #define USE_DHT // Default DHT11 sensor needs no external library #ifndef USE_DS18x20 #define USE_DS18B20 // Default DS18B20 sensor needs no external library #endif //#define DEBUG_THEO // Add debug code #ifdef BE_MINIMAL #ifdef USE_MQTT_TLS #undef USE_MQTT_TLS // Disable TLS support won't work as the MQTTHost is not set #endif #ifdef USE_DISCOVERY #undef USE_DISCOVERY // Disable Discovery services for both MQTT and web server #endif #ifdef USE_DOMOTICZ #undef USE_DOMOTICZ // Disable Domoticz #endif //#ifdef USE_WEBSERVER //#undef USE_WEBSERVER // Disable Webserver //#endif #ifdef USE_EMULATION #undef USE_EMULATION // Disable Wemo or Hue emulation #endif #ifdef USE_DS18x20 #undef USE_DS18x20 // Disable DS18x20 sensor #endif #ifdef USE_I2C #undef USE_I2C // Disable all I2C sensors #endif #ifdef USE_WS2812 #undef USE_WS2812 // Disable WS2812 Led string #endif #ifdef USE_DS18B20 #undef USE_DS18B20 // Disable internal DS18B20 sensor #endif #ifdef USE_DHT #undef USE_DHT // Disable internal DHT sensor #endif #ifdef USE_IR_REMOTE #undef USE_IR_REMOTE // Disable IR driver #endif #ifdef DEBUG_THEO #undef DEBUG_THEO // Disable debug code #endif #endif // BE_MINIMAL #ifndef SWITCH_MODE #define SWITCH_MODE TOGGLE // TOGGLE, FOLLOW or FOLLOW_INV (the wall switch state) #endif #ifndef MQTT_FINGERPRINT #define MQTT_FINGERPRINT "A5 02 FF 13 99 9F 8B 39 8E F1 83 4F 11 23 65 0B 32 36 FC 07" #endif #ifndef WS2812_LEDS #define WS2812_LEDS 30 // [Pixels] Number of LEDs #endif #define WIFI_HOSTNAME "%s-%04d" // Expands to - #define CONFIG_FILE_SIGN 0xA5 // Configuration file signature #define CONFIG_FILE_XOR 0x5A // Configuration file xor (0 = No Xor) #define HLW_PREF_PULSE 12530 // was 4975us = 201Hz = 1000W #define HLW_UREF_PULSE 1950 // was 1666us = 600Hz = 220V #define HLW_IREF_PULSE 3500 // was 1666us = 600Hz = 4.545A #define MQTT_RETRY_SECS 10 // Seconds to retry MQTT connection #define APP_POWER 0 // Default saved power state Off #define MAX_DEVICE 1 // Max number of devices #define MAX_PULSETIMERS 4 // Max number of supported pulse timers #define WS2812_MAX_LEDS 256 // Max number of LEDs #define PWM_RANGE 1023 // 255..1023 needs to be devisible by 256 //#define PWM_FREQ 1000 // 100..1000 Hz led refresh #define PWM_FREQ 910 // 100..1000 Hz led refresh (iTead value) #define MAX_POWER_HOLD 10 // Time in SECONDS to allow max agreed power (Pow) #define MAX_POWER_WINDOW 30 // Time in SECONDS to disable allow max agreed power (Pow) #define SAFE_POWER_HOLD 10 // Time in SECONDS to allow max unit safe power (Pow) #define SAFE_POWER_WINDOW 30 // Time in MINUTES to disable allow max unit safe power (Pow) #define MAX_POWER_RETRY 5 // Retry count allowing agreed power limit overflow (Pow) #define STATES 10 // loops per second #define SYSLOG_TIMER 600 // Seconds to restore syslog_level #define SERIALLOG_TIMER 600 // Seconds to disable SerialLog #define OTA_ATTEMPTS 10 // Number of times to try fetching the new firmware #define INPUT_BUFFER_SIZE 100 // Max number of characters in serial buffer #define TOPSZ 60 // Max number of characters in topic string #define LOGSZ 128 // Max number of characters in log string #ifdef USE_MQTT_TLS #define MAX_LOG_LINES 10 // Max number of lines in weblog #else #define MAX_LOG_LINES 20 // Max number of lines in weblog #endif #define APP_BAUDRATE 115200 // Default serial baudrate #define MAX_STATUS 11 // Max number of status lines enum butt_t {PRESSED, NOT_PRESSED}; #include "support.h" // Global support #include // MQTT #define MESSZ 360 // Max number of characters in JSON message string (4 x DS18x20 sensors) #if (MQTT_MAX_PACKET_SIZE -TOPSZ -7) < MESSZ // If the max message size is too small, throw an error at compile time // See pubsubclient.c line 359 #error "MQTT_MAX_PACKET_SIZE is too small in libraries/PubSubClient/src/PubSubClient.h, increase it to at least 427" #endif #include // RTC, HLW8012, OSWatch #include // MQTT, Ota, WifiManager #include // MQTT, Ota #include // Ota #include // WemoHue, IRremote, Domoticz #ifdef USE_WEBSERVER #include // WifiManager, Webserver #include // WifiManager #endif // USE_WEBSERVER #ifdef USE_DISCOVERY #include // MQTT, Webserver #endif // USE_DISCOVERY #ifdef USE_I2C #include // I2C support library #endif // USE_I2C #ifdef USI_SPI #include // SPI, TFT #endif // USE_SPI #include "settings.h" typedef void (*rtcCallback)(); #define MAX_BUTTON_COMMANDS 5 // Max number of button commands supported const char commands[MAX_BUTTON_COMMANDS][14] PROGMEM = { {"wificonfig 1"}, // Press button three times {"wificonfig 2"}, // Press button four times {"wificonfig 3"}, // Press button five times {"restart 1"}, // Press button six times {"upgrade 1"}}; // Press button seven times const char wificfg[5][12] PROGMEM = { "Restart", "Smartconfig", "Wifimanager", "WPSconfig", "Retry" }; struct TIME_T { uint8_t Second; uint8_t Minute; uint8_t Hour; uint8_t Wday; // day of week, sunday is day 1 uint8_t Day; uint8_t Month; char MonthName[4]; uint16_t DayOfYear; uint16_t Year; unsigned long Valid; } rtcTime; struct TimeChangeRule { uint8_t week; // 1=First, 2=Second, 3=Third, 4=Fourth, or 0=Last week of the month uint8_t dow; // day of week, 1=Sun, 2=Mon, ... 7=Sat uint8_t month; // 1=Jan, 2=Feb, ... 12=Dec uint8_t hour; // 0-23 int offset; // offset from UTC in minutes }; TimeChangeRule myDST = { TIME_DST }; // Daylight Saving Time TimeChangeRule mySTD = { TIME_STD }; // Standard Time int Baudrate = APP_BAUDRATE; // Serial interface baud rate byte SerialInByte; // Received byte int SerialInByteCounter = 0; // Index in receive buffer char serialInBuf[INPUT_BUFFER_SIZE + 2]; // Receive buffer byte Hexcode = 0; // Sonoff dual input flag uint16_t ButtonCode = 0; // Sonoff dual received code int16_t savedatacounter; // Counter and flag for config save to Flash char Version[16]; // Version string from VERSION define char Hostname[33]; // Composed Wifi hostname char MQTTClient[33]; // Composed MQTT Clientname uint8_t mqttcounter = 0; // MQTT connection retry counter unsigned long timerxs = 0; // State loop timer int state = 0; // State per second flag int mqttflag = 2; // MQTT connection messages flag int otaflag = 0; // OTA state flag int otaok = 0; // OTA result byte otaretry = OTA_ATTEMPTS; // OTA retry counter int restartflag = 0; // Sonoff restart flag int wificheckflag = WIFI_RESTART; // Wifi state flag int uptime = 0; // Current uptime in hours boolean uptime_flg = true; // Signal latest uptime int tele_period = 0; // Tele period timer String Log[MAX_LOG_LINES]; // Web log buffer byte logidx = 0; // Index in Web log buffer byte logajaxflg = 0; // Reset web console log byte Maxdevice = MAX_DEVICE; // Max number of devices supported int status_update_timer = 0; // Refresh initial status uint16_t pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer uint16_t blink_timer = 0; // Power cycle timer uint16_t blink_counter = 0; // Number of blink cycles uint8_t blink_power; // Blink power state uint8_t blink_mask = 0; // Blink relay active mask uint8_t blink_powersave; // Blink start power save state uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command uint8_t latching_power = 0; // Power state at latching start uint8_t latching_relay_pulse = 0; // Latching relay pulse timer #ifdef USE_MQTT_TLS WiFiClientSecure espClient; // Wifi Secure Client #else WiFiClient espClient; // Wifi Client #endif PubSubClient mqttClient(espClient); // MQTT Client WiFiUDP portUDP; // UDP Syslog and Alexa uint8_t power; // Current copy of sysCfg.power byte syslog_level; // Current copy of sysCfg.syslog_level uint16_t syslog_timer = 0; // Timer to re-enable syslog_level byte seriallog_level; // Current copy of sysCfg.seriallog_level uint16_t seriallog_timer = 0; // Timer to disable Seriallog uint8_t sleep; // Current copy of sysCfg.sleep int blinks = 201; // Number of LED blinks uint8_t blinkstate = 0; // LED state uint8_t lastbutton[4] = { NOT_PRESSED, NOT_PRESSED, NOT_PRESSED, NOT_PRESSED }; // Last button states uint8_t holdcount = 0; // Timer recording button hold uint8_t multiwindow = 0; // Max time between button presses to record press count uint8_t multipress = 0; // Number of button presses within multiwindow uint8_t lastwallswitch[4]; // Last wall switch states uint8_t blockgpio0 = 4; // Block GPIO0 for 4 seconds after poweron to workaround Wemos D1 RTS circuit mytmplt my_module; // Active copy of GPIOs uint8_t pin[GPIO_MAX]; // Possible pin configurations uint8_t rel_inverted[4] = { 0 }; // Relay inverted flag (1 = (0 = On, 1 = Off)) uint8_t led_inverted[4] = { 0 }; // LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t swt_flg = 0; // Any external switch configured uint8_t dht_flg = 0; // DHT configured uint8_t hlw_flg = 0; // Power monitor configured uint8_t i2c_flg = 0; // I2C configured uint8_t spi_flg = 0; // SPI configured uint8_t pwm_flg = 0; // PWM configured uint8_t pwm_idxoffset = 0; // Allowed PWM command offset (change for Sonoff Led) boolean mDNSbegun = false; /********************************************************************************************/ void getClient(char* output, const char* input, byte size) { char *token; uint8_t digits = 0; if (strstr(input, "%")) { strlcpy(output, input, size); token = strtok(output, "%"); if (strstr(input, "%") == input) { output[0] = '\0'; } else { token = strtok(NULL, ""); } if (token != NULL) { digits = atoi(token); if (digits) { snprintf_P(output, size, PSTR("%s%c0%dX"), output, '%', digits); snprintf_P(output, size, output, ESP.getChipId()); } } } if (!digits) { strlcpy(output, input, size); } } void setLatchingRelay(uint8_t power, uint8_t state) { power &= 1; if (2 == state) { // Reset relay state = 0; latching_power = power; latching_relay_pulse = 0; } else if (state && !latching_relay_pulse) { // Set port power to On latching_power = power; latching_relay_pulse = 2; // max 200mS (initiated by stateloop()) } if (pin[GPIO_REL1 +latching_power] < 99) { digitalWrite(pin[GPIO_REL1 +latching_power], rel_inverted[latching_power] ? !state : state); } } void setRelay(uint8_t rpower) { uint8_t state; if (4 == sysCfg.poweronstate) { // All on and stay on power = (1 << Maxdevice) -1; rpower = power; } if ((SONOFF_DUAL == sysCfg.module) || (CH4 == sysCfg.module)) { Serial.write(0xA0); Serial.write(0x04); Serial.write(rpower); Serial.write(0xA1); Serial.write('\n'); Serial.flush(); } else if (SONOFF_LED == sysCfg.module) { sl_setPower(rpower &1); } else if (EXS_RELAY == sysCfg.module) { setLatchingRelay(rpower, 1); } else { for (byte i = 0; i < Maxdevice; i++) { state = rpower &1; if (pin[GPIO_REL1 +i] < 99) { digitalWrite(pin[GPIO_REL1 +i], rel_inverted[i] ? !state : state); } rpower >>= 1; } } hlw_setPowerSteadyCounter(2); } void setLed(uint8_t state) { if (state) { state = 1; } digitalWrite(pin[GPIO_LED1], (led_inverted[0]) ? !state : state); } /********************************************************************************************/ void json2legacy(char* stopic, char* svalue) { char *p; char *token; uint16_t i; uint16_t j; if (!strstr(svalue, "{\"")) { return; // No JSON } // stopic = stat/sonoff/RESULT // svalue = {"POWER2":"ON"} // --> stopic = "stat/sonoff/POWER2", svalue = "ON" // svalue = {"Upgrade":{"Version":"2.1.2", "OtaUrl":"%s"}} // --> stopic = "stat/sonoff/UPGRADE", svalue = "2.1.2" // svalue = {"SerialLog":2} // --> stopic = "stat/sonoff/SERIALLOG", svalue = "2" // svalue = {"POWER":""} // --> stopic = "stat/sonoff/POWER", svalue = "" token = strtok(svalue, "{\""); // Topic p = strrchr(stopic, '/') +1; i = p - stopic; for (j = 0; j < strlen(token)+1; j++) { stopic[i+j] = toupper(token[j]); } token = strtok(NULL, "\""); // : or :3} or :3, or :{ if (strstr(token, ":{")) { token = strtok(NULL, "\""); // Subtopic token = strtok(NULL, "\""); // : or :3} or :3, } if (strlen(token) > 1) { token++; p = strchr(token, ','); if (!p) { p = strchr(token, '}'); } i = p - token; token[i] = '\0'; // Value } else { token = strtok(NULL, "\""); // Value or , or } if ((token[0] == ',') || (token[0] == '}')) { // Empty parameter token = NULL; } } if (token == NULL) { svalue[0] = '\0'; } else { memcpy(svalue, token, strlen(token)+1); } } char* getStateText(byte state) { if (state > 2) { state = 1; } return sysCfg.state_text[state]; } /********************************************************************************************/ void mqtt_publish_sec(const char* topic, const char* data, boolean retained) { char log[TOPSZ + MESSZ]; if (sysCfg.flag.mqtt_enabled) { if (mqttClient.publish(topic, data, retained)) { snprintf_P(log, sizeof(log), PSTR("MQTT: %s = %s%s"), topic, data, (retained) ? " (retained)" : ""); // mqttClient.loop(); // Do not use here! Will block previous publishes } else { snprintf_P(log, sizeof(log), PSTR("RSLT: %s = %s"), topic, data); } } else { snprintf_P(log, sizeof(log), PSTR("RSLT: %s = %s"), strrchr(topic,'/')+1, data); } addLog(LOG_LEVEL_INFO, log); if (sysCfg.ledstate &0x04) { blinks++; } } void mqtt_publish(const char* topic, const char* data, boolean retained) { char *me; if (!strcmp(sysCfg.mqtt_prefix[0],sysCfg.mqtt_prefix[1])) { me = strstr(topic,sysCfg.mqtt_prefix[0]); if (me == topic) { mqtt_cmnd_publish += 8; } } mqtt_publish_sec(topic, data, retained); } void mqtt_publish(const char* topic, const char* data) { mqtt_publish(topic, data, false); } void mqtt_publish_topic_P(uint8_t prefix, const char* subtopic, const char* data, boolean retained) { char romram[16]; char stopic[TOPSZ]; snprintf_P(romram, sizeof(romram), ((prefix > 3) && !sysCfg.flag.mqtt_response) ? PSTR("RESULT") : subtopic); prefix &= 1; snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/%s"), sysCfg.mqtt_prefix[prefix +1], sysCfg.mqtt_topic, romram); mqtt_publish(stopic, data, retained); } void mqtt_publish_topic_P(uint8_t prefix, const char* subtopic, const char* data) { mqtt_publish_topic_P(prefix, subtopic, data, false); } void mqtt_publishPowerState(byte device) { char stopic[TOPSZ]; char sdevice[10]; char svalue[64]; // was MESSZ if ((device < 1) || (device > Maxdevice)) { device = 1; } snprintf_P(sdevice, sizeof(sdevice), PSTR("%d"), device); snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/%s"), sysCfg.mqtt_prefix[1], sysCfg.mqtt_topic, (sysCfg.flag.mqtt_response)?"POWER":"RESULT"); snprintf_P(svalue, sizeof(svalue), PSTR("{\"POWER%s\":\"%s\"}"), (Maxdevice > 1) ? sdevice : "", getStateText(bitRead(power, device -1))); mqtt_publish(stopic, svalue); json2legacy(stopic, svalue); mqtt_publish(stopic, svalue, sysCfg.flag.mqtt_power_retain); } void mqtt_publishPowerBlinkState(byte device) { char sdevice[10]; char svalue[64]; // was MESSZ if ((device < 1) || (device > Maxdevice)) { device = 1; } snprintf_P(sdevice, sizeof(sdevice), PSTR("%d"), device); snprintf_P(svalue, sizeof(svalue), PSTR("{\"POWER%s\":\"BLINK %s\"}"), (Maxdevice > 1) ? sdevice : "", getStateText(bitRead(blink_mask, device -1))); mqtt_publish_topic_P(4, PSTR("POWER"), svalue); } void mqtt_connected() { char stopic[TOPSZ]; char svalue[128]; // was MESSZ if (sysCfg.flag.mqtt_enabled) { // Satisfy iobroker (#299) snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/POWER"), sysCfg.mqtt_prefix[0], sysCfg.mqtt_topic); svalue[0] ='\0'; mqtt_publish(stopic, svalue); snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/#"), sysCfg.mqtt_prefix[0], sysCfg.mqtt_topic); mqttClient.subscribe(stopic); mqttClient.loop(); // Solve LmacRxBlk:1 messages snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/#"), sysCfg.mqtt_prefix[0], sysCfg.mqtt_grptopic); mqttClient.subscribe(stopic); mqttClient.loop(); // Solve LmacRxBlk:1 messages snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/#"), sysCfg.mqtt_prefix[0], MQTTClient); // Fall back topic mqttClient.subscribe(stopic); mqttClient.loop(); // Solve LmacRxBlk:1 messages #ifdef USE_DOMOTICZ domoticz_mqttSubscribe(); #endif // USE_DOMOTICZ } if (mqttflag) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Module\":\"%s\", \"Version\":\"%s\", \"FallbackTopic\":\"%s\", \"GroupTopic\":\"%s\"}"), my_module.name, Version, MQTTClient, sysCfg.mqtt_grptopic); mqtt_publish_topic_P(1, PSTR("INFO1"), svalue); #ifdef USE_WEBSERVER if (sysCfg.webserver) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"WebserverMode\":\"%s\", \"Hostname\":\"%s\", \"IPaddress\":\"%s\"}"), (2 == sysCfg.webserver) ? "Admin" : "User", Hostname, WiFi.localIP().toString().c_str()); mqtt_publish_topic_P(1, PSTR("INFO2"), svalue); } #endif // USE_WEBSERVER snprintf_P(svalue, sizeof(svalue), PSTR("{\"Started\":\"%s\"}"), (getResetReason() == "Exception") ? ESP.getResetInfo().c_str() : getResetReason().c_str()); mqtt_publish_topic_P(1, PSTR("INFO3"), svalue); if (sysCfg.tele_period) { tele_period = sysCfg.tele_period -9; } status_update_timer = 2; #ifdef USE_DOMOTICZ domoticz_setUpdateTimer(2); #endif // USE_DOMOTICZ } mqttflag = 0; } void mqtt_reconnect() { char stopic[TOPSZ]; char svalue[TOPSZ]; char log[LOGSZ]; mqttcounter = MQTT_RETRY_SECS; if (!sysCfg.flag.mqtt_enabled) { mqtt_connected(); return; } #ifdef USE_EMULATION UDP_Disconnect(); #endif // USE_EMULATION if (mqttflag > 1) { #ifdef USE_MQTT_TLS addLog_P(LOG_LEVEL_INFO, PSTR("MQTT: Verify TLS fingerprint...")); if (!espClient.connect(sysCfg.mqtt_host, sysCfg.mqtt_port)) { snprintf_P(log, sizeof(log), PSTR("MQTT: TLS Connect FAILED to %s:%d. Retry in %d seconds"), sysCfg.mqtt_host, sysCfg.mqtt_port, mqttcounter); addLog(LOG_LEVEL_DEBUG, log); return; } if (espClient.verify(sysCfg.mqtt_fingerprint, sysCfg.mqtt_host)) { addLog_P(LOG_LEVEL_INFO, PSTR("MQTT: Verified")); } else { addLog_P(LOG_LEVEL_DEBUG, PSTR("MQTT: Insecure connection due to invalid Fingerprint")); } #endif // USE_MQTT_TLS mqttClient.setCallback(mqttDataCb); mqttflag = 1; mqttcounter = 1; return; } addLog_P(LOG_LEVEL_INFO, PSTR("MQTT: Attempting connection...")); #ifndef USE_MQTT_TLS #ifdef USE_DISCOVERY #ifdef MQTT_HOST_DISCOVERY mdns_discoverMQTTServer(); #endif // MQTT_HOST_DISCOVERY #endif // USE_DISCOVERY #endif // USE_MQTT_TLS mqttClient.setServer(sysCfg.mqtt_host, sysCfg.mqtt_port); snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/LWT"), sysCfg.mqtt_prefix[2], sysCfg.mqtt_topic); snprintf_P(svalue, sizeof(svalue), PSTR("Offline")); if (mqttClient.connect(MQTTClient, sysCfg.mqtt_user, sysCfg.mqtt_pwd, stopic, 1, true, svalue)) { addLog_P(LOG_LEVEL_INFO, PSTR("MQTT: Connected")); mqttcounter = 0; snprintf_P(svalue, sizeof(svalue), PSTR("Online")); mqtt_publish(stopic, svalue, true); mqtt_connected(); } else { snprintf_P(log, sizeof(log), PSTR("MQTT: Connect FAILED to %s:%d, rc %d. Retry in %d seconds"), sysCfg.mqtt_host, sysCfg.mqtt_port, mqttClient.state(), mqttcounter); //status codes are documented here http://pubsubclient.knolleary.net/api.html#state addLog(LOG_LEVEL_INFO, log); } } /********************************************************************************************/ boolean mqtt_command(boolean grpflg, char *type, uint16_t index, char *dataBuf, uint16_t data_len, int16_t payload, char *svalue, uint16_t ssvalue) { boolean serviced = true; char stemp1[TOPSZ]; char stemp2[10]; uint16_t i; if (!strcmp_P(type,PSTR("MQTTHOST"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_host))) { strlcpy(sysCfg.mqtt_host, (1 == payload) ? MQTT_HOST : dataBuf, sizeof(sysCfg.mqtt_host)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"MqttHost\",\"%s\"}"), sysCfg.mqtt_host); } else if (!strcmp_P(type,PSTR("MQTTPORT"))) { if ((data_len > 0) && (payload > 0) && (payload < 32766)) { sysCfg.mqtt_port = (1 == payload) ? MQTT_PORT : payload; restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"MqttPort\":%d}"), sysCfg.mqtt_port); } else if (!strcmp_P(type,PSTR("MQTTRESPONSE"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { sysCfg.flag.mqtt_response = payload; } snprintf_P(svalue, ssvalue, PSTR("{\"MqttResponse\":\"%s\"}"), getStateText(sysCfg.flag.mqtt_response)); } else if (!strcmp_P(type,PSTR("STATETEXT")) && (index > 0) && (index <= 3)) { if ((data_len > 0) && (data_len < sizeof(sysCfg.state_text[0]))) { for(i = 0; i <= data_len; i++) { if (dataBuf[i] == ' ') { dataBuf[i] = '_'; } } strlcpy(sysCfg.state_text[index -1], dataBuf, sizeof(sysCfg.state_text[0])); } snprintf_P(svalue, ssvalue, PSTR("{\"StateText%d\":\"%s\"}"), index, getStateText(index -1)); } #ifdef USE_MQTT_TLS else if (!strcmp_P(type,PSTR("MQTTFINGERPRINT"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_fingerprint))) { strlcpy(sysCfg.mqtt_fingerprint, (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? MQTT_FINGERPRINT : dataBuf, sizeof(sysCfg.mqtt_fingerprint)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"MqttFingerprint\":\"%s\"}"), sysCfg.mqtt_fingerprint); } #endif else if (!grpflg && !strcmp_P(type,PSTR("MQTTCLIENT"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_client))) { strlcpy(sysCfg.mqtt_client, (1 == payload) ? MQTT_CLIENT_ID : dataBuf, sizeof(sysCfg.mqtt_client)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"MqttClient\":\"%s\"}"), sysCfg.mqtt_client); } else if (!strcmp_P(type,PSTR("MQTTUSER"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_user))) { strlcpy(sysCfg.mqtt_user, (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? MQTT_USER : dataBuf, sizeof(sysCfg.mqtt_user)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("[\"MqttUser\":\"%s\"}"), sysCfg.mqtt_user); } else if (!strcmp_P(type,PSTR("MQTTPASSWORD"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_pwd))) { strlcpy(sysCfg.mqtt_pwd, (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? MQTT_PASS : dataBuf, sizeof(sysCfg.mqtt_pwd)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"MqttPassword\":\"%s\"}"), sysCfg.mqtt_pwd); } else if (!strcmp_P(type,PSTR("PREFIX")) && (index > 0) && (index <= 3)) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_prefix[0]))) { for(i = 0; i <= data_len; i++) { if ((dataBuf[i] == '+') || (dataBuf[i] == '#') || (dataBuf[i] == ' ')) { dataBuf[i] = '_'; } } strlcpy(sysCfg.mqtt_prefix[index -1], (1 == payload) ? (1==index)?SUB_PREFIX:(2==index)?PUB_PREFIX:PUB_PREFIX2 : dataBuf, sizeof(sysCfg.mqtt_prefix[0])); // if (sysCfg.mqtt_prefix[index -1][strlen(sysCfg.mqtt_prefix[index -1])] == '/') sysCfg.mqtt_prefix[index -1][strlen(sysCfg.mqtt_prefix[index -1])] = 0; restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"Prefix%d\":\"%s\"}"), index, sysCfg.mqtt_prefix[index -1]); } else if (!strcmp_P(type,PSTR("GROUPTOPIC"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_grptopic))) { for(i = 0; i <= data_len; i++) { if ((dataBuf[i] == '/') || (dataBuf[i] == '+') || (dataBuf[i] == '#')) { dataBuf[i] = '_'; } } if (!strcmp(dataBuf, MQTTClient)) { payload = 1; } strlcpy(sysCfg.mqtt_grptopic, (1 == payload) ? MQTT_GRPTOPIC : dataBuf, sizeof(sysCfg.mqtt_grptopic)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"GroupTopic\":\"%s\"}"), sysCfg.mqtt_grptopic); } else if (!grpflg && !strcmp_P(type,PSTR("TOPIC"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.mqtt_topic))) { for(i = 0; i <= data_len; i++) { if ((dataBuf[i] == '/') || (dataBuf[i] == '+') || (dataBuf[i] == '#') || (dataBuf[i] == ' ')) { dataBuf[i] = '_'; } } if (!strcmp(dataBuf, MQTTClient)) { payload = 1; } strlcpy(sysCfg.mqtt_topic, (1 == payload) ? MQTT_TOPIC : dataBuf, sizeof(sysCfg.mqtt_topic)); restartflag = 2; } snprintf_P(svalue, ssvalue, PSTR("{\"Topic\":\"%s\"}"), sysCfg.mqtt_topic); } else if (!grpflg && !strcmp_P(type,PSTR("BUTTONTOPIC"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.button_topic))) { for(i = 0; i <= data_len; i++) { if ((dataBuf[i] == '/') || (dataBuf[i] == '+') || (dataBuf[i] == '#') || (dataBuf[i] == ' ')) { dataBuf[i] = '_'; } } if (!strcmp(dataBuf, MQTTClient)) { payload = 1; } strlcpy(sysCfg.button_topic, (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? sysCfg.mqtt_topic : dataBuf, sizeof(sysCfg.button_topic)); } snprintf_P(svalue, ssvalue, PSTR("{\"ButtonTopic\":\"%s\"}"), sysCfg.button_topic); } else if (!grpflg && !strcmp_P(type,PSTR("SWITCHTOPIC"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.switch_topic))) { for(i = 0; i <= data_len; i++) { if ((dataBuf[i] == '/') || (dataBuf[i] == '+') || (dataBuf[i] == '#') || (dataBuf[i] == ' ')) { dataBuf[i] = '_'; } } if (!strcmp(dataBuf, MQTTClient)) { payload = 1; } strlcpy(sysCfg.switch_topic, (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? sysCfg.mqtt_topic : dataBuf, sizeof(sysCfg.switch_topic)); } snprintf_P(svalue, ssvalue, PSTR("{\"SwitchTopic\":\"%s\"}"), sysCfg.switch_topic); } else if (!strcmp_P(type,PSTR("BUTTONRETAIN"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { strlcpy(sysCfg.button_topic, sysCfg.mqtt_topic, sizeof(sysCfg.button_topic)); if (!payload) { for(i = 1; i <= Maxdevice; i++) { send_button_power(0, i, 3); // Clear MQTT retain in broker } } sysCfg.flag.mqtt_button_retain = payload; } snprintf_P(svalue, ssvalue, PSTR("{\"ButtonRetain\":\"%s\"}"), getStateText(sysCfg.flag.mqtt_button_retain)); } else if (!strcmp_P(type,PSTR("SWITCHRETAIN"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { strlcpy(sysCfg.button_topic, sysCfg.mqtt_topic, sizeof(sysCfg.button_topic)); if (!payload) { for(i = 1; i <= 4; i++) { send_button_power(1, i, 3); // Clear MQTT retain in broker } } sysCfg.flag.mqtt_switch_retain = payload; } snprintf_P(svalue, ssvalue, PSTR("{\"SwitchRetain\":\"%s\"}"), getStateText(sysCfg.flag.mqtt_switch_retain)); } else if (!strcmp_P(type,PSTR("POWERRETAIN"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { if (!payload) { for(i = 1; i <= Maxdevice; i++) { // Clear MQTT retain in broker snprintf_P(stemp2, sizeof(stemp2), PSTR("%d"), i); snprintf_P(stemp1, sizeof(stemp1), PSTR("%s/%s/POWER%s"), sysCfg.mqtt_prefix[1], sysCfg.mqtt_topic, (Maxdevice > 1) ? stemp2 : ""); mqtt_publish(stemp1, "", sysCfg.flag.mqtt_power_retain); } } sysCfg.flag.mqtt_power_retain = payload; } snprintf_P(svalue, ssvalue, PSTR("{\"PowerRetain\":\"%s\"}"), getStateText(sysCfg.flag.mqtt_power_retain)); } else if (!strcmp_P(type,PSTR("SENSORRETAIN"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { if (!payload) { svalue[0] = '\0'; mqtt_publish_topic_P(1, PSTR("SENSOR"), svalue, sysCfg.flag.mqtt_sensor_retain); } sysCfg.flag.mqtt_sensor_retain = payload; } snprintf_P(svalue, ssvalue, PSTR("{\"SensorRetain\":\"%s\"}"), getStateText(sysCfg.flag.mqtt_sensor_retain)); } #ifdef USE_DOMOTICZ else if (domoticz_command(type, index, dataBuf, data_len, payload, svalue, ssvalue)) { // Serviced } #endif // USE_DOMOTICZ else { serviced = false; } return serviced; } /********************************************************************************************/ void mqttDataCb(char* topic, byte* data, unsigned int data_len) { char *str; if (!strcmp(sysCfg.mqtt_prefix[0],sysCfg.mqtt_prefix[1])) { str = strstr(topic,sysCfg.mqtt_prefix[0]); if ((str == topic) && mqtt_cmnd_publish) { if (mqtt_cmnd_publish > 8) { mqtt_cmnd_publish -= 8; } else { mqtt_cmnd_publish = 0; } return; } } char topicBuf[TOPSZ]; char dataBuf[data_len+1]; char dataBufUc[128]; char svalue[MESSZ]; char stemp1[TOPSZ]; char *p; char *mtopic = NULL; char *type = NULL; uint16_t i = 0; uint16_t grpflg = 0; uint16_t index; uint32_t address; strncpy(topicBuf, topic, sizeof(topicBuf)); memcpy(dataBuf, data, sizeof(dataBuf)); dataBuf[sizeof(dataBuf)-1] = 0; snprintf_P(svalue, sizeof(svalue), PSTR("RSLT: Receive topic %s, data size %d, data %s"), topicBuf, data_len, dataBuf); addLog(LOG_LEVEL_DEBUG_MORE, svalue); // if (LOG_LEVEL_DEBUG_MORE <= seriallog_level) Serial.println(dataBuf); #ifdef USE_DOMOTICZ if (sysCfg.flag.mqtt_enabled) { if (domoticz_mqttData(topicBuf, sizeof(topicBuf), dataBuf, sizeof(dataBuf))) { return; } } #endif // USE_DOMOTICZ memmove(topicBuf, topicBuf+strlen(sysCfg.mqtt_prefix[0]), sizeof(topicBuf)-strlen(sysCfg.mqtt_prefix[0])); // Remove SUB_PREFIX i = 0; for (str = strtok_r(topicBuf, "/", &p); str && i < 2; str = strtok_r(NULL, "/", &p)) { switch (i++) { case 0: // Topic / GroupTopic / DVES_123456 mtopic = str; break; case 1: // TopicIndex / Text type = str; } } if (!strcmp(mtopic, sysCfg.mqtt_grptopic)) { grpflg = 1; } index = 1; if (type != NULL) { for (i = 0; i < strlen(type); i++) { type[i] = toupper(type[i]); } while (isdigit(type[i-1])) { i--; } if (i < strlen(type)) { index = atoi(type +i); } type[i] = '\0'; } for (i = 0; i <= sizeof(dataBufUc); i++) { dataBufUc[i] = toupper(dataBuf[i]); } snprintf_P(svalue, sizeof(svalue), PSTR("RSLT: DataCb Topic %s, Group %d, Index %d, Type %s, Data %s (%s)"), mtopic, grpflg, index, type, dataBuf, dataBufUc); addLog(LOG_LEVEL_DEBUG, svalue); // snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/RESULT"), PUB_PREFIX, sysCfg.mqtt_topic); if (type != NULL) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Command\":\"Error\"}")); if (sysCfg.ledstate &0x02) { blinks++; } if (!strcmp(dataBufUc,"?")) { data_len = 0; } int16_t payload = atoi(dataBuf); // -32766 - 32767 uint16_t payload16 = atoi(dataBuf); // 0 - 65535 if (!strcmp_P(dataBufUc,PSTR("OFF")) || !strcmp_P(dataBufUc,PSTR("FALSE")) || !strcmp_P(dataBufUc,PSTR("STOP")) || !strcmp_P(dataBufUc,PSTR("CELSIUS"))) { payload = 0; } if (!strcmp_P(dataBufUc,PSTR("ON")) || !strcmp_P(dataBufUc,PSTR("TRUE")) || !strcmp_P(dataBufUc,PSTR("START")) || !strcmp_P(dataBufUc,PSTR("FAHRENHEIT")) || !strcmp_P(dataBufUc,PSTR("USER"))) { payload = 1; } if (!strcmp_P(dataBufUc,PSTR("TOGGLE")) || !strcmp_P(dataBufUc,PSTR("ADMIN"))) { payload = 2; } if (!strcmp_P(dataBufUc,PSTR("BLINK"))) { payload = 3; } if (!strcmp_P(dataBufUc,PSTR("BLINKOFF"))) { payload = 4; } if (!strcmp_P(type,PSTR("POWER")) && (index > 0) && (index <= Maxdevice)) { if ((0 == data_len) || (payload > 4)) { payload = 9; } do_cmnd_power(index, payload); return; } else if (!strcmp_P(type,PSTR("STATUS"))) { if ((0 == data_len) || (payload < 0) || (payload > MAX_STATUS)) { payload = 99; } publish_status(payload); return; } else if ((sysCfg.module != MOTOR) && !strcmp_P(type,PSTR("POWERONSTATE"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 4)) { sysCfg.poweronstate = payload; if (4 == sysCfg.poweronstate) { for(byte i = 1; i <= Maxdevice; i++) { do_cmnd_power(i, 1); } } } snprintf_P(svalue, sizeof(svalue), PSTR("{\"PowerOnState\":%d}"), sysCfg.poweronstate); } else if (!strcmp_P(type,PSTR("PULSETIME")) && (index > 0) && (index <= MAX_PULSETIMERS)) { if (data_len > 0) { sysCfg.pulsetime[index -1] = payload16; // 0 - 65535 pulse_timer[index -1] = 0; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"PulseTime%d\":%d}"), index, sysCfg.pulsetime[index -1]); } else if (!strcmp_P(type,PSTR("BLINKTIME"))) { if ((data_len > 0) && (payload > 2) && (payload <= 3600)) { sysCfg.blinktime = payload; if (blink_timer) { blink_timer = sysCfg.blinktime; } } snprintf_P(svalue, sizeof(svalue), PSTR("{\"BlinkTime\":%d}"), sysCfg.blinktime); } else if (!strcmp_P(type,PSTR("BLINKCOUNT"))) { if (data_len > 0) { sysCfg.blinkcount = payload16; // 0 - 65535 if (blink_counter) { blink_counter = sysCfg.blinkcount *2; } } snprintf_P(svalue, sizeof(svalue), PSTR("{\"BlinkCount\":%d}"), sysCfg.blinkcount); } else if ((SONOFF_LED == sysCfg.module) && sl_command(type, index, dataBufUc, data_len, payload, svalue, sizeof(svalue))) { // Serviced } else if (!strcmp_P(type,PSTR("SAVEDATA"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 3600)) { sysCfg.savedata = payload; savedatacounter = sysCfg.savedata; } if (sysCfg.flag.savestate) { sysCfg.power = power; } CFG_Save(); if (sysCfg.savedata > 1) { snprintf_P(stemp1, sizeof(stemp1), PSTR("Every %d seconds"), sysCfg.savedata); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"SaveData\":\"%s\"}"), (sysCfg.savedata > 1) ? stemp1 : getStateText(sysCfg.savedata)); } else if (!strcmp_P(type,PSTR("SAVESTATE"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { sysCfg.flag.savestate = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"SaveState\":\"%s\"}"), getStateText(sysCfg.flag.savestate)); } else if (!strcmp_P(type,PSTR("BUTTONRESTRICT"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { sysCfg.flag.button_restrict = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"ButtonRestrict\":\"%s\"}"), getStateText(sysCfg.flag.button_restrict)); } else if (!strcmp_P(type,PSTR("UNITS"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { sysCfg.flag.value_units = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Units\":\"%s\"}"), getStateText(sysCfg.flag.value_units)); } else if (!strcmp_P(type,PSTR("MQTT"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { sysCfg.flag.mqtt_enabled = payload; restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Mqtt\":\"%s\"}"), getStateText(sysCfg.flag.mqtt_enabled)); } else if (!strcmp_P(type,PSTR("TEMPUNIT"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 1)) { sysCfg.flag.temperature_conversion = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"TempUnit\":\"%s\"}"), (sysCfg.flag.temperature_conversion) ? "Fahrenheit" : "Celsius"); } else if (!strcmp_P(type,PSTR("TEMPRES"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 3)) { sysCfg.flag.temperature_resolution = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"TempRes\":%d}"), sysCfg.flag.temperature_resolution); } else if (!strcmp_P(type,PSTR("HUMRES"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 3)) { sysCfg.flag.humidity_resolution = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"HumRes\":%d}"), sysCfg.flag.humidity_resolution); } else if (!strcmp_P(type,PSTR("PRESSRES"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 3)) { sysCfg.flag.pressure_resolution = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"PressRes\":%d}"), sysCfg.flag.pressure_resolution); } else if (!strcmp_P(type,PSTR("ENERGYRES"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 5)) { sysCfg.flag.energy_resolution = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"EnergyRes\":%d}"), sysCfg.flag.energy_resolution); } else if (!strcmp_P(type,PSTR("MODULE"))) { if ((data_len > 0) && (payload > 0) && (payload <= MAXMODULE)) { payload--; byte new_modflg = (sysCfg.module != payload); sysCfg.module = payload; if (new_modflg) { for (byte i = 0; i < MAX_GPIO_PIN; i++) { sysCfg.my_module.gp.io[i] = 0; } setModuleFlashMode(0); } restartflag = 2; } snprintf_P(stemp1, sizeof(stemp1), modules[sysCfg.module].name); snprintf_P(svalue, sizeof(svalue), PSTR("{\"Module\":\"%d (%s)\"}"), sysCfg.module +1, stemp1); } else if (!strcmp_P(type,PSTR("MODULES"))) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Modules1\":\""), svalue); byte jsflg = 0; for (byte i = 0; i < MAXMODULE /2; i++) { if (jsflg) { snprintf_P(svalue, sizeof(svalue), PSTR("%s, "), svalue); } jsflg = 1; snprintf_P(stemp1, sizeof(stemp1), modules[i].name); snprintf_P(svalue, sizeof(svalue), PSTR("%s%d (%s)"), svalue, i +1, stemp1); } snprintf_P(svalue, sizeof(svalue), PSTR("%s\"}"), svalue); mqtt_publish_topic_P(4, type, svalue); snprintf_P(svalue, sizeof(svalue), PSTR("{\"Modules2\":\""), svalue); jsflg = 0; for (byte i = MAXMODULE /2; i < MAXMODULE; i++) { if (jsflg) { snprintf_P(svalue, sizeof(svalue), PSTR("%s, "), svalue); } jsflg = 1; snprintf_P(stemp1, sizeof(stemp1), modules[i].name); snprintf_P(svalue, sizeof(svalue), PSTR("%s%d (%s)"), svalue, i +1, stemp1); } snprintf_P(svalue, sizeof(svalue), PSTR("%s\"}"), svalue); } else if (!strcmp_P(type,PSTR("GPIO")) && (index < MAX_GPIO_PIN)) { mytmplt cmodule; memcpy_P(&cmodule, &modules[sysCfg.module], sizeof(cmodule)); if ((data_len > 0) && (GPIO_USER == cmodule.gp.io[index]) && (payload >= 0) && (payload < GPIO_SENSOR_END)) { for (byte i = 0; i < MAX_GPIO_PIN; i++) { if ((GPIO_USER == cmodule.gp.io[i]) && (sysCfg.my_module.gp.io[i] == payload)) { sysCfg.my_module.gp.io[i] = 0; } } sysCfg.my_module.gp.io[index] = payload; restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{"), svalue); byte jsflg = 0; for (byte i = 0; i < MAX_GPIO_PIN; i++) { if (GPIO_USER == cmodule.gp.io[i]) { if (jsflg) { snprintf_P(svalue, sizeof(svalue), PSTR("%s, "), svalue); } jsflg = 1; snprintf_P(stemp1, sizeof(stemp1), sensors[sysCfg.my_module.gp.io[i]]); snprintf_P(svalue, sizeof(svalue), PSTR("%s\"GPIO%d\":%d (%s)"), svalue, i, sysCfg.my_module.gp.io[i], stemp1); } } if (jsflg) { snprintf_P(svalue, sizeof(svalue), PSTR("%s}"), svalue); } else { snprintf_P(svalue, sizeof(svalue), PSTR("{\"GPIO\":\"Not supported\"}")); } } else if (!strcmp_P(type,PSTR("GPIOS"))) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"GPIOs1\":\""), svalue); byte jsflg = 0; for (byte i = 0; i < GPIO_SENSOR_END /2; i++) { if (jsflg) { snprintf_P(svalue, sizeof(svalue), PSTR("%s, "), svalue); } jsflg = 1; snprintf_P(stemp1, sizeof(stemp1), sensors[i]); snprintf_P(svalue, sizeof(svalue), PSTR("%s%d (%s)"), svalue, i, stemp1); } snprintf_P(svalue, sizeof(svalue), PSTR("%s\"}"), svalue); mqtt_publish_topic_P(4, type, svalue); snprintf_P(svalue, sizeof(svalue), PSTR("{\"GPIOs2\":\""), svalue); jsflg = 0; for (byte i = GPIO_SENSOR_END /2; i < GPIO_SENSOR_END; i++) { if (jsflg) { snprintf_P(svalue, sizeof(svalue), PSTR("%s, "), svalue); } jsflg = 1; snprintf_P(stemp1, sizeof(stemp1), sensors[i]); snprintf_P(svalue, sizeof(svalue), PSTR("%s%d (%s)"), svalue, i, stemp1); } snprintf_P(svalue, sizeof(svalue), PSTR("%s\"}"), svalue); } else if (!strcmp_P(type,PSTR("PWM")) && (index > pwm_idxoffset) && (index <= 5)) { if ((data_len > 0) && (payload >= 0) && (payload <= PWM_RANGE) && (pin[GPIO_PWM1 + index -1] < 99)) { sysCfg.pwmvalue[index -1] = payload; analogWrite(pin[GPIO_PWM1 + index -1], payload); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"PWM\":{")); bool first = true; for (byte i = 0; i < 5; i++) { if(pin[GPIO_PWM1 + i] < 99) { snprintf_P(svalue, sizeof(svalue), PSTR("%s%s\"PWM%d\":%d"), svalue, first ? "" : ", ", i+1, sysCfg.pwmvalue[i]); first = false; } } snprintf_P(svalue, sizeof(svalue), PSTR("%s}}"),svalue); } else if (!strcmp_P(type,PSTR("SLEEP"))) { if ((data_len > 0) && (payload >= 0) && (payload < 251)) { if ((!sysCfg.sleep && payload) || (sysCfg.sleep && !payload)) { restartflag = 2; } sysCfg.sleep = payload; sleep = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Sleep\":\"%d%s (%d%s)\"}"), sleep, (sysCfg.flag.value_units) ? " mS" : "", sysCfg.sleep, (sysCfg.flag.value_units) ? " mS" : ""); } else if (!strcmp_P(type,PSTR("FLASHMODE"))) { // 0 = QIO, 1 = QOUT, 2 = DIO, 3 = DOUT if ((data_len > 0) && (payload >= 0) && (payload <= 3)) { if (ESP.getFlashChipMode() != payload) { setFlashMode(0, payload &3); } } snprintf_P(svalue, sizeof(svalue), PSTR("{\"FlashMode\":%d}"), ESP.getFlashChipMode()); } else if (!strcmp_P(type,PSTR("UPGRADE")) || !strcmp_P(type,PSTR("UPLOAD"))) { if ((data_len > 0) && (1 == payload)) { otaflag = 3; snprintf_P(svalue, sizeof(svalue), PSTR("{\"Upgrade\":\"Version %s from %s\"}"), Version, sysCfg.otaUrl); } else { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Upgrade\":\"Option 1 to upgrade\"}")); } } else if (!strcmp_P(type,PSTR("OTAURL"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.otaUrl))) strlcpy(sysCfg.otaUrl, (1 == payload) ? OTA_URL : dataBuf, sizeof(sysCfg.otaUrl)); snprintf_P(svalue, sizeof(svalue), PSTR("{\"OtaUrl\":\"%s\"}"), sysCfg.otaUrl); } else if (!strcmp_P(type,PSTR("SERIALLOG"))) { if ((data_len > 0) && (payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) { sysCfg.seriallog_level = payload; seriallog_level = payload; seriallog_timer = 0; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"SerialLog\":\"%d (Active %d)\"}"), sysCfg.seriallog_level, seriallog_level); } else if (!strcmp_P(type,PSTR("SYSLOG"))) { if ((data_len > 0) && (payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) { sysCfg.syslog_level = payload; syslog_level = (sysCfg.flag.emulation) ? 0 : payload; syslog_timer = 0; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"SysLog\":\"%d (Active %d)\"}"), sysCfg.syslog_level, syslog_level); } else if (!strcmp_P(type,PSTR("LOGHOST"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.syslog_host))) { strlcpy(sysCfg.syslog_host, (1 == payload) ? SYS_LOG_HOST : dataBuf, sizeof(sysCfg.syslog_host)); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"LogHost\":\"%s\"}"), sysCfg.syslog_host); } else if (!strcmp_P(type,PSTR("LOGPORT"))) { if ((data_len > 0) && (payload > 0) && (payload < 32766)) { sysCfg.syslog_port = (1 == payload) ? SYS_LOG_PORT : payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"LogPort\":%d}"), sysCfg.syslog_port); } else if (!strcmp_P(type,PSTR("IPADDRESS")) && (index > 0) && (index <= 4)) { if (parseIP(&address, dataBuf)) { sysCfg.ip_address[index -1] = address; // restartflag = 2; } snprintf_P(stemp1, sizeof(stemp1), PSTR(" (%s)"), WiFi.localIP().toString().c_str()); snprintf_P(svalue, sizeof(svalue), PSTR("{\"IPAddress%d\":\"%s%s\"}"), index, IPAddress(sysCfg.ip_address[index -1]).toString().c_str(), (1 == index) ? stemp1:""); } else if (!strcmp_P(type,PSTR("NTPSERVER")) && (index > 0) && (index <= 3)) { if ((data_len > 0) && (data_len < sizeof(sysCfg.ntp_server[0]))) { strlcpy(sysCfg.ntp_server[index -1], (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? (1==index)?NTP_SERVER1:(2==index)?NTP_SERVER2:NTP_SERVER3 : dataBuf, sizeof(sysCfg.ntp_server[0])); for (i = 0; i < strlen(sysCfg.ntp_server[index -1]); i++) { if (sysCfg.ntp_server[index -1][i] == ',') { sysCfg.ntp_server[index -1][i] = '.'; } } restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"NtpServer%d\":\"%s\"}"), index, sysCfg.ntp_server[index -1]); } else if (!strcmp_P(type,PSTR("AP"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 2)) { switch (payload) { case 0: // Toggle sysCfg.sta_active ^= 1; break; case 1: // AP1 case 2: // AP2 sysCfg.sta_active = payload -1; } restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Ap\":\"%d (%s)\"}"), sysCfg.sta_active +1, sysCfg.sta_ssid[sysCfg.sta_active]); } else if (!strcmp_P(type,PSTR("SSID")) && (index > 0) && (index <= 2)) { if ((data_len > 0) && (data_len < sizeof(sysCfg.sta_ssid[0]))) { strlcpy(sysCfg.sta_ssid[index -1], (1 == payload) ? (1 == index) ? STA_SSID1 : STA_SSID2 : dataBuf, sizeof(sysCfg.sta_ssid[0])); sysCfg.sta_active = 0; restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"SSid%d\":\"%s\"}"), index, sysCfg.sta_ssid[index -1]); } else if (!strcmp_P(type,PSTR("PASSWORD")) && (index > 0) && (index <= 2)) { if ((data_len > 0) && (data_len < sizeof(sysCfg.sta_pwd[0]))) { strlcpy(sysCfg.sta_pwd[index -1], (1 == payload) ? (1 == index) ? STA_PASS1 : STA_PASS2 : dataBuf, sizeof(sysCfg.sta_pwd[0])); sysCfg.sta_active = 0; restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Password%d\":\"%s\"}"), index, sysCfg.sta_pwd[index -1]); } else if (!grpflg && !strcmp_P(type,PSTR("HOSTNAME"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.hostname))) { strlcpy(sysCfg.hostname, (1 == payload) ? WIFI_HOSTNAME : dataBuf, sizeof(sysCfg.hostname)); if (strstr(sysCfg.hostname,"%")) { strlcpy(sysCfg.hostname, WIFI_HOSTNAME, sizeof(sysCfg.hostname)); } restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Hostname\":\"%s\"}"), sysCfg.hostname); } else if (!strcmp_P(type,PSTR("WIFICONFIG"))) { if ((data_len > 0) && (payload >= WIFI_RESTART) && (payload < MAX_WIFI_OPTION)) { sysCfg.sta_config = payload; wificheckflag = sysCfg.sta_config; snprintf_P(stemp1, sizeof(stemp1), wificfg[sysCfg.sta_config]); snprintf_P(svalue, sizeof(svalue), PSTR("{\"WifiConfig\":\"%s selected\"}"), stemp1); if (WIFI_State() != WIFI_RESTART) { // snprintf_P(svalue, sizeof(svalue), PSTR("%s after restart"), svalue); restartflag = 2; } } else { snprintf_P(stemp1, sizeof(stemp1), wificfg[sysCfg.sta_config]); snprintf_P(svalue, sizeof(svalue), PSTR("{\"WifiConfig\":\"%d (%s)\"}"), sysCfg.sta_config, stemp1); } } else if (!strcmp_P(type,PSTR("FRIENDLYNAME")) && (index > 0) && (index <= 4)) { if ((data_len > 0) && (data_len < sizeof(sysCfg.friendlyname[0]))) { if (1 == index) { snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME)); } else { snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME "%d"), index); } strlcpy(sysCfg.friendlyname[index -1], (1 == payload) ? stemp1 : dataBuf, sizeof(sysCfg.friendlyname[index -1])); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"FriendlyName%d\":\"%s\"}"), index, sysCfg.friendlyname[index -1]); } else if (swt_flg && !strcmp_P(type,PSTR("SWITCHMODE")) && (index > 0) && (index <= 4)) { if ((data_len > 0) && (payload >= 0) && (payload < MAX_SWITCH_OPTION)) { sysCfg.switchmode[index -1] = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"SwitchMode%d\":%d}"), index, sysCfg.switchmode[index-1]); } #ifdef USE_WEBSERVER else if (!strcmp_P(type,PSTR("WEBSERVER"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 2)) { sysCfg.webserver = payload; } if (sysCfg.webserver) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Webserver\":\"Active for %s on %s with IP address %s\"}"), (2 == sysCfg.webserver) ? "ADMIN" : "USER", Hostname, WiFi.localIP().toString().c_str()); } else { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Webserver\":\"%s\"}"), getStateText(0)); } } else if (!strcmp_P(type,PSTR("WEBPASSWORD"))) { if ((data_len > 0) && (data_len < sizeof(sysCfg.web_password))) { strlcpy(sysCfg.web_password, (!strcmp(dataBuf,"0")) ? "" : (1 == payload) ? WEB_PASSWORD : dataBuf, sizeof(sysCfg.web_password)); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"WebPassword\":\"%s\"}"), sysCfg.web_password); } else if (!strcmp_P(type,PSTR("WEBLOG"))) { if ((data_len > 0) && (payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) { sysCfg.weblog_level = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"WebLog\":%d}"), sysCfg.weblog_level); } #ifdef USE_EMULATION else if (!strcmp_P(type,PSTR("EMULATION"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 2)) { sysCfg.flag.emulation = payload; restartflag = 2; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Emulation\":%d}"), sysCfg.flag.emulation); } #endif // USE_EMULATION #endif // USE_WEBSERVER else if (!strcmp_P(type,PSTR("TELEPERIOD"))) { if ((data_len > 0) && (payload >= 0) && (payload < 3601)) { sysCfg.tele_period = (1 == payload) ? TELE_PERIOD : payload; if ((sysCfg.tele_period > 0) && (sysCfg.tele_period < 10)) { sysCfg.tele_period = 10; // Do not allow periods < 10 seconds } tele_period = sysCfg.tele_period; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"TelePeriod\":\"%d%s\"}"), sysCfg.tele_period, (sysCfg.flag.value_units) ? " Sec" : ""); } else if (!strcmp_P(type,PSTR("RESTART"))) { switch (payload) { case 1: restartflag = 2; snprintf_P(svalue, sizeof(svalue), PSTR("{\"Restart\":\"Restarting\"}")); break; case 99: addLog_P(LOG_LEVEL_INFO, PSTR("APP: Restarting")); ESP.restart(); break; default: snprintf_P(svalue, sizeof(svalue), PSTR("{\"Restart\":\"1 to restart\"}")); } } else if (!strcmp_P(type,PSTR("RESET"))) { switch (payload) { case 1: restartflag = 211; snprintf_P(svalue, sizeof(svalue), PSTR("{\"Reset\":\"Reset and Restarting\"}")); break; case 2: restartflag = 212; snprintf_P(svalue, sizeof(svalue), PSTR("{\"Reset\":\"Erase, Reset and Restarting\"}")); break; default: snprintf_P(svalue, sizeof(svalue), PSTR("{\"Reset\":\"1 to reset\"}")); } } else if (!strcmp_P(type,PSTR("TIMEZONE"))) { if ((data_len > 0) && (((payload >= -12) && (payload <= 12)) || (99 == payload))) { sysCfg.timezone = payload; } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Timezone\":%d}"), sysCfg.timezone); } else if (!strcmp_P(type,PSTR("LEDPOWER"))) { if ((data_len > 0) && (payload >= 0) && (payload <= 2)) { sysCfg.ledstate &= 8; switch (payload) { case 0: // Off case 1: // On sysCfg.ledstate = payload << 3; break; case 2: // Toggle sysCfg.ledstate ^= 8; break; } blinks = 0; setLed(sysCfg.ledstate &8); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"LedPower\":\"%s\"}"), getStateText(bitRead(sysCfg.ledstate, 3))); } else if (!strcmp_P(type,PSTR("LEDSTATE"))) { if ((data_len > 0) && (payload >= 0) && (payload < MAX_LED_OPTION)) { sysCfg.ledstate = payload; if (!sysCfg.ledstate) { setLed(0); } } snprintf_P(svalue, sizeof(svalue), PSTR("{\"LedState\":%d}"), sysCfg.ledstate); } else if (!strcmp_P(type,PSTR("CFGDUMP"))) { uint16_t srow = 0; uint16_t mrow = 0; if (data_len > 0) { srow = payload16; byte i = 0; while (isdigit(dataBuf[i])) { i++; } if (i < strlen(dataBuf)) { mrow = atoi(dataBuf +i); } if (0 == mrow) { mrow = payload16; srow = 0; } } CFG_Dump(srow, mrow); snprintf_P(svalue, sizeof(svalue), PSTR("{\"CfgDump\":\"Done\"}")); } else if (sysCfg.flag.mqtt_enabled && mqtt_command(grpflg, type, index, dataBuf, data_len, payload, svalue, sizeof(svalue))) { // Serviced } else if (hlw_flg && hlw_command(type, index, dataBuf, data_len, payload, svalue, sizeof(svalue))) { // Serviced } #ifdef USE_I2C else if (i2c_flg && !strcmp_P(type,PSTR("I2CSCAN"))) { i2c_scan(svalue, sizeof(svalue)); } #endif // USE_I2C #ifdef USE_WS2812 else if ((pin[GPIO_WS2812] < 99) && ws2812_command(type, index, dataBuf, data_len, payload, svalue, sizeof(svalue))) { // Serviced } #endif // USE_WS2812 #ifdef USE_IR_REMOTE else if ((pin[GPIO_IRSEND] < 99) && ir_send_command(type, index, dataBufUc, data_len, payload, svalue, sizeof(svalue))) { // Serviced } #endif // USE_IR_REMOTE #ifdef DEBUG_THEO else if (!strcmp_P(type,PSTR("EXCEPTION"))) { if (data_len > 0) { exception_tst(payload); } snprintf_P(svalue, sizeof(svalue), PSTR("{\"Exception\":\"Triggered\"}")); } #endif // DEBUG_THEO else { type = NULL; } } if (type == NULL) { blinks = 201; snprintf_P(topicBuf, sizeof(topicBuf), PSTR("COMMAND")); snprintf_P(svalue, sizeof(svalue), PSTR("{\"Command\":\"Unknown\"}")); type = (char*)topicBuf; } mqtt_publish_topic_P(4, type, svalue); } /********************************************************************************************/ void send_button_power(byte key, byte device, byte state) { // key 0 = button_topic // key 1 = switch_topic char stopic[TOPSZ]; char svalue[TOPSZ]; char stemp1[10]; if (!key && (device > Maxdevice)) { device = 1; } snprintf_P(stemp1, sizeof(stemp1), PSTR("%d"), device); snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/POWER%s"), sysCfg.mqtt_prefix[0], (key) ? sysCfg.switch_topic : sysCfg.button_topic, (key || (Maxdevice > 1)) ? stemp1 : ""); if (3 == state) { svalue[0] = '\0'; } else { if (!strcmp(sysCfg.mqtt_topic,(key) ? sysCfg.switch_topic : sysCfg.button_topic) && (2 == state)) { state = ~(power >> (device -1)) & 0x01; } snprintf_P(svalue, sizeof(svalue), PSTR("%s"), getStateText(state)); } #ifdef USE_DOMOTICZ if (!(domoticz_button(key, device, state, strlen(svalue)))) { mqtt_publish_sec(stopic, svalue, (key) ? sysCfg.flag.mqtt_switch_retain : sysCfg.flag.mqtt_button_retain); } #else mqtt_publish_sec(stopic, svalue, (key) ? sysCfg.flag.mqtt_switch_retain : sysCfg.flag.mqtt_button_retain); #endif // USE_DOMOTICZ } void do_cmnd_power(byte device, byte state) { // device = Relay number 1 and up // state 0 = Relay Off // state 1 = Relay on (turn off after sysCfg.pulsetime * 100 mSec if enabled) // state 2 = Toggle relay // state 3 = Blink relay // state 4 = Stop blinking relay // state 9 = Show power state if ((device < 1) || (device > Maxdevice)) { device = 1; } byte mask = 0x01 << (device -1); pulse_timer[(device -1)&3] = 0; if (state <= 2) { if ((blink_mask & mask)) { blink_mask &= (0xFF ^ mask); // Clear device mask mqtt_publishPowerBlinkState(device); } switch (state) { case 0: { // Off power &= (0xFF ^ mask); break; } case 1: // On power |= mask; break; case 2: // Toggle power ^= mask; } setRelay(power); #ifdef USE_DOMOTICZ domoticz_updatePowerState(device); #endif // USE_DOMOTICZ pulse_timer[(device -1)&3] = (power & mask) ? sysCfg.pulsetime[(device -1)&3] : 0; } else if (3 == state) { // Blink if (!(blink_mask & mask)) { blink_powersave = (blink_powersave & (0xFF ^ mask)) | (power & mask); // Save state blink_power = (power >> (device -1))&1; // Prep to Toggle } blink_timer = 1; blink_counter = ((!sysCfg.blinkcount) ? 64000 : (sysCfg.blinkcount *2)) +1; blink_mask |= mask; // Set device mask mqtt_publishPowerBlinkState(device); return; } else if (4 == state) { // No Blink byte flag = (blink_mask & mask); blink_mask &= (0xFF ^ mask); // Clear device mask mqtt_publishPowerBlinkState(device); if (flag) { do_cmnd_power(device, (blink_powersave >> (device -1))&1); // Restore state } return; } mqtt_publishPowerState(device); } void stop_all_power_blink() { byte mask; for (byte i = 1; i <= Maxdevice; i++) { mask = 0x01 << (i -1); if (blink_mask & mask) { blink_mask &= (0xFF ^ mask); // Clear device mask mqtt_publishPowerBlinkState(i); do_cmnd_power(i, (blink_powersave >> (i -1))&1); // Restore state } } } void do_cmnd(char *cmnd) { char stopic[TOPSZ]; char svalue[128]; char *start; char *token; token = strtok(cmnd, " "); if (token != NULL) { start = strrchr(token, '/'); // Skip possible cmnd/sonoff/ preamble if (start) { token = start; } } snprintf_P(stopic, sizeof(stopic), PSTR("%s/%s/%s"), sysCfg.mqtt_prefix[0], sysCfg.mqtt_topic, token); token = strtok(NULL, ""); snprintf_P(svalue, sizeof(svalue), PSTR("%s"), (token == NULL) ? "" : token); mqttDataCb(stopic, (byte*)svalue, strlen(svalue)); } void publish_status(uint8_t payload) { char svalue[MESSZ]; uint8_t option = 0; // Workaround MQTT - TCP/IP stack queueing when SUB_PREFIX = PUB_PREFIX option = (!strcmp(sysCfg.mqtt_prefix[0],sysCfg.mqtt_prefix[1]) && (!payload)); if ((!sysCfg.flag.mqtt_enabled) && (6 == payload)) { payload = 99; } if ((!hlw_flg) && ((8 == payload) || (9 == payload))) { payload = 99; } if ((0 == payload) || (99 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"Status\":{\"Module\":%d, \"FriendlyName\":\"%s\", \"Topic\":\"%s\", \"ButtonTopic\":\"%s\", \"Power\":%d, \"PowerOnState\":%d, \"LedState\":%d, \"SaveData\":%d, \"SaveState\":%d, \"ButtonRetain\":%d, \"PowerRetain\":%d}}"), sysCfg.module +1, sysCfg.friendlyname[0], sysCfg.mqtt_topic, sysCfg.button_topic, power, sysCfg.poweronstate, sysCfg.ledstate, sysCfg.savedata, sysCfg.flag.savestate, sysCfg.flag.mqtt_button_retain, sysCfg.flag.mqtt_power_retain); mqtt_publish_topic_P(option, PSTR("STATUS"), svalue); } if ((0 == payload) || (1 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusPRM\":{\"Baudrate\":%d, \"GroupTopic\":\"%s\", \"OtaUrl\":\"%s\", \"Uptime\":%d, \"Sleep\":%d, \"BootCount\":%d, \"SaveCount\":%d}}"), Baudrate, sysCfg.mqtt_grptopic, sysCfg.otaUrl, uptime, sysCfg.sleep, sysCfg.bootcount, sysCfg.saveFlag); mqtt_publish_topic_P(option, PSTR("STATUS1"), svalue); } if ((0 == payload) || (2 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusFWR\":{\"Program\":\"%s\", \"BuildDateTime\":\"%s\", \"Boot\":%d, \"Core\":\"%s\", \"SDK\":\"%s\"}}"), Version, getBuildDateTime().c_str(), ESP.getBootVersion(), ESP.getCoreVersion().c_str(), ESP.getSdkVersion()); mqtt_publish_topic_P(option, PSTR("STATUS2"), svalue); } if ((0 == payload) || (3 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusLOG\":{\"Seriallog\":%d, \"Weblog\":%d, \"Syslog\":%d, \"LogHost\":\"%s\", \"SSId1\":\"%s\", \"SSId2\":\"%s\", \"TelePeriod\":%d}}"), sysCfg.seriallog_level, sysCfg.weblog_level, sysCfg.syslog_level, sysCfg.syslog_host, sysCfg.sta_ssid[0], sysCfg.sta_ssid[1], sysCfg.tele_period); mqtt_publish_topic_P(option, PSTR("STATUS3"), svalue); } if ((0 == payload) || (4 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusMEM\":{\"ProgramSize\":%d, \"Free\":%d, \"Heap\":%d, \"ProgramFlashSize\":%d, \"FlashSize\":%d, \"FlashMode\":%d}}"), ESP.getSketchSize()/1024, ESP.getFreeSketchSpace()/1024, ESP.getFreeHeap()/1024, ESP.getFlashChipSize()/1024, ESP.getFlashChipRealSize()/1024, ESP.getFlashChipMode()); mqtt_publish_topic_P(option, PSTR("STATUS4"), svalue); } if ((0 == payload) || (5 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusNET\":{\"Host\":\"%s\", \"IP\":\"%s\", \"Gateway\":\"%s\", \"Subnetmask\":\"%s\", \"DNSServer\":\"%s\", \"Mac\":\"%s\", \"Webserver\":%d, \"WifiConfig\":%d}}"), Hostname, WiFi.localIP().toString().c_str(), IPAddress(sysCfg.ip_address[1]).toString().c_str(), IPAddress(sysCfg.ip_address[2]).toString().c_str(), IPAddress(sysCfg.ip_address[3]).toString().c_str(), WiFi.macAddress().c_str(), sysCfg.webserver, sysCfg.sta_config); mqtt_publish_topic_P(option, PSTR("STATUS5"), svalue); } if (((0 == payload) || (6 == payload)) && sysCfg.flag.mqtt_enabled) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusMQT\":{\"Host\":\"%s\", \"Port\":%d, \"ClientMask\":\"%s\", \"Client\":\"%s\", \"User\":\"%s\", \"MAX_PACKET_SIZE\":%d, \"KEEPALIVE\":%d}}"), sysCfg.mqtt_host, sysCfg.mqtt_port, sysCfg.mqtt_client, MQTTClient, sysCfg.mqtt_user, MQTT_MAX_PACKET_SIZE, MQTT_KEEPALIVE); mqtt_publish_topic_P(option, PSTR("STATUS6"), svalue); } if ((0 == payload) || (7 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusTIM\":{\"UTC\":\"%s\", \"Local\":\"%s\", \"StartDST\":\"%s\", \"EndDST\":\"%s\", \"Timezone\":%d}}"), rtc_time(0).c_str(), rtc_time(1).c_str(), rtc_time(2).c_str(), rtc_time(3).c_str(), sysCfg.timezone); mqtt_publish_topic_P(option, PSTR("STATUS7"), svalue); } if (hlw_flg) { if ((0 == payload) || (8 == payload)) { hlw_mqttStatus(svalue, sizeof(svalue)); mqtt_publish_topic_P(option, PSTR("STATUS8"), svalue); } if ((0 == payload) || (9 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusPTH\":{\"PowerLow\":%d, \"PowerHigh\":%d, \"VoltageLow\":%d, \"VoltageHigh\":%d, \"CurrentLow\":%d, \"CurrentHigh\":%d}}"), sysCfg.hlw_pmin, sysCfg.hlw_pmax, sysCfg.hlw_umin, sysCfg.hlw_umax, sysCfg.hlw_imin, sysCfg.hlw_imax); mqtt_publish_topic_P(option, PSTR("STATUS9"), svalue); } } if ((0 == payload) || (10 == payload)) { uint8_t djson = 0; snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusSNS\":")); sensors_mqttPresent(svalue, sizeof(svalue), &djson); snprintf_P(svalue, sizeof(svalue), PSTR("%s}"), svalue); mqtt_publish_topic_P(option, PSTR("STATUS10"), svalue); } if ((0 == payload) || (11 == payload)) { snprintf_P(svalue, sizeof(svalue), PSTR("{\"StatusSTS\":")); state_mqttPresent(svalue, sizeof(svalue)); snprintf_P(svalue, sizeof(svalue), PSTR("%s}"), svalue); mqtt_publish_topic_P(option, PSTR("STATUS11"), svalue); } } void state_mqttPresent(char* svalue, uint16_t ssvalue) { char stemp1[8]; snprintf_P(svalue, ssvalue, PSTR("%s{\"Time\":\"%s\", \"Uptime\":%d"), svalue, getDateTime().c_str(), uptime); #ifdef USE_ADC_VCC dtostrf((double)ESP.getVcc()/1000, 1, 3, stemp1); snprintf_P(svalue, ssvalue, PSTR("%s, \"Vcc\":%s"), svalue, stemp1); #endif for (byte i = 0; i < Maxdevice; i++) { if (1 == Maxdevice) { // Legacy snprintf_P(svalue, ssvalue, PSTR("%s, \"POWER\":"), svalue); } else { snprintf_P(svalue, ssvalue, PSTR("%s, \"POWER%d\":"), svalue, i +1); } snprintf_P(svalue, ssvalue, PSTR("%s\"%s\""), svalue, getStateText(bitRead(power, i))); } snprintf_P(svalue, ssvalue, PSTR("%s, \"Wifi\":{\"AP\":%d, \"SSID\":\"%s\", \"RSSI\":%d, \"APMac\":\"%s\"}}"), svalue, sysCfg.sta_active +1, sysCfg.sta_ssid[sysCfg.sta_active], WIFI_getRSSIasQuality(WiFi.RSSI()), WiFi.BSSIDstr().c_str()); } void sensors_mqttPresent(char* svalue, uint16_t ssvalue, uint8_t* djson) { snprintf_P(svalue, ssvalue, PSTR("%s{\"Time\":\"%s\""), svalue, getDateTime().c_str()); for (byte i = 0; i < 4; i++) { if (pin[GPIO_SWT1 +i] < 99) { boolean swm = ((FOLLOW_INV == sysCfg.switchmode[i]) || (PUSHBUTTON_INV == sysCfg.switchmode[i])); snprintf_P(svalue, ssvalue, PSTR("%s, \"Switch%d\":\"%s\""), svalue, i +1, getStateText(swm ^ lastwallswitch[i])); *djson = 1; } } #ifndef USE_ADC_VCC if (pin[GPIO_ADC0] < 99) { snprintf_P(svalue, ssvalue, PSTR("%s, \"AnalogInput0\":%d"), svalue, analogRead(A0)); *djson = 1; } #endif if (SONOFF_SC == sysCfg.module) { sc_mqttPresent(svalue, ssvalue, djson); } if (pin[GPIO_DSB] < 99) { #ifdef USE_DS18B20 dsb_mqttPresent(svalue, ssvalue, djson); #endif // USE_DS18B20 #ifdef USE_DS18x20 ds18x20_mqttPresent(svalue, ssvalue, djson); #endif // USE_DS18x20 } #ifdef USE_DHT if (dht_flg) { dht_mqttPresent(svalue, ssvalue, djson); } #endif // USE_DHT #ifdef USE_I2C if (i2c_flg) { #ifdef USE_SHT sht_mqttPresent(svalue, ssvalue, djson); #endif // USE_SHT #ifdef USE_HTU htu_mqttPresent(svalue, ssvalue, djson); #endif // USE_HTU #ifdef USE_BMP bmp_mqttPresent(svalue, ssvalue, djson); #endif // USE_BMP #ifdef USE_BH1750 bh1750_mqttPresent(svalue, ssvalue, djson); #endif // USE_BH1750 } #endif // USE_I2C if (strstr_P(svalue, PSTR("Temperature"))) { snprintf_P(svalue, ssvalue, PSTR("%s, \"TempUnit\":\"%c\""), svalue, tempUnit()); } snprintf_P(svalue, ssvalue, PSTR("%s}"), svalue); } /********************************************************************************************/ void every_second() { char svalue[MESSZ]; if (blockgpio0) { blockgpio0--; } for (byte i = 0; i < MAX_PULSETIMERS; i++) { if (pulse_timer[i] > 111) { pulse_timer[i]--; } } if (seriallog_timer) { seriallog_timer--; if (!seriallog_timer) { if (seriallog_level) { addLog_P(LOG_LEVEL_INFO, PSTR("APP: Serial logging disabled")); } seriallog_level = 0; } } if (syslog_timer) { // Restore syslog level syslog_timer--; if (!syslog_timer) { syslog_level = (sysCfg.flag.emulation) ? 0 : sysCfg.syslog_level; if (sysCfg.syslog_level) { addLog_P(LOG_LEVEL_INFO, PSTR("SYSL: Syslog logging re-enabled")); // Might trigger disable again (on purpose) } } } #ifdef USE_DOMOTICZ domoticz_mqttUpdate(); #endif // USE_DOMOTICZ if (status_update_timer) { status_update_timer--; if (!status_update_timer) { for (byte i = 1; i <= Maxdevice; i++) { mqtt_publishPowerState(i); } } } if (sysCfg.tele_period) { tele_period++; if (tele_period == sysCfg.tele_period -1) { if (pin[GPIO_DSB] < 99) { #ifdef USE_DS18B20 dsb_readTempPrep(); #endif // USE_DS18B20 #ifdef USE_DS18x20 ds18x20_search(); // Check for changes in sensors number ds18x20_convert(); // Start Conversion, takes up to one second #endif // USE_DS18x20 } #ifdef USE_DHT if (dht_flg) { dht_readPrep(); } #endif // USE_DHT #ifdef USE_I2C if (i2c_flg) { #ifdef USE_SHT sht_detect(); #endif // USE_SHT #ifdef USE_HTU htu_detect(); #endif // USE_HTU #ifdef USE_BMP bmp_detect(); #endif // USE_BMP #ifdef USE_BH1750 bh1750_detect(); #endif // USE_BH1750 } #endif // USE_I2C } if (tele_period >= sysCfg.tele_period) { tele_period = 0; svalue[0] = '\0'; state_mqttPresent(svalue, sizeof(svalue)); mqtt_publish_topic_P(1, PSTR("STATE"), svalue); uint8_t djson = 0; svalue[0] = '\0'; sensors_mqttPresent(svalue, sizeof(svalue), &djson); if (djson) { mqtt_publish_topic_P(1, PSTR("SENSOR"), svalue, sysCfg.flag.mqtt_sensor_retain); } if (hlw_flg) { hlw_mqttPresent(); } } } if (hlw_flg) { hlw_margin_chk(); } if ((2 == rtcTime.Minute) && uptime_flg) { uptime_flg = false; uptime++; snprintf_P(svalue, sizeof(svalue), PSTR("{\"Time\":\"%s\", \"Uptime\":%d}"), getDateTime().c_str(), uptime); mqtt_publish_topic_P(1, PSTR("UPTIME"), svalue); } if ((3 == rtcTime.Minute) && !uptime_flg) { uptime_flg = true; } } void stateloop() { uint8_t button = NOT_PRESSED; uint8_t flag; uint8_t switchflag; uint8_t power_now; char scmnd[20]; char log[LOGSZ]; char svalue[80]; // was MESSZ timerxs = millis() + (1000 / STATES); state++; if (STATES == state) { // Every second state = 0; every_second(); } if (mqtt_cmnd_publish) { mqtt_cmnd_publish--; // Clean up } if (latching_relay_pulse) { latching_relay_pulse--; if (!latching_relay_pulse) { setLatchingRelay(0, 0); } } for (byte i = 0; i < MAX_PULSETIMERS; i++) if ((pulse_timer[i] > 0) && (pulse_timer[i] < 112)) { pulse_timer[i]--; if (!pulse_timer[i]) { do_cmnd_power(i +1, 0); } } if (blink_mask) { blink_timer--; if (!blink_timer) { blink_timer = sysCfg.blinktime; blink_counter--; if (!blink_counter) { stop_all_power_blink(); } else { blink_power ^= 1; power_now = (power & (0xFF ^ blink_mask)) | ((blink_power) ? blink_mask : 0); setRelay(power_now); } } } if (SONOFF_LED == sysCfg.module) { sl_animate(); } #ifdef USE_WS2812 if (pin[GPIO_WS2812] < 99) { ws2812_animate(); } #endif // USE_WS2812 if ((SONOFF_DUAL == sysCfg.module) || (CH4 == sysCfg.module)) { if (ButtonCode) { snprintf_P(log, sizeof(log), PSTR("APP: Button code %04X"), ButtonCode); addLog(LOG_LEVEL_DEBUG, log); button = PRESSED; if (0xF500 == ButtonCode) { holdcount = (STATES *4) -1; } ButtonCode = 0; } else { button = NOT_PRESSED; } } else { if ((pin[GPIO_KEY1] < 99) && !blockgpio0) { button = digitalRead(pin[GPIO_KEY1]); } } if ((PRESSED == button) && (NOT_PRESSED == lastbutton[0])) { multipress = (multiwindow) ? multipress +1 : 1; snprintf_P(log, sizeof(log), PSTR("APP: Multipress %d"), multipress); addLog(LOG_LEVEL_DEBUG, log); blinks = 201; multiwindow = STATES /2; // 1/2 second multi press window } lastbutton[0] = button; if (NOT_PRESSED == button) { holdcount = 0; } else { holdcount++; if (!sysCfg.flag.button_restrict && ((STATES *4) == holdcount)) { // 4 seconds button hold snprintf_P(scmnd, sizeof(scmnd), PSTR("reset 1")); multipress = 0; do_cmnd(scmnd); } } if (multiwindow) { multiwindow--; } else { if ((!restartflag) && (!holdcount) && (multipress > 0) && (multipress < MAX_BUTTON_COMMANDS +3)) { if ((SONOFF_DUAL == sysCfg.module) || (CH4 == sysCfg.module)) { flag = ((1 == multipress) || (2 == multipress)); } else { flag = (1 == multipress); } if (flag && sysCfg.flag.mqtt_enabled && mqttClient.connected() && (strlen(sysCfg.button_topic) != 0) && strcmp(sysCfg.button_topic, "0")) { send_button_power(0, multipress, 2); // Execute command via MQTT using ButtonTopic to sync external clients } else { if ((1 == multipress) || (2 == multipress)) { if (WIFI_State()) { // WPSconfig, Smartconfig or Wifimanager active restartflag = 1; } else { do_cmnd_power(multipress, 2); // Execute command internally } } else { if (!sysCfg.flag.button_restrict) { snprintf_P(scmnd, sizeof(scmnd), commands[multipress -3]); do_cmnd(scmnd); } } } multipress = 0; } } for (byte i = 1; i < Maxdevice; i++) { if (pin[GPIO_KEY1 +i] < 99) { button = digitalRead(pin[GPIO_KEY1 +i]); if ((PRESSED == button) && (NOT_PRESSED == lastbutton[i])) { if (sysCfg.flag.mqtt_enabled && mqttClient.connected() && (strlen(sysCfg.button_topic) != 0) && strcmp(sysCfg.button_topic, "0")) { send_button_power(0, i +1, 2); // Execute commend via MQTT } else { do_cmnd_power(i +1, 2); // Execute command internally } } lastbutton[i] = button; } } for (byte i = 0; i < 4; i++) { if (pin[GPIO_SWT1 +i] < 99) { button = digitalRead(pin[GPIO_SWT1 +i]); if (button != lastwallswitch[i]) { switchflag = 3; switch (sysCfg.switchmode[i]) { case TOGGLE: switchflag = 2; // Toggle break; case FOLLOW: switchflag = button & 0x01; // Follow wall switch state break; case FOLLOW_INV: switchflag = ~button & 0x01; // Follow inverted wall switch state break; case PUSHBUTTON: if ((PRESSED == button) && (NOT_PRESSED == lastwallswitch[i])) { switchflag = 2; // Toggle with pushbutton to Gnd } break; case PUSHBUTTON_INV: if ((NOT_PRESSED == button) && (PRESSED == lastwallswitch[i])) { switchflag = 2; // Toggle with releasing pushbutton from Gnd } } if (switchflag < 3) { if (sysCfg.flag.mqtt_enabled && mqttClient.connected() && (strlen(sysCfg.switch_topic) != 0) && strcmp(sysCfg.switch_topic, "0")) { send_button_power(1, i +1, switchflag); // Execute commend via MQTT } else { do_cmnd_power(i +1, switchflag); // Execute command internally (if i < Maxdevice) } } lastwallswitch[i] = button; } } } if (!(state % ((STATES/10)*2))) { if (blinks || restartflag || otaflag) { if (restartflag || otaflag) { blinkstate = 1; // Stay lit } else { blinkstate ^= 1; // Blink } if ((!(sysCfg.ledstate &0x08)) && ((sysCfg.ledstate &0x06) || (blinks > 200) || (blinkstate))) { setLed(blinkstate); } if (!blinkstate) { blinks--; if (200 == blinks) { blinks = 0; } } } else { if (sysCfg.ledstate &0x01) { setLed((SONOFF_TOUCH == sysCfg.module) ? (power ^1) : power); } } } switch (state) { case (STATES/10)*2: if (otaflag) { otaflag--; if (2 == otaflag) { otaretry = OTA_ATTEMPTS; ESPhttpUpdate.rebootOnUpdate(false); } if (otaflag <= 0) { #ifdef USE_WEBSERVER if (sysCfg.webserver) { stopWebserver(); } #endif // USE_WEBSERVER otaflag = 92; otaok = 0; otaretry--; if (otaretry) { // snprintf_P(log, sizeof(log), PSTR("OTA: Attempt %d"), OTA_ATTEMPTS - otaretry); // addLog(LOG_LEVEL_INFO, log); otaok = (HTTP_UPDATE_OK == ESPhttpUpdate.update(sysCfg.otaUrl)); if (!otaok) { otaflag = 2; } } } if (90 == otaflag) { // Allow MQTT to reconnect otaflag = 0; if (otaok) { setModuleFlashMode(1); // QIO - ESP8266, DOUT - ESP8285 (Sonoff 4CH and Touch) snprintf_P(svalue, sizeof(svalue), PSTR("Successful. Restarting")); } else { snprintf_P(svalue, sizeof(svalue), PSTR("Failed %s"), ESPhttpUpdate.getLastErrorString().c_str()); } restartflag = 2; // Restart anyway to keep memory clean webserver mqtt_publish_topic_P(0, PSTR("UPGRADE"), svalue); } } break; case (STATES/10)*4: if (savedatacounter) { savedatacounter--; if (savedatacounter <= 0) { if (sysCfg.flag.savestate) { byte mask = 0xFF; for (byte i = 0; i < MAX_PULSETIMERS; i++) { if ((sysCfg.pulsetime[i] > 0) && (sysCfg.pulsetime[i] < 30)) { mask &= ~(1 << i); } } if (!((sysCfg.power &mask) == (power &mask))) { sysCfg.power = power; } } CFG_Save(); savedatacounter = sysCfg.savedata; } } if (restartflag) { if (211 == restartflag) { CFG_Default(); restartflag = 2; } if (212 == restartflag) { CFG_Erase(); CFG_Default(); restartflag = 2; } if (sysCfg.flag.savestate) { sysCfg.power = power; } if (hlw_flg) { hlw_savestate(); } CFG_Save(); restartflag--; if (restartflag <= 0) { addLog_P(LOG_LEVEL_INFO, PSTR("APP: Restarting")); ESP.restart(); } } break; case (STATES/10)*6: WIFI_Check(wificheckflag); wificheckflag = WIFI_RESTART; break; case (STATES/10)*8: if (WL_CONNECTED == WiFi.status()) { if (sysCfg.flag.mqtt_enabled) { if (!mqttClient.connected()) { if (!mqttcounter) { mqtt_reconnect(); } else { mqttcounter--; } } } else { if (!mqttcounter) { mqtt_reconnect(); } } } break; } } /********************************************************************************************/ void serial() { char log[LOGSZ]; while (Serial.available()) { yield(); SerialInByte = Serial.read(); // Sonoff dual 19200 baud serial interface if (Hexcode) { Hexcode--; if (Hexcode) { ButtonCode = (ButtonCode << 8) | SerialInByte; SerialInByte = 0; } else { if (SerialInByte != 0xA1) { ButtonCode = 0; // 0xA1 - End of Sonoff dual button code } } } if (0xA0 == SerialInByte) { // 0xA0 - Start of Sonoff dual button code SerialInByte = 0; ButtonCode = 0; Hexcode = 3; } if (SerialInByte > 127) { // binary data... SerialInByteCounter = 0; Serial.flush(); return; } if (isprint(SerialInByte)) { if (SerialInByteCounter < INPUT_BUFFER_SIZE) { // add char to string if it still fits serialInBuf[SerialInByteCounter++] = SerialInByte; } else { SerialInByteCounter = 0; } } if (SerialInByte == '\x1B') { // Sonoff SC status from ATMEGA328P serialInBuf[SerialInByteCounter] = 0; // serial data completed sc_rcvstat(serialInBuf); SerialInByteCounter = 0; Serial.flush(); return; } else if (SerialInByte == '\n') { serialInBuf[SerialInByteCounter] = 0; // serial data completed seriallog_level = (sysCfg.seriallog_level < LOG_LEVEL_INFO) ? LOG_LEVEL_INFO : sysCfg.seriallog_level; snprintf_P(log, sizeof(log), PSTR("CMND: %s"), serialInBuf); addLog(LOG_LEVEL_INFO, log); do_cmnd(serialInBuf); SerialInByteCounter = 0; Serial.flush(); return; } } } /********************************************************************************************/ void GPIO_init() { char log[LOGSZ]; uint8_t mpin; mytmplt def_module; if (!sysCfg.module || (sysCfg.module >= MAXMODULE)) { sysCfg.module = MODULE; } memcpy_P(&def_module, &modules[sysCfg.module], sizeof(def_module)); strlcpy(my_module.name, def_module.name, sizeof(my_module.name)); for (byte i = 0; i < MAX_GPIO_PIN; i++) { if (sysCfg.my_module.gp.io[i] > GPIO_NONE) { my_module.gp.io[i] = sysCfg.my_module.gp.io[i]; } if ((def_module.gp.io[i] > GPIO_NONE) && (def_module.gp.io[i] < GPIO_USER)) { my_module.gp.io[i] = def_module.gp.io[i]; } } for (byte i = 0; i < GPIO_MAX; i++) { pin[i] = 99; } for (byte i = 0; i < MAX_GPIO_PIN; i++) { mpin = my_module.gp.io[i]; // snprintf_P(log, sizeof(log), PSTR("DBG: gpio pin %d, mpin %d"), i, mpin); // addLog(LOG_LEVEL_DEBUG, log); if (mpin) { if ((mpin >= GPIO_REL1_INV) && (mpin <= GPIO_REL4_INV)) { rel_inverted[mpin - GPIO_REL1_INV] = 1; mpin -= 4; } else if ((mpin >= GPIO_LED1_INV) && (mpin <= GPIO_LED4_INV)) { led_inverted[mpin - GPIO_LED1_INV] = 1; mpin -= 4; } else if ((mpin >= GPIO_DHT11) && (mpin <= GPIO_DHT22)) { if (dht_setup(i, mpin)) { dht_flg = 1; mpin = GPIO_DHT11; } else { mpin = 0; } } } if (mpin) { pin[mpin] = i; } } if (2 == pin[GPIO_TXD]) { Serial.set_tx(2); } analogWriteRange(PWM_RANGE); // Default is 1023 (Arduino.h) analogWriteFreq(PWM_FREQ); // Default is 1000 (core_esp8266_wiring_pwm.c) Maxdevice = 1; if (SONOFF_DUAL == sysCfg.module) { Maxdevice = 2; Baudrate = 19200; } else if (CH4 == sysCfg.module) { Maxdevice = 4; Baudrate = 19200; } else if (SONOFF_SC == sysCfg.module) { Maxdevice = 0; Baudrate = 19200; } else if (SONOFF_LED == sysCfg.module) { pwm_idxoffset = 2; pin[GPIO_WS2812] = 99; // I do not allow both Sonoff Led AND WS2812 led if (!my_module.gp.io[4]) { pinMode(4, OUTPUT); // Stop floating outputs digitalWrite(4, LOW); } if (!my_module.gp.io[5]) { pinMode(5, OUTPUT); // Stop floating outputs digitalWrite(5, LOW); } if (!my_module.gp.io[14]) { pinMode(14, OUTPUT); // Stop floating outputs digitalWrite(14, LOW); } sl_init(); } else { Maxdevice = 0; for (byte i = 0; i < 4; i++) { if (pin[GPIO_REL1 +i] < 99) { pinMode(pin[GPIO_REL1 +i], OUTPUT); Maxdevice++; } if (pin[GPIO_KEY1 +i] < 99) { pinMode(pin[GPIO_KEY1 +i], INPUT_PULLUP); } } } for (byte i = 0; i < 4; i++) { if (pin[GPIO_LED1 +i] < 99) { pinMode(pin[GPIO_LED1 +i], OUTPUT); digitalWrite(pin[GPIO_LED1 +i], led_inverted[i]); } if (pin[GPIO_SWT1 +i] < 99) { swt_flg = 1; pinMode(pin[GPIO_SWT1 +i], INPUT_PULLUP); lastwallswitch[i] = digitalRead(pin[GPIO_SWT1 +i]); // set global now so doesn't change the saved power state on first switch check } } for (byte i = pwm_idxoffset; i < 5; i++) { if (pin[GPIO_PWM1 +i] < 99) { pwm_flg = 1; pinMode(pin[GPIO_PWM1 +i], OUTPUT); analogWrite(pin[GPIO_PWM1 +i], sysCfg.pwmvalue[i]); } } if (EXS_RELAY == sysCfg.module) { setLatchingRelay(0,2); setLatchingRelay(1,2); } setLed(sysCfg.ledstate &8); hlw_flg = ((pin[GPIO_HLW_SEL] < 99) && (pin[GPIO_HLW_CF1] < 99) && (pin[GPIO_HLW_CF] < 99)); if (hlw_flg) { hlw_init(); } #ifdef USE_DHT if (dht_flg) { dht_init(); } #endif // USE_DHT #ifdef USE_DS18x20 if (pin[GPIO_DSB] < 99) { ds18x20_init(); } #endif // USE_DS18x20 #ifdef USE_I2C i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99)); if (i2c_flg) { Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]); } #endif // USE_I2C #ifdef USE_WS2812 if (pin[GPIO_WS2812] < 99) { ws2812_init(); } #endif // USE_WS2812 #ifdef USE_IR_REMOTE if (pin[GPIO_IRSEND] < 99) { ir_send_init(); } #endif // USE_IR_REMOTE } extern "C" { extern struct rst_info resetInfo; } void setup() { char log[LOGSZ]; byte idx; Serial.begin(Baudrate); delay(10); Serial.println(); seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded snprintf_P(Version, sizeof(Version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); if (VERSION & 0x1f) { idx = strlen(Version); Version[idx] = 96 + (VERSION & 0x1f); Version[idx +1] = 0; } CFG_Load(); CFG_Delta(); osw_init(); sysCfg.bootcount++; snprintf_P(log, sizeof(log), PSTR("APP: Bootcount %d"), sysCfg.bootcount); addLog(LOG_LEVEL_DEBUG, log); savedatacounter = sysCfg.savedata; seriallog_timer = SERIALLOG_TIMER; seriallog_level = sysCfg.seriallog_level; #ifndef USE_EMULATION sysCfg.flag.emulation = 0; #endif // USE_EMULATION syslog_level = (sysCfg.flag.emulation) ? 0 : sysCfg.syslog_level; sleep = sysCfg.sleep; GPIO_init(); if (Serial.baudRate() != Baudrate) { if (seriallog_level) { snprintf_P(log, sizeof(log), PSTR("APP: Set baudrate to %d"), Baudrate); addLog(LOG_LEVEL_INFO, log); } delay(100); Serial.flush(); Serial.begin(Baudrate); delay(10); Serial.println(); } if (strstr(sysCfg.hostname, "%")) { strlcpy(sysCfg.hostname, WIFI_HOSTNAME, sizeof(sysCfg.hostname)); snprintf_P(Hostname, sizeof(Hostname)-1, sysCfg.hostname, sysCfg.mqtt_topic, ESP.getChipId() & 0x1FFF); } else { snprintf_P(Hostname, sizeof(Hostname)-1, sysCfg.hostname); } WIFI_Connect(); getClient(MQTTClient, sysCfg.mqtt_client, sizeof(MQTTClient)); if (MOTOR == sysCfg.module) { sysCfg.poweronstate = 1; // Needs always on else in limbo! } if (4 == sysCfg.poweronstate) { // Allways on setRelay(power); } else { if ((resetInfo.reason == REASON_DEFAULT_RST) || (resetInfo.reason == REASON_EXT_SYS_RST)) { switch (sysCfg.poweronstate) { case 0: // All off power = 0; setRelay(power); break; case 1: // All on power = (1 << Maxdevice) -1; setRelay(power); break; case 2: // All saved state toggle power = sysCfg.power & ((1 << Maxdevice) -1) ^ 0xFF; if (sysCfg.flag.savestate) { setRelay(power); } break; case 3: // All saved state power = sysCfg.power & ((1 << Maxdevice) -1); if (sysCfg.flag.savestate) { setRelay(power); } break; } } else { power = sysCfg.power & ((1 << Maxdevice) -1); if (sysCfg.flag.savestate) { setRelay(power); } } } blink_powersave = power; if (SONOFF_SC == sysCfg.module) { sc_init(); } rtc_init(); snprintf_P(log, sizeof(log), PSTR("APP: Project %s %s (Topic %s, Fallback %s, GroupTopic %s) Version %s"), PROJECT, sysCfg.friendlyname[0], sysCfg.mqtt_topic, MQTTClient, sysCfg.mqtt_grptopic, Version); addLog(LOG_LEVEL_INFO, log); } void loop() { osw_loop(); #ifdef USE_WEBSERVER pollDnsWeb(); #endif // USE_WEBSERVER #ifdef USE_EMULATION if (sysCfg.flag.emulation) { pollUDP(); } #endif // USE_EMULATION if (millis() >= timerxs) { stateloop(); } if (sysCfg.flag.mqtt_enabled) { mqttClient.loop(); } if (Serial.available()){ serial(); } // yield(); // yield == delay(0), delay contains yield, auto yield in loop delay(sleep); // https://github.com/esp8266/Arduino/issues/2021 }