/*
sonoff.ino - Sonoff-Tasmota firmware for iTead Sonoff, Wemos and NodeMCU hardware
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*====================================================
Prerequisites:
- Change libraries/PubSubClient/src/PubSubClient.h
#define MQTT_MAX_PACKET_SIZE 1000
- Select IDE Tools - Flash Mode: "DOUT"
- Select IDE Tools - Flash Size: "1M (no SPIFFS)"
====================================================*/
// Location specific includes
#include // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_3_0)
#include "sonoff_version.h" // Sonoff-Tasmota version information
#include "sonoff.h" // Enumeration used in my_user_config.h
#include "my_user_config.h" // Fixed user configurable options
#ifdef USE_CONFIG_OVERRIDE
#include "user_config_override.h" // Configuration overrides for my_user_config.h
#endif
#include "sonoff_post.h" // Configuration overrides for all previous includes
#include "i18n.h" // Language support configured by my_user_config.h
#include "sonoff_template.h" // Hardware configuration
#ifdef ARDUINO_ESP8266_RELEASE_2_4_0
#include "lwip/init.h"
#if LWIP_VERSION_MAJOR != 1
#error Please use stable lwIP v1.4
#endif
#endif
// Libraries
#include // Ota
#include // Ota
#include // Webserver, Updater
#include // WemoHue, IRremote, Domoticz
#ifdef USE_ARDUINO_OTA
#include // Arduino OTA
#ifndef USE_DISCOVERY
#define USE_DISCOVERY
#endif
#endif // USE_ARDUINO_OTA
#ifdef USE_DISCOVERY
#include // MQTT, Webserver, Arduino OTA
#endif // USE_DISCOVERY
#ifdef USE_I2C
#include // I2C support library
#endif // USE_I2C
#ifdef USE_SPI
#include // SPI support, TFT
#endif // USE_SPI
// Structs
#include "settings.h"
enum TasmotaCommands {
CMND_BACKLOG, CMND_DELAY, CMND_POWER, CMND_FANSPEED, CMND_STATUS, CMND_STATE, CMND_POWERONSTATE, CMND_PULSETIME,
CMND_BLINKTIME, CMND_BLINKCOUNT, CMND_SENSOR, CMND_SAVEDATA, CMND_SETOPTION, CMND_TEMPERATURE_RESOLUTION, CMND_HUMIDITY_RESOLUTION,
CMND_PRESSURE_RESOLUTION, CMND_POWER_RESOLUTION, CMND_VOLTAGE_RESOLUTION, CMND_FREQUENCY_RESOLUTION, CMND_CURRENT_RESOLUTION, CMND_ENERGY_RESOLUTION, CMND_WEIGHT_RESOLUTION,
CMND_MODULE, CMND_MODULES, CMND_GPIO, CMND_GPIOS, CMND_PWM, CMND_PWMFREQUENCY, CMND_PWMRANGE, CMND_COUNTER, CMND_COUNTERTYPE,
CMND_COUNTERDEBOUNCE, CMND_BUTTONDEBOUNCE, CMND_SWITCHDEBOUNCE, CMND_SLEEP, CMND_UPGRADE, CMND_UPLOAD, CMND_OTAURL, CMND_SERIALLOG, CMND_SYSLOG,
CMND_LOGHOST, CMND_LOGPORT, CMND_IPADDRESS, CMND_NTPSERVER, CMND_AP, CMND_SSID, CMND_PASSWORD, CMND_HOSTNAME,
CMND_WIFICONFIG, CMND_FRIENDLYNAME, CMND_SWITCHMODE,
CMND_TELEPERIOD, CMND_RESTART, CMND_RESET, CMND_TIMEZONE, CMND_TIMESTD, CMND_TIMEDST, CMND_ALTITUDE, CMND_LEDPOWER, CMND_LEDSTATE,
CMND_I2CSCAN, CMND_SERIALSEND, CMND_BAUDRATE, CMND_SERIALDELIMITER, CMND_DRIVER };
const char kTasmotaCommands[] PROGMEM =
D_CMND_BACKLOG "|" D_CMND_DELAY "|" D_CMND_POWER "|" D_CMND_FANSPEED "|" D_CMND_STATUS "|" D_CMND_STATE "|" D_CMND_POWERONSTATE "|" D_CMND_PULSETIME "|"
D_CMND_BLINKTIME "|" D_CMND_BLINKCOUNT "|" D_CMND_SENSOR "|" D_CMND_SAVEDATA "|" D_CMND_SETOPTION "|" D_CMND_TEMPERATURE_RESOLUTION "|" D_CMND_HUMIDITY_RESOLUTION "|"
D_CMND_PRESSURE_RESOLUTION "|" D_CMND_POWER_RESOLUTION "|" D_CMND_VOLTAGE_RESOLUTION "|" D_CMND_FREQUENCY_RESOLUTION "|" D_CMND_CURRENT_RESOLUTION "|" D_CMND_ENERGY_RESOLUTION "|" D_CMND_WEIGHT_RESOLUTION "|"
D_CMND_MODULE "|" D_CMND_MODULES "|" D_CMND_GPIO "|" D_CMND_GPIOS "|" D_CMND_PWM "|" D_CMND_PWMFREQUENCY "|" D_CMND_PWMRANGE "|" D_CMND_COUNTER "|" D_CMND_COUNTERTYPE "|"
D_CMND_COUNTERDEBOUNCE "|" D_CMND_BUTTONDEBOUNCE "|" D_CMND_SWITCHDEBOUNCE "|" D_CMND_SLEEP "|" D_CMND_UPGRADE "|" D_CMND_UPLOAD "|" D_CMND_OTAURL "|" D_CMND_SERIALLOG "|" D_CMND_SYSLOG "|"
D_CMND_LOGHOST "|" D_CMND_LOGPORT "|" D_CMND_IPADDRESS "|" D_CMND_NTPSERVER "|" D_CMND_AP "|" D_CMND_SSID "|" D_CMND_PASSWORD "|" D_CMND_HOSTNAME "|"
D_CMND_WIFICONFIG "|" D_CMND_FRIENDLYNAME "|" D_CMND_SWITCHMODE "|"
D_CMND_TELEPERIOD "|" D_CMND_RESTART "|" D_CMND_RESET "|" D_CMND_TIMEZONE "|" D_CMND_TIMESTD "|" D_CMND_TIMEDST "|" D_CMND_ALTITUDE "|" D_CMND_LEDPOWER "|" D_CMND_LEDSTATE "|"
D_CMND_I2CSCAN "|" D_CMND_SERIALSEND "|" D_CMND_BAUDRATE "|" D_CMND_SERIALDELIMITER "|" D_CMND_DRIVER;
const uint8_t kIFan02Speed[4][3] = {{6,6,6}, {7,6,6}, {7,7,6}, {7,6,7}};
// Global variables
SerialConfig serial_config = SERIAL_8N1; // Serial interface configuration 8 data bits, No parity, 1 stop bit
WiFiUDP PortUdp; // UDP Syslog and Alexa
unsigned long feature_drv1; // Compiled driver feature map
unsigned long feature_drv2; // Compiled driver feature map
unsigned long feature_sns1; // Compiled sensor feature map
unsigned long feature_sns2; // Compiled sensor feature map
unsigned long serial_polling_window = 0; // Serial polling window
unsigned long state_second = 0; // State second timer
unsigned long state_50msecond = 0; // State 50msecond timer
unsigned long state_100msecond = 0; // State 100msecond timer
unsigned long state_250msecond = 0; // State 250msecond timer
unsigned long pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer
unsigned long blink_timer = 0; // Power cycle timer
unsigned long backlog_delay = 0; // Command backlog delay
unsigned long button_debounce = 0; // Button debounce timer
unsigned long switch_debounce = 0; // Switch debounce timer
power_t power = 0; // Current copy of Settings.power
power_t blink_power; // Blink power state
power_t blink_mask = 0; // Blink relay active mask
power_t blink_powersave; // Blink start power save state
power_t latching_power = 0; // Power state at latching start
power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off))
int baudrate = APP_BAUDRATE; // Serial interface baud rate
int serial_in_byte_counter = 0; // Index in receive buffer
int ota_state_flag = 0; // OTA state flag
int ota_result = 0; // OTA result
int restart_flag = 0; // Sonoff restart flag
int wifi_state_flag = WIFI_RESTART; // Wifi state flag
int tele_period = 1; // Tele period timer
int blinks = 201; // Number of LED blinks
uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year
uint32_t global_update = 0; // Timestamp of last global temperature and humidity update
float global_temperature = 0; // Provide a global temperature to be used by some sensors
float global_humidity = 0; // Provide a global humidity to be used by some sensors
char *ota_url; // OTA url string pointer
uint16_t dual_button_code = 0; // Sonoff dual received code
uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command
uint16_t blink_counter = 0; // Number of blink cycles
uint16_t seriallog_timer = 0; // Timer to disable Seriallog
uint16_t syslog_timer = 0; // Timer to re-enable syslog_level
uint16_t holdbutton[MAX_KEYS] = { 0 }; // Timer for button hold
uint16_t switch_no_pullup = 0; // Switch pull-up bitmask flags
int16_t save_data_counter; // Counter and flag for config save to Flash
RulesBitfield rules_flag; // Rule state flags (16 bits)
uint8_t serial_local = 0; // Handle serial locally;
uint8_t fallback_topic_flag = 0; // Use Topic or FallbackTopic
uint8_t state_250mS = 0; // State 250msecond per second flag
uint8_t latching_relay_pulse = 0; // Latching relay pulse timer
uint8_t backlog_index = 0; // Command backlog index
uint8_t backlog_pointer = 0; // Command backlog pointer
uint8_t backlog_mutex = 0; // Command backlog pending
uint8_t interlock_mutex = 0; // Interlock power command pending
uint8_t sleep; // Current copy of Settings.sleep
uint8_t stop_flash_rotate = 0; // Allow flash configuration rotation
uint8_t blinkstate = 0; // LED state
uint8_t blinkspeed = 1; // LED blink rate
uint8_t lastbutton[MAX_KEYS] = { NOT_PRESSED, NOT_PRESSED, NOT_PRESSED, NOT_PRESSED }; // Last button states
uint8_t multiwindow[MAX_KEYS] = { 0 }; // Max time between button presses to record press count
uint8_t multipress[MAX_KEYS] = { 0 }; // Number of button presses within multiwindow
uint8_t lastwallswitch[MAX_SWITCHES]; // Last wall switch states
uint8_t holdwallswitch[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold
uint8_t virtualswitch[MAX_SWITCHES]; // Virtual switch states
uint8_t pin[GPIO_MAX]; // Possible pin configurations
uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted)
uint8_t counter_no_pullup = 0; // Counter input pullup flag (1 = No pullup)
uint8_t dht_flg = 0; // DHT configured
uint8_t energy_flg = 0; // Energy monitor configured
uint8_t i2c_flg = 0; // I2C configured
uint8_t spi_flg = 0; // SPI configured
uint8_t light_type = 0; // Light types
uint8_t ntp_force_sync = 0; // Force NTP sync
byte serial_in_byte; // Received byte
byte dual_hex_code = 0; // Sonoff dual input flag
byte ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter
byte web_log_index = 1; // Index in Web log buffer (should never be 0)
byte reset_web_log_flag = 0; // Reset web console log
byte devices_present = 0; // Max number of devices supported
byte seriallog_level; // Current copy of Settings.seriallog_level
byte syslog_level; // Current copy of Settings.syslog_level
byte mdns_delayed_start = 0; // mDNS delayed start
boolean latest_uptime_flag = true; // Signal latest uptime
boolean pwm_present = false; // Any PWM channel configured with SetOption15 0
boolean mdns_begun = false; // mDNS active
mytmplt my_module; // Active copy of Module name and GPIOs (23 x 8 bits)
StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits)
char my_version[33]; // Composed version string
char my_image[33]; // Code image and/or commit
char my_hostname[33]; // Composed Wifi hostname
char mqtt_client[33]; // Composed MQTT Clientname
char mqtt_topic[33]; // Composed MQTT topic
char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer
char mqtt_data[MESSZ]; // MQTT publish buffer and web page ajax buffer
char log_data[LOGSZ]; // Logging
char web_log[WEB_LOG_SIZE] = {'\0'}; // Web log buffer
String backlog[MAX_BACKLOG]; // Command backlog
/********************************************************************************************/
char* Format(char* output, const char* input, int size)
{
char *token;
uint8_t digits = 0;
if (strstr(input, "%")) {
strlcpy(output, input, size);
token = strtok(output, "%");
if (strstr(input, "%") == input) {
output[0] = '\0';
} else {
token = strtok(NULL, "");
}
if (token != NULL) {
digits = atoi(token);
if (digits) {
if (strchr(token, 'd')) {
snprintf_P(output, size, PSTR("%s%c0%dd"), output, '%', digits);
snprintf_P(output, size, output, ESP.getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname
} else {
snprintf_P(output, size, PSTR("%s%c0%dX"), output, '%', digits);
snprintf_P(output, size, output, ESP.getChipId()); // %06X - full chip ID in hex
}
} else {
if (strchr(token, 'd')) {
snprintf_P(output, size, PSTR("%s%d"), output, ESP.getChipId()); // %d - full chip ID in dec
digits = 8;
}
}
}
}
if (!digits) strlcpy(output, input, size);
return output;
}
char* GetOtaUrl(char *otaurl, size_t otaurl_size)
{
if (strstr(Settings.ota_url, "%04d") != NULL) { // OTA url contains placeholder for chip ID
snprintf(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId() & 0x1fff);
}
else if (strstr(Settings.ota_url, "%d") != NULL) { // OTA url contains placeholder for chip ID
snprintf_P(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId());
}
else {
snprintf(otaurl, otaurl_size, Settings.ota_url);
}
return otaurl;
}
void GetTopic_P(char *stopic, byte prefix, char *topic, const char* subtopic)
{
/* prefix 0 = Cmnd
prefix 1 = Stat
prefix 2 = Tele
*/
char romram[CMDSZ];
String fulltopic;
snprintf_P(romram, sizeof(romram), subtopic);
if (fallback_topic_flag) {
fulltopic = FPSTR(kPrefixes[prefix]);
fulltopic += F("/");
fulltopic += mqtt_client;
} else {
fulltopic = Settings.mqtt_fulltopic;
if ((0 == prefix) && (-1 == fulltopic.indexOf(F(MQTT_TOKEN_PREFIX)))) {
fulltopic += F("/" MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops
}
for (byte i = 0; i < 3; i++) {
if ('\0' == Settings.mqtt_prefix[i][0]) {
snprintf_P(Settings.mqtt_prefix[i], sizeof(Settings.mqtt_prefix[i]), kPrefixes[i]);
}
}
fulltopic.replace(F(MQTT_TOKEN_PREFIX), Settings.mqtt_prefix[prefix]);
fulltopic.replace(F(MQTT_TOKEN_TOPIC), topic);
fulltopic.replace(F(MQTT_TOKEN_HOSTNAME), my_hostname);
String token_id = WiFi.macAddress();
token_id.replace(":", "");
fulltopic.replace(F(MQTT_TOKEN_ID), token_id);
}
fulltopic.replace(F("#"), "");
fulltopic.replace(F("//"), "/");
if (!fulltopic.endsWith("/")) fulltopic += "/";
snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram);
}
char* GetStateText(byte state)
{
if (state > 3) state = 1;
return Settings.state_text[state];
}
/********************************************************************************************/
void SetLatchingRelay(power_t lpower, uint8_t state)
{
// power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off
// power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off
// power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On
// power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On
if (state && !latching_relay_pulse) { // Set latching relay to power if previous pulse has finished
latching_power = lpower;
latching_relay_pulse = 2; // max 200mS (initiated by stateloop())
}
for (byte i = 0; i < devices_present; i++) {
uint8_t port = (i << 1) + ((latching_power >> i) &1);
if (pin[GPIO_REL1 +port] < 99) {
digitalWrite(pin[GPIO_REL1 +port], bitRead(rel_inverted, port) ? !state : state);
}
}
}
void SetDevicePower(power_t rpower, int source)
{
uint8_t state;
ShowSource(source);
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { // All on and stay on
power = (1 << devices_present) -1;
rpower = power;
}
if (Settings.flag.interlock) { // Allow only one or no relay set
power_t mask = 1;
uint8_t count = 0;
for (byte i = 0; i < devices_present; i++) {
if (rpower & mask) count++;
mask <<= 1;
}
if (count > 1) {
power = 0;
rpower = 0;
}
}
XdrvMailbox.index = rpower;
XdrvCall(FUNC_SET_POWER); // Signal power state
XdrvMailbox.index = rpower;
XdrvMailbox.payload = source;
if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced
// Serviced
}
else if ((SONOFF_DUAL == Settings.module) || (CH4 == Settings.module)) {
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(rpower &0xFF);
Serial.write(0xA1);
Serial.write('\n');
Serial.flush();
}
else if (EXS_RELAY == Settings.module) {
SetLatchingRelay(rpower, 1);
}
else {
for (byte i = 0; i < devices_present; i++) {
state = rpower &1;
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? !state : state);
}
rpower >>= 1;
}
}
}
void SetLedPower(uint8_t state)
{
if (state) state = 1;
digitalWrite(pin[GPIO_LED1], (bitRead(led_inverted, 0)) ? !state : state);
}
uint8_t GetFanspeed(void)
{
uint8_t fanspeed = 0;
// if (SONOFF_IFAN02 == Settings.module) {
/* Fanspeed is controlled by relay 2, 3 and 4 as in Sonoff 4CH.
000x = 0
001x = 1
011x = 2
101x = 3
*/
fanspeed = (uint8_t)(power &0xF) >> 1;
if (fanspeed) { fanspeed = (fanspeed >> 1) +1; }
// }
return fanspeed;
}
void SetFanspeed(uint8_t fanspeed)
{
for (byte i = 0; i < 3; i++) {
uint8_t state = kIFan02Speed[fanspeed][i];
// uint8_t state = pgm_read_byte(kIFan02Speed +(speed *3) +i);
ExecuteCommandPower(i +2, state, SRC_IGNORE); // Use relay 2, 3 and 4
}
}
void SetPulseTimer(uint8_t index, uint16_t time)
{
pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L;
}
uint16_t GetPulseTimer(uint8_t index)
{
uint16_t result = 0;
long time = TimePassedSince(pulse_timer[index]);
if (time < 0) {
time *= -1;
result = (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0;
}
return result;
}
/********************************************************************************************/
void MqttDataHandler(char* topic, byte* data, unsigned int data_len)
{
char *str;
if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1])) {
str = strstr(topic,Settings.mqtt_prefix[0]);
if ((str == topic) && mqtt_cmnd_publish) {
if (mqtt_cmnd_publish > 3) {
mqtt_cmnd_publish -= 3;
} else {
mqtt_cmnd_publish = 0;
}
return;
}
}
char topicBuf[TOPSZ];
char dataBuf[data_len+1];
char command [CMDSZ];
char stemp1[TOPSZ];
char *p;
char *type = NULL;
byte jsflg = 0;
byte lines = 1;
uint8_t grpflg = 0;
// uint8_t user_append_index = 0;
uint16_t i = 0;
uint16_t index;
uint32_t address;
ShowFreeMem(PSTR("MqttDataHandler"));
strlcpy(topicBuf, topic, sizeof(topicBuf));
for (i = 0; i < data_len; i++) {
if (!isspace(data[i])) break;
}
data_len -= i;
memcpy(dataBuf, data +i, sizeof(dataBuf));
dataBuf[sizeof(dataBuf)-1] = 0;
if (topicBuf[0] != '/') { ShowSource(SRC_MQTT); }
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_RESULT D_RECEIVED_TOPIC " %s, " D_DATA_SIZE " %d, " D_DATA " %s"),
topicBuf, data_len, dataBuf);
AddLog(LOG_LEVEL_DEBUG_MORE);
// if (LOG_LEVEL_DEBUG_MORE <= seriallog_level) Serial.println(dataBuf);
if (XdrvMqttData(topicBuf, sizeof(topicBuf), dataBuf, sizeof(dataBuf))) return;
grpflg = (strstr(topicBuf, Settings.mqtt_grptopic) != NULL);
fallback_topic_flag = (strstr(topicBuf, mqtt_client) != NULL);
type = strrchr(topicBuf, '/'); // Last part of received topic is always the command (type)
index = 1;
if (type != NULL) {
type++;
for (i = 0; i < strlen(type); i++) {
type[i] = toupper(type[i]);
}
while (isdigit(type[i-1])) {
i--;
}
if (i < strlen(type)) {
index = atoi(type +i);
// user_append_index = 1;
}
type[i] = '\0';
}
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_RESULT D_GROUP " %d, " D_INDEX " %d, " D_COMMAND " %s, " D_DATA " %s"),
grpflg, index, type, dataBuf);
AddLog(LOG_LEVEL_DEBUG);
if (type != NULL) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_ERROR "\"}"));
if (Settings.ledstate &0x02) blinks++;
if (!strcmp(dataBuf,"?")) data_len = 0;
int16_t payload = -99; // No payload
uint16_t payload16 = 0;
long payload32 = strtol(dataBuf, &p, 10);
if (p != dataBuf) {
payload = (int16_t) payload32; // -32766 - 32767
payload16 = (uint16_t) payload32; // 0 - 65535
} else {
payload32 = 0;
}
backlog_delay = millis() + (100 * MIN_BACKLOG_DELAY);
int temp_payload = GetStateNumber(dataBuf);
if (temp_payload > -1) { payload = temp_payload; }
// snprintf_P(log_data, sizeof(log_data), PSTR("RSLT: Payload %d, Payload16 %d"), payload, payload16);
// AddLog(LOG_LEVEL_DEBUG);
int command_code = GetCommandCode(command, sizeof(command), type, kTasmotaCommands);
if (-1 == command_code) {
if (!XdrvCommand(grpflg, type, index, dataBuf, data_len, payload, payload16)) {
type = NULL; // Unknown command
}
}
else if (CMND_BACKLOG == command_code) {
if (data_len) {
uint8_t bl_pointer = (!backlog_pointer) ? MAX_BACKLOG -1 : backlog_pointer;
bl_pointer--;
char *blcommand = strtok(dataBuf, ";");
while ((blcommand != NULL) && (backlog_index != bl_pointer)) {
while(true) {
blcommand = Trim(blcommand);
if (!strncasecmp_P(blcommand, PSTR(D_CMND_BACKLOG), strlen(D_CMND_BACKLOG))) {
blcommand += strlen(D_CMND_BACKLOG); // Skip unnecessary command Backlog
} else {
break;
}
}
if (*blcommand != '\0') {
backlog[backlog_index] = String(blcommand);
backlog_index++;
if (backlog_index >= MAX_BACKLOG) backlog_index = 0;
}
blcommand = strtok(NULL, ";");
}
// snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_APPENDED);
mqtt_data[0] = '\0';
} else {
uint8_t blflag = (backlog_pointer == backlog_index);
backlog_pointer = backlog_index;
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, blflag ? D_JSON_EMPTY : D_JSON_ABORTED);
}
}
else if (CMND_DELAY == command_code) {
if ((payload >= MIN_BACKLOG_DELAY) && (payload <= 3600)) {
backlog_delay = millis() + (100 * payload);
}
uint16_t bl_delay = 0;
long bl_delta = TimePassedSince(backlog_delay);
if (bl_delta < 0) { bl_delay = (bl_delta *-1) / 100; }
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, bl_delay);
}
else if ((CMND_POWER == command_code) && (index > 0) && (index <= devices_present)) {
if ((payload < 0) || (payload > 4)) payload = 9;
// Settings.flag.device_index_enable = user_append_index;
ExecuteCommandPower(index, payload, SRC_IGNORE);
fallback_topic_flag = 0;
return;
}
else if ((CMND_FANSPEED == command_code) && (SONOFF_IFAN02 == Settings.module)) {
if (data_len > 0) {
if ('-' == dataBuf[0]) {
payload = (int16_t)GetFanspeed() -1;
if (payload < 0) { payload = 3; }
}
else if ('+' == dataBuf[0]) {
payload = GetFanspeed() +1;
if (payload > 3) { payload = 0; }
}
}
if ((payload >= 0) && (payload <= 3) && (payload != GetFanspeed())) {
SetFanspeed(payload);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, GetFanspeed());
}
else if (CMND_STATUS == command_code) {
if ((payload < 0) || (payload > MAX_STATUS)) payload = 99;
PublishStatus(payload);
fallback_topic_flag = 0;
return;
}
else if (CMND_STATE == command_code) {
mqtt_data[0] = '\0';
MqttShowState();
}
else if (CMND_SLEEP == command_code) {
if ((payload >= 0) && (payload < 251)) {
Settings.sleep = payload;
sleep = payload;
WiFiSetSleepMode();
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_UNIT_NVALUE_UNIT, command, sleep, (Settings.flag.value_units) ? " " D_UNIT_MILLISECOND : "", Settings.sleep, (Settings.flag.value_units) ? " " D_UNIT_MILLISECOND : "");
}
else if ((CMND_UPGRADE == command_code) || (CMND_UPLOAD == command_code)) {
// Check if the payload is numerically 1, and had no trailing chars.
// e.g. "1foo" or "1.2.3" could fool us.
// Check if the version we have been asked to upgrade to is higher than our current version.
// We also need at least 3 chars to make a valid version number string.
if (((1 == data_len) && (1 == payload)) || ((data_len >= 3) && NewerVersion(dataBuf))) {
ota_state_flag = 3;
snprintf_P(mqtt_data, sizeof(mqtt_data), "{\"%s\":\"" D_JSON_VERSION " %s " D_JSON_FROM " %s\"}", command, my_version, GetOtaUrl(stemp1, sizeof(stemp1)));
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), "{\"%s\":\"" D_JSON_ONE_OR_GT "\"}", command, my_version);
}
}
else if (CMND_OTAURL == command_code) {
if ((data_len > 0) && (data_len < sizeof(Settings.ota_url))) {
strlcpy(Settings.ota_url, (SC_DEFAULT == Shortcut(dataBuf)) ? OTA_URL : dataBuf, sizeof(Settings.ota_url));
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, Settings.ota_url);
}
else if (CMND_SERIALLOG == command_code) {
if ((payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) {
Settings.flag.mqtt_serial = 0;
SetSeriallog(payload);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_ACTIVE_NVALUE, command, Settings.seriallog_level, seriallog_level);
}
else if (CMND_RESTART == command_code) {
switch (payload) {
case 1:
restart_flag = 2;
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_RESTARTING);
break;
case 99:
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING));
EspRestart();
break;
default:
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_ONE_TO_RESTART);
}
}
else if ((CMND_POWERONSTATE == command_code) && (Settings.module != MOTOR)) {
/* 0 = Keep relays off after power on
* 1 = Turn relays on after power on, if PulseTime set wait for PulseTime seconds, and turn relays off
* 2 = Toggle relays after power on
* 3 = Set relays to last saved state after power on
* 4 = Turn relays on and disable any relay control (used for Sonoff Pow to always measure power)
* 5 = Keep relays off after power on, if PulseTime set wait for PulseTime seconds, and turn relays on
*/
if ((payload >= POWER_ALL_OFF) && (payload <= POWER_ALL_OFF_PULSETIME_ON)) {
Settings.poweronstate = payload;
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) {
for (byte i = 1; i <= devices_present; i++) {
ExecuteCommandPower(i, POWER_ON, SRC_IGNORE);
}
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.poweronstate);
}
else if ((CMND_PULSETIME == command_code) && (index > 0) && (index <= MAX_PULSETIMERS)) {
if (data_len > 0) {
Settings.pulse_timer[index -1] = payload16; // 0 - 65535
SetPulseTimer(index -1, payload16);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_NVALUE_ACTIVE_NVALUE, command, index, Settings.pulse_timer[index -1], GetPulseTimer(index -1));
}
else if (CMND_BLINKTIME == command_code) {
if ((payload > 1) && (payload <= 3600)) {
Settings.blinktime = payload;
if (blink_timer > 0) { blink_timer = millis() + (100 * payload); }
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.blinktime);
}
else if (CMND_BLINKCOUNT == command_code) {
if (data_len > 0) {
Settings.blinkcount = payload16; // 0 - 65535
if (blink_counter) blink_counter = Settings.blinkcount *2;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.blinkcount);
}
else if (CMND_SAVEDATA == command_code) {
if ((payload >= 0) && (payload <= 3600)) {
Settings.save_data = payload;
save_data_counter = Settings.save_data;
}
SettingsSaveAll();
if (Settings.save_data > 1) {
snprintf_P(stemp1, sizeof(stemp1), PSTR(D_JSON_EVERY " %d " D_UNIT_SECOND), Settings.save_data);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, (Settings.save_data > 1) ? stemp1 : GetStateText(Settings.save_data));
}
else if ((CMND_SENSOR == command_code) || (CMND_DRIVER == command_code)) {
XdrvMailbox.index = index;
XdrvMailbox.data_len = data_len;
XdrvMailbox.payload16 = payload16;
XdrvMailbox.payload = payload;
XdrvMailbox.grpflg = grpflg;
XdrvMailbox.topic = command;
XdrvMailbox.data = dataBuf;
if (CMND_SENSOR == command_code) {
XsnsCall(FUNC_COMMAND);
} else {
XdrvCall(FUNC_COMMAND);
}
}
else if ((CMND_SETOPTION == command_code) && (index < 82)) {
byte ptype;
byte pindex;
if (index <= 31) { // SetOption0 .. 31 = Settings.flag
ptype = 0;
pindex = index; // 0 .. 31
}
else if (index <= 49) { // SetOption32 .. 49 = Settings.param
ptype = 2;
pindex = index -32; // 0 .. 17 (= PARAM8_SIZE -1)
}
else { // SetOption50 .. 81 = Settings.flag3
ptype = 1;
pindex = index -50; // 0 .. 31
}
if (payload >= 0) {
if (0 == ptype) { // SetOption0 .. 31
if (payload <= 1) {
switch (pindex) {
case 5: // mqtt_power_retain (CMND_POWERRETAIN)
case 6: // mqtt_button_retain (CMND_BUTTONRETAIN)
case 7: // mqtt_switch_retain (CMND_SWITCHRETAIN)
case 9: // mqtt_sensor_retain (CMND_SENSORRETAIN)
case 22: // mqtt_serial (SerialSend and SerialLog)
case 23: // mqtt_serial_raw (SerialSend)
case 25: // knx_enabled (Web config)
case 27: // knx_enable_enhancement (Web config)
ptype = 99; // Command Error
break; // Ignore command SetOption
case 3: // mqtt
case 15: // pwm_control
restart_flag = 2;
default:
bitWrite(Settings.flag.data, pindex, payload);
}
if (12 == pindex) { // stop_flash_rotate
stop_flash_rotate = payload;
SettingsSave(2);
}
#ifdef USE_HOME_ASSISTANT
if ((19 == pindex) || (30 == pindex)) {
HAssDiscovery(1); // hass_discovery or hass_light
}
#endif // USE_HOME_ASSISTANT
}
}
else if (1 == ptype) { // SetOption50 .. 81
if (payload <= 1) {
bitWrite(Settings.flag3.data, pindex, payload);
}
}
else { // SetOption32 .. 49
uint8_t param_low = 0;
uint8_t param_high = 255;
switch (pindex) {
case P_HOLD_TIME:
case P_MAX_POWER_RETRY:
param_low = 1;
param_high = 250;
break;
}
if ((payload >= param_low) && (payload <= param_high)) {
Settings.param[pindex] = payload;
}
}
}
if (ptype < 99) {
if (2 == ptype) snprintf_P(stemp1, sizeof(stemp1), PSTR("%d"), Settings.param[pindex]);
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, index, (2 == ptype) ? stemp1 : (1 == ptype) ? GetStateText(bitRead(Settings.flag3.data, pindex)) : GetStateText(bitRead(Settings.flag.data, pindex)));
}
}
else if (CMND_TEMPERATURE_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.temperature_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.temperature_resolution);
}
else if (CMND_HUMIDITY_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.humidity_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.humidity_resolution);
}
else if (CMND_PRESSURE_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.pressure_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.pressure_resolution);
}
else if (CMND_POWER_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.wattage_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.wattage_resolution);
}
else if (CMND_VOLTAGE_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.voltage_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.voltage_resolution);
}
else if (CMND_FREQUENCY_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.frequency_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.frequency_resolution);
}
else if (CMND_CURRENT_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.current_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.current_resolution);
}
else if (CMND_ENERGY_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 5)) {
Settings.flag2.energy_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.energy_resolution);
}
else if (CMND_WEIGHT_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.weight_resolution = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.flag2.weight_resolution);
}
else if (CMND_MODULE == command_code) {
if ((payload > 0) && (payload <= MAXMODULE)) {
payload--;
Settings.last_module = Settings.module;
Settings.module = payload;
if (Settings.last_module != payload) {
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
Settings.my_gp.io[i] = 0;
}
}
restart_flag = 2;
}
snprintf_P(stemp1, sizeof(stemp1), kModules[Settings.module].name);
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.module +1, stemp1);
}
else if (CMND_MODULES == command_code) {
for (byte i = 0; i < MAXMODULE; i++) {
if (!jsflg) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_MODULES "%d\":["), lines);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,"), mqtt_data);
}
jsflg = 1;
snprintf_P(stemp1, sizeof(stemp1), kModules[i].name);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s\"%d (%s)\""), mqtt_data, i +1, stemp1);
if ((strlen(mqtt_data) > (LOGSZ - TOPSZ)) || (i == MAXMODULE -1)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s]}"), mqtt_data);
MqttPublishPrefixTopic_P(RESULT_OR_STAT, type);
jsflg = 0;
lines++;
}
}
mqtt_data[0] = '\0';
}
else if ((CMND_GPIO == command_code) && (index < MAX_GPIO_PIN)) {
mytmplt cmodule;
memcpy_P(&cmodule, &kModules[Settings.module], sizeof(cmodule));
if ((GPIO_USER == ValidGPIO(index, cmodule.gp.io[index])) && (payload >= 0) && (payload < GPIO_SENSOR_END)) {
bool present = false;
for (byte i = 0; i < sizeof(kGpioNiceList); i++) {
uint8_t midx = pgm_read_byte(kGpioNiceList + i);
if (midx == payload) { present = true; }
}
if (present) {
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
if ((GPIO_USER == ValidGPIO(i, cmodule.gp.io[i])) && (Settings.my_gp.io[i] == payload)) {
Settings.my_gp.io[i] = 0;
}
}
Settings.my_gp.io[index] = payload;
restart_flag = 2;
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{"));
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
if (GPIO_USER == ValidGPIO(i, cmodule.gp.io[i])) {
if (jsflg) snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,"), mqtt_data);
jsflg = 1;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s\"" D_CMND_GPIO "%d\":\"%d (%s)\""),
mqtt_data, i, Settings.my_gp.io[i], GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_gp.io[i], kSensorNames));
}
}
if (jsflg) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_NOT_SUPPORTED);
}
}
else if (CMND_GPIOS == command_code) {
mytmplt cmodule;
memcpy_P(&cmodule, &kModules[Settings.module], sizeof(cmodule));
uint8_t midx;
for (byte i = 0; i < sizeof(kGpioNiceList); i++) {
midx = pgm_read_byte(kGpioNiceList + i);
if (!GetUsedInModule(midx, cmodule.gp.io)) {
if (!jsflg) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_GPIOS "%d\":["), lines);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,"), mqtt_data);
}
jsflg = 1;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s\"%d (%s)\""), mqtt_data, midx, GetTextIndexed(stemp1, sizeof(stemp1), midx, kSensorNames));
if ((strlen(mqtt_data) > (LOGSZ - TOPSZ)) || (i == sizeof(kGpioNiceList) -1)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s]}"), mqtt_data);
MqttPublishPrefixTopic_P(RESULT_OR_STAT, type);
jsflg = 0;
lines++;
}
}
}
mqtt_data[0] = '\0';
}
else if ((CMND_PWM == command_code) && pwm_present && (index > 0) && (index <= MAX_PWMS)) {
if ((payload >= 0) && (payload <= Settings.pwm_range) && (pin[GPIO_PWM1 + index -1] < 99)) {
Settings.pwm_value[index -1] = payload;
analogWrite(pin[GPIO_PWM1 + index -1], bitRead(pwm_inverted, index -1) ? Settings.pwm_range - payload : payload);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{"));
MqttShowPWMState(); // Render the PWM status to MQTT
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
}
else if (CMND_PWMFREQUENCY == command_code) {
if ((1 == payload) || ((payload >= PWM_MIN) && (payload <= PWM_MAX))) {
Settings.pwm_frequency = (1 == payload) ? PWM_FREQ : payload;
analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.pwm_frequency);
}
else if (CMND_PWMRANGE == command_code) {
if ((1 == payload) || ((payload > 254) && (payload < 1024))) {
Settings.pwm_range = (1 == payload) ? PWM_RANGE : payload;
for (byte i = 0; i < MAX_PWMS; i++) {
if (Settings.pwm_value[i] > Settings.pwm_range) {
Settings.pwm_value[i] = Settings.pwm_range;
}
}
analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h)
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.pwm_range);
}
else if ((CMND_COUNTER == command_code) && (index > 0) && (index <= MAX_COUNTERS)) {
if ((data_len > 0) && (pin[GPIO_CNTR1 + index -1] < 99)) {
if ((dataBuf[0] == '-') || (dataBuf[0] == '+')) {
RtcSettings.pulse_counter[index -1] += payload32;
Settings.pulse_counter[index -1] += payload32;
} else {
RtcSettings.pulse_counter[index -1] = payload32;
Settings.pulse_counter[index -1] = payload32;
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_LVALUE, command, index, RtcSettings.pulse_counter[index -1]);
}
else if ((CMND_COUNTERTYPE == command_code) && (index > 0) && (index <= MAX_COUNTERS)) {
if ((payload >= 0) && (payload <= 1) && (pin[GPIO_CNTR1 + index -1] < 99)) {
bitWrite(Settings.pulse_counter_type, index -1, payload &1);
RtcSettings.pulse_counter[index -1] = 0;
Settings.pulse_counter[index -1] = 0;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_NVALUE, command, index, bitRead(Settings.pulse_counter_type, index -1));
}
else if (CMND_COUNTERDEBOUNCE == command_code) {
if ((data_len > 0) && (payload16 < 32001)) {
Settings.pulse_counter_debounce = payload16;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.pulse_counter_debounce);
}
else if (CMND_BUTTONDEBOUNCE == command_code) {
if ((payload > 39) && (payload < 1001)) {
Settings.button_debounce = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.button_debounce);
}
else if (CMND_SWITCHDEBOUNCE == command_code) {
if ((payload > 39) && (payload < 1001)) {
Settings.switch_debounce = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.switch_debounce);
}
else if (CMND_BAUDRATE == command_code) {
if (payload32 > 0) {
payload32 /= 1200; // Make it a valid baudrate
baudrate = (1 == payload) ? APP_BAUDRATE : payload32 * 1200;
SetSerialBaudrate(baudrate);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.baudrate * 1200);
}
else if ((CMND_SERIALSEND == command_code) && (index > 0) && (index <= 5)) {
SetSeriallog(LOG_LEVEL_NONE);
Settings.flag.mqtt_serial = 1;
Settings.flag.mqtt_serial_raw = (index > 3) ? 1 : 0;
if (data_len > 0) {
if (1 == index) {
Serial.printf("%s\n", dataBuf); // "Hello Tiger\n"
}
else if (2 == index || 4 == index) {
for (int i = 0; i < data_len; i++) {
Serial.write(dataBuf[i]); // "Hello Tiger" or "A0"
}
}
else if (3 == index) {
uint16_t dat_len = data_len;
Serial.printf("%s", Unescape(dataBuf, &dat_len)); // "Hello\f"
}
else if (5 == index) {
SerialSendRaw(RemoveSpace(dataBuf)); // "AA004566"
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_DONE);
}
}
else if (CMND_SERIALDELIMITER == command_code) {
if ((data_len > 0) && (payload < 256)) {
if (payload > 0) {
Settings.serial_delimiter = payload;
} else {
uint16_t dat_len = data_len;
Unescape(dataBuf, &dat_len);
Settings.serial_delimiter = dataBuf[0];
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.serial_delimiter);
}
else if (CMND_SYSLOG == command_code) {
if ((payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) {
Settings.syslog_level = payload;
syslog_level = payload;
syslog_timer = 0;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_ACTIVE_NVALUE, command, Settings.syslog_level, syslog_level);
}
else if (CMND_LOGHOST == command_code) {
if ((data_len > 0) && (data_len < sizeof(Settings.syslog_host))) {
strlcpy(Settings.syslog_host, (SC_DEFAULT == Shortcut(dataBuf)) ? SYS_LOG_HOST : dataBuf, sizeof(Settings.syslog_host));
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, Settings.syslog_host);
}
else if (CMND_LOGPORT == command_code) {
if (payload16 > 0) {
Settings.syslog_port = (1 == payload16) ? SYS_LOG_PORT : payload16;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.syslog_port);
}
else if ((CMND_IPADDRESS == command_code) && (index > 0) && (index <= 4)) {
if (ParseIp(&address, dataBuf)) {
Settings.ip_address[index -1] = address;
// restart_flag = 2;
}
snprintf_P(stemp1, sizeof(stemp1), PSTR(" (%s)"), WiFi.localIP().toString().c_str());
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE_SVALUE, command, index, IPAddress(Settings.ip_address[index -1]).toString().c_str(), (1 == index) ? stemp1:"");
}
else if ((CMND_NTPSERVER == command_code) && (index > 0) && (index <= 3)) {
if ((data_len > 0) && (data_len < sizeof(Settings.ntp_server[0]))) {
strlcpy(Settings.ntp_server[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1==index)?NTP_SERVER1:(2==index)?NTP_SERVER2:NTP_SERVER3 : dataBuf, sizeof(Settings.ntp_server[0]));
for (i = 0; i < strlen(Settings.ntp_server[index -1]); i++) {
if (Settings.ntp_server[index -1][i] == ',') Settings.ntp_server[index -1][i] = '.';
}
// restart_flag = 2; // Issue #3890
ntp_force_sync = 1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.ntp_server[index -1]);
}
else if (CMND_AP == command_code) {
if ((payload >= 0) && (payload <= 2)) {
switch (payload) {
case 0: // Toggle
Settings.sta_active ^= 1;
break;
case 1: // AP1
case 2: // AP2
Settings.sta_active = payload -1;
}
restart_flag = 2;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active]);
}
else if ((CMND_SSID == command_code) && (index > 0) && (index <= 2)) {
if ((data_len > 0) && (data_len < sizeof(Settings.sta_ssid[0]))) {
strlcpy(Settings.sta_ssid[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1 == index) ? STA_SSID1 : STA_SSID2 : dataBuf, sizeof(Settings.sta_ssid[0]));
Settings.sta_active = index -1;
restart_flag = 2;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.sta_ssid[index -1]);
}
else if ((CMND_PASSWORD == command_code) && (index > 0) && (index <= 2)) {
if ((data_len > 0) && (data_len < sizeof(Settings.sta_pwd[0]))) {
strlcpy(Settings.sta_pwd[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1 == index) ? STA_PASS1 : STA_PASS2 : dataBuf, sizeof(Settings.sta_pwd[0]));
Settings.sta_active = index -1;
restart_flag = 2;
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.sta_pwd[index -1]);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_ASTERIX, command, index);
}
}
else if ((CMND_HOSTNAME == command_code) && !grpflg) {
if ((data_len > 0) && (data_len < sizeof(Settings.hostname))) {
strlcpy(Settings.hostname, (SC_DEFAULT == Shortcut(dataBuf)) ? WIFI_HOSTNAME : dataBuf, sizeof(Settings.hostname));
if (strstr(Settings.hostname,"%")) {
strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname));
}
restart_flag = 2;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, Settings.hostname);
}
else if (CMND_WIFICONFIG == command_code) {
if ((payload >= WIFI_RESTART) && (payload < MAX_WIFI_OPTION)) {
Settings.sta_config = payload;
wifi_state_flag = Settings.sta_config;
snprintf_P(stemp1, sizeof(stemp1), kWifiConfig[Settings.sta_config]);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_WIFICONFIG "\":\"%s " D_JSON_SELECTED "\"}"), stemp1);
if (WifiState() > WIFI_RESTART) {
// snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s after restart"), mqtt_data);
restart_flag = 2;
}
} else {
snprintf_P(stemp1, sizeof(stemp1), kWifiConfig[Settings.sta_config]);
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.sta_config, stemp1);
}
}
else if ((CMND_FRIENDLYNAME == command_code) && (index > 0) && (index <= MAX_FRIENDLYNAMES)) {
if ((data_len > 0) && (data_len < sizeof(Settings.friendlyname[0]))) {
if (1 == index) {
snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME));
} else {
snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME "%d"), index);
}
strlcpy(Settings.friendlyname[index -1], (SC_DEFAULT == Shortcut(dataBuf)) ? stemp1 : dataBuf, sizeof(Settings.friendlyname[index -1]));
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.friendlyname[index -1]);
}
else if ((CMND_SWITCHMODE == command_code) && (index > 0) && (index <= MAX_SWITCHES)) {
if ((payload >= 0) && (payload < MAX_SWITCH_OPTION)) {
Settings.switchmode[index -1] = payload;
GpioSwitchPinMode(index -1);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_NVALUE, command, index, Settings.switchmode[index-1]);
}
else if (CMND_TELEPERIOD == command_code) {
if ((payload >= 0) && (payload < 3601)) {
Settings.tele_period = (1 == payload) ? TELE_PERIOD : payload;
if ((Settings.tele_period > 0) && (Settings.tele_period < 10)) Settings.tele_period = 10; // Do not allow periods < 10 seconds
tele_period = Settings.tele_period;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE_UNIT, command, Settings.tele_period, (Settings.flag.value_units) ? " " D_UNIT_SECOND : "");
}
else if (CMND_RESET == command_code) {
switch (payload) {
case 1:
restart_flag = 211;
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command , D_JSON_RESET_AND_RESTARTING);
break;
case 2:
case 3:
case 4:
case 5:
restart_flag = 210 + payload;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_RESET "\":\"" D_JSON_ERASE ", " D_JSON_RESET_AND_RESTARTING "\"}"));
break;
default:
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_ONE_TO_RESET);
}
}
else if (CMND_TIMEZONE == command_code) {
if ((data_len > 0) && (payload >= -13)) {
Settings.timezone = payload;
Settings.timezone_minutes = 0;
if (payload < 15) {
p = strtok (dataBuf, ":");
if (p) {
p = strtok (NULL, ":");
if (p) {
Settings.timezone_minutes = strtol(p, NULL, 10);
if (Settings.timezone_minutes > 59) { Settings.timezone_minutes = 59; }
}
}
} else {
Settings.timezone = 99;
}
ntp_force_sync = 1;
}
if (99 == Settings.timezone) {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.timezone);
} else {
snprintf_P(stemp1, sizeof(stemp1), PSTR("%+03d:%02d"), Settings.timezone, Settings.timezone_minutes);
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, stemp1);
}
}
else if ((CMND_TIMESTD == command_code) || (CMND_TIMEDST == command_code)) {
// TimeStd 0/1, 0/1/2/3/4, 1..12, 1..7, 0..23, +/-780
uint8_t ts = 0;
if (CMND_TIMEDST == command_code) { ts = 1; }
if (data_len > 0) {
if (strstr(dataBuf, ",")) { // Process parameter entry
uint8_t tpos = 0; // Parameter index
int value = 0;
p = dataBuf; // Parameters like "1, 2,3 , 4 ,5, -120" or ",,,,,+240"
char *q = p; // Value entered flag
while (p && (tpos < 7)) {
if (p > q) { // Any value entered
if (1 == tpos) { Settings.tflag[ts].hemis = value &1; }
if (2 == tpos) { Settings.tflag[ts].week = (value < 0) ? 0 : (value > 4) ? 4 : value; }
if (3 == tpos) { Settings.tflag[ts].month = (value < 1) ? 1 : (value > 12) ? 12 : value; }
if (4 == tpos) { Settings.tflag[ts].dow = (value < 1) ? 1 : (value > 7) ? 7 : value; }
if (5 == tpos) { Settings.tflag[ts].hour = (value < 0) ? 0 : (value > 23) ? 23 : value; }
if (6 == tpos) { Settings.toffset[ts] = (value < -900) ? -900 : (value > 900) ? 900 : value; }
}
p = Trim(p); // Skip spaces
if (tpos && (*p == ',')) { p++; } // Skip separator
p = Trim(p); // Skip spaces
q = p; // Reset any value entered flag
value = strtol(p, &p, 10);
tpos++; // Next parameter
}
ntp_force_sync = 1;
} else {
if (0 == payload) {
if (0 == ts) {
SettingsResetStd();
} else {
SettingsResetDst();
}
}
ntp_force_sync = 1;
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"%s\":{\"Hemisphere\":%d,\"Week\":%d,\"Month\":%d,\"Day\":%d,\"Hour\":%d,\"Offset\":%d}}"),
command, Settings.tflag[ts].hemis, Settings.tflag[ts].week, Settings.tflag[ts].month, Settings.tflag[ts].dow, Settings.tflag[ts].hour, Settings.toffset[ts]);
}
else if (CMND_ALTITUDE == command_code) {
if ((data_len > 0) && ((payload >= -30000) && (payload <= 30000))) {
Settings.altitude = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.altitude);
}
else if (CMND_LEDPOWER == command_code) {
if ((payload >= 0) && (payload <= 2)) {
Settings.ledstate &= 8;
switch (payload) {
case 0: // Off
case 1: // On
Settings.ledstate = payload << 3;
break;
case 2: // Toggle
Settings.ledstate ^= 8;
break;
}
blinks = 0;
SetLedPower(Settings.ledstate &8);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, GetStateText(bitRead(Settings.ledstate, 3)));
}
else if (CMND_LEDSTATE == command_code) {
if ((payload >= 0) && (payload < MAX_LED_OPTION)) {
Settings.ledstate = payload;
if (!Settings.ledstate) SetLedPower(0);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.ledstate);
}
#ifdef USE_I2C
else if ((CMND_I2CSCAN == command_code) && i2c_flg) {
I2cScan(mqtt_data, sizeof(mqtt_data));
}
#endif // USE_I2C
else type = NULL; // Unknown command
}
if (type == NULL) {
blinks = 201;
snprintf_P(topicBuf, sizeof(topicBuf), PSTR(D_JSON_COMMAND));
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_UNKNOWN "\"}"));
type = (char*)topicBuf;
}
if (mqtt_data[0] != '\0') MqttPublishPrefixTopic_P(RESULT_OR_STAT, type);
fallback_topic_flag = 0;
}
/********************************************************************************************/
boolean SendKey(byte key, byte device, byte state)
{
// key 0 = button_topic
// key 1 = switch_topic
// state 0 = off
// state 1 = on
// state 2 = toggle
// state 3 = hold
// state 9 = clear retain flag
char stopic[TOPSZ];
char scommand[CMDSZ];
char key_topic[sizeof(Settings.button_topic)];
boolean result = false;
char *tmp = (key) ? Settings.switch_topic : Settings.button_topic;
Format(key_topic, tmp, sizeof(key_topic));
if (Settings.flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) {
if (!key && (device > devices_present)) device = 1; // Only allow number of buttons up to number of devices
GetTopic_P(stopic, CMND, key_topic, GetPowerDevice(scommand, device, sizeof(scommand), key)); // cmnd/switchtopic/POWERx
if (9 == state) {
mqtt_data[0] = '\0';
} else {
if ((!strcmp(mqtt_topic, key_topic) || !strcmp(Settings.mqtt_grptopic, key_topic)) && (2 == state)) {
state = ~(power >> (device -1)) &1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), GetStateText(state));
}
#ifdef USE_DOMOTICZ
if (!(DomoticzSendKey(key, device, state, strlen(mqtt_data)))) {
MqttPublishDirect(stopic, (key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain);
}
#else
MqttPublishDirect(stopic, (key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain);
#endif // USE_DOMOTICZ
result = true;
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? "Switch" : "Button", device, state);
result = XdrvRulesProcess();
}
#ifdef USE_KNX
KnxSendButtonPower(key, device, state);
#endif // USE_KNX
return result;
}
void ExecuteCommandPower(byte device, byte state, int source)
{
// device = Relay number 1 and up
// state 0 = Relay Off
// state 1 = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled)
// state 2 = Toggle relay
// state 3 = Blink relay
// state 4 = Stop blinking relay
// state 6 = Relay Off and no publishPowerState
// state 7 = Relay On and no publishPowerState
// state 9 = Show power state
// ShowSource(source);
if (SONOFF_IFAN02 == Settings.module) {
blink_mask &= 1; // No blinking on the fan relays
Settings.flag.interlock = 0; // No interlock mode as it is already done by the microcontroller
Settings.pulse_timer[1] = 0; // No pulsetimers on the fan relays
Settings.pulse_timer[2] = 0;
Settings.pulse_timer[3] = 0;
}
uint8_t publish_power = 1;
if ((POWER_OFF_NO_STATE == state) || (POWER_ON_NO_STATE == state)) {
state &= 1;
publish_power = 0;
}
if ((device < 1) || (device > devices_present)) device = 1;
if (device <= MAX_PULSETIMERS) { SetPulseTimer(device -1, 0); }
power_t mask = 1 << (device -1);
if (state <= POWER_TOGGLE) {
if ((blink_mask & mask)) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
}
if (Settings.flag.interlock && !interlock_mutex) { // Clear all but masked relay
interlock_mutex = 1;
for (byte i = 0; i < devices_present; i++) {
power_t imask = 1 << i;
if ((power & imask) && (mask != imask)) ExecuteCommandPower(i +1, POWER_OFF, SRC_IGNORE);
}
interlock_mutex = 0;
}
switch (state) {
case POWER_OFF: {
power &= (POWER_MASK ^ mask);
break; }
case POWER_ON:
power |= mask;
break;
case POWER_TOGGLE:
power ^= mask;
}
SetDevicePower(power, source);
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(device);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxUpdatePowerState(device, power);
#endif // USE_KNX
if (device <= MAX_PULSETIMERS) { // Restart PulseTime if powered On
SetPulseTimer(device -1, (((POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? ~power : power) & mask) ? Settings.pulse_timer[device -1] : 0);
}
}
else if (POWER_BLINK == state) {
if (!(blink_mask & mask)) {
blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state
blink_power = (power >> (device -1))&1; // Prep to Toggle
}
blink_timer = millis() + 100;
blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1;
blink_mask |= mask; // Set device mask
MqttPublishPowerBlinkState(device);
return;
}
else if (POWER_BLINK_STOP == state) {
byte flag = (blink_mask & mask);
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
if (flag) ExecuteCommandPower(device, (blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state
return;
}
if (publish_power) MqttPublishPowerState(device);
}
void StopAllPowerBlink(void)
{
power_t mask;
for (byte i = 1; i <= devices_present; i++) {
mask = 1 << (i -1);
if (blink_mask & mask) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(i);
ExecuteCommandPower(i, (blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state
}
}
}
void ExecuteCommand(char *cmnd, int source)
{
char stopic[CMDSZ];
char svalue[INPUT_BUFFER_SIZE];
char *start;
char *token;
ShowFreeMem(PSTR("ExecuteCommand"));
ShowSource(source);
token = strtok(cmnd, " ");
if (token != NULL) {
start = strrchr(token, '/'); // Skip possible cmnd/sonoff/ preamble
if (start) token = start +1;
}
snprintf_P(stopic, sizeof(stopic), PSTR("/%s"), (token == NULL) ? "" : token);
token = strtok(NULL, "");
// snprintf_P(svalue, sizeof(svalue), (token == NULL) ? "" : token); // Fails with command FullTopic home/%prefix%/%topic% as it processes %p of %prefix%
strlcpy(svalue, (token == NULL) ? "" : token, sizeof(svalue)); // Fixed 5.8.0b
MqttDataHandler(stopic, (byte*)svalue, strlen(svalue));
}
void PublishStatus(uint8_t payload)
{
uint8_t option = STAT;
char stemp[MAX_FRIENDLYNAMES * (sizeof(Settings.friendlyname[0]) +MAX_FRIENDLYNAMES)];
char stemp2[MAX_SWITCHES * 3];
// Workaround MQTT - TCP/IP stack queueing when SUB_PREFIX = PUB_PREFIX
if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1]) && (!payload)) option++; // TELE
if ((!Settings.flag.mqtt_enabled) && (6 == payload)) payload = 99;
if (!energy_flg && (9 == payload)) payload = 99;
if ((0 == payload) || (99 == payload)) {
uint8_t maxfn = (devices_present > MAX_FRIENDLYNAMES) ? MAX_FRIENDLYNAMES : (!devices_present) ? 1 : devices_present;
if (SONOFF_IFAN02 == Settings.module) { maxfn = 1; }
stemp[0] = '\0';
for (byte i = 0; i < maxfn; i++) {
snprintf_P(stemp, sizeof(stemp), PSTR("%s%s\"%s\"" ), stemp, (i > 0 ? "," : ""), Settings.friendlyname[i]);
}
stemp2[0] = '\0';
for (byte i = 0; i < MAX_SWITCHES; i++) {
snprintf_P(stemp2, sizeof(stemp2), PSTR("%s%s%d" ), stemp2, (i > 0 ? "," : ""), Settings.switchmode[i]);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS "\":{\"" D_CMND_MODULE "\":%d,\"" D_CMND_FRIENDLYNAME "\":[%s],\"" D_CMND_TOPIC "\":\"%s\",\"" D_CMND_BUTTONTOPIC "\":\"%s\",\"" D_CMND_POWER "\":%d,\"" D_CMND_POWERONSTATE "\":%d,\"" D_CMND_LEDSTATE "\":%d,\"" D_CMND_SAVEDATA "\":%d,\"" D_JSON_SAVESTATE "\":%d,\"" D_CMND_SWITCHTOPIC "\":\"%s\",\"" D_CMND_SWITCHMODE "\":[%s],\"" D_CMND_BUTTONRETAIN "\":%d,\"" D_CMND_SWITCHRETAIN "\":%d,\"" D_CMND_SENSORRETAIN "\":%d,\"" D_CMND_POWERRETAIN "\":%d}}"),
Settings.module +1, stemp, mqtt_topic, Settings.button_topic, power, Settings.poweronstate, Settings.ledstate, Settings.save_data, Settings.flag.save_state, Settings.switch_topic, stemp2, Settings.flag.mqtt_button_retain, Settings.flag.mqtt_switch_retain, Settings.flag.mqtt_sensor_retain, Settings.flag.mqtt_power_retain);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS));
}
if ((0 == payload) || (1 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS1_PARAMETER "\":{\"" D_JSON_BAUDRATE "\":%d,\"" D_CMND_GROUPTOPIC "\":\"%s\",\"" D_CMND_OTAURL "\":\"%s\",\"" D_JSON_RESTARTREASON "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\",\"" D_JSON_STARTUPUTC "\":\"%s\",\"" D_CMND_SLEEP "\":%d,\"" D_JSON_BOOTCOUNT "\":%d,\"" D_JSON_SAVECOUNT "\":%d,\"" D_JSON_SAVEADDRESS "\":\"%X\"}}"),
baudrate, Settings.mqtt_grptopic, Settings.ota_url, GetResetReason().c_str(), GetUptime().c_str(), GetDateAndTime(DT_RESTART).c_str(), Settings.sleep, Settings.bootcount, Settings.save_flag, GetSettingsAddress());
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "1"));
}
if ((0 == payload) || (2 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS2_FIRMWARE "\":{\"" D_JSON_VERSION "\":\"%s%s\",\"" D_JSON_BUILDDATETIME "\":\"%s\",\"" D_JSON_BOOTVERSION "\":%d,\"" D_JSON_COREVERSION "\":\"" ARDUINO_ESP8266_RELEASE "\",\"" D_JSON_SDKVERSION "\":\"%s\"}}"),
my_version, my_image, GetBuildDateAndTime().c_str(), ESP.getBootVersion(), ESP.getSdkVersion());
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "2"));
}
if ((0 == payload) || (3 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS3_LOGGING "\":{\"" D_CMND_SERIALLOG "\":%d,\"" D_CMND_WEBLOG "\":%d,\"" D_CMND_SYSLOG "\":%d,\"" D_CMND_LOGHOST "\":\"%s\",\"" D_CMND_LOGPORT "\":%d,\"" D_CMND_SSID "\":[\"%s\",\"%s\"],\"" D_CMND_TELEPERIOD "\":%d,\"" D_CMND_SETOPTION "\":[\"%08X\",\"%08X\",\"%08X\"]}}"),
Settings.seriallog_level, Settings.weblog_level, Settings.syslog_level, Settings.syslog_host, Settings.syslog_port, Settings.sta_ssid[0], Settings.sta_ssid[1], Settings.tele_period, Settings.flag.data, Settings.flag2.data, Settings.flag3.data);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "3"));
}
if ((0 == payload) || (4 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS4_MEMORY "\":{\"" D_JSON_PROGRAMSIZE "\":%d,\"" D_JSON_FREEMEMORY "\":%d,\"" D_JSON_HEAPSIZE "\":%d,\"" D_JSON_PROGRAMFLASHSIZE "\":%d,\"" D_JSON_FLASHSIZE "\":%d,\"" D_JSON_FLASHCHIPID "\":\"%06X\",\"" D_JSON_FLASHMODE "\":%d,\"" D_JSON_FEATURES "\":[\"%08X\",\"%08X\",\"%08X\",\"%08X\",\"%08X\"]}}"),
ESP.getSketchSize()/1024, ESP.getFreeSketchSpace()/1024, ESP.getFreeHeap()/1024, ESP.getFlashChipSize()/1024, ESP.getFlashChipRealSize()/1024, ESP.getFlashChipId(), ESP.getFlashChipMode(), LANGUAGE_LCID, feature_drv1, feature_drv2, feature_sns1, feature_sns2);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "4"));
}
if ((0 == payload) || (5 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS5_NETWORK "\":{\"" D_CMND_HOSTNAME "\":\"%s\",\"" D_CMND_IPADDRESS "\":\"%s\",\"" D_JSON_GATEWAY "\":\"%s\",\"" D_JSON_SUBNETMASK "\":\"%s\",\"" D_JSON_DNSSERVER "\":\"%s\",\"" D_JSON_MAC "\":\"%s\",\"" D_CMND_WEBSERVER "\":%d,\"" D_CMND_WIFICONFIG "\":%d}}"),
my_hostname, WiFi.localIP().toString().c_str(), IPAddress(Settings.ip_address[1]).toString().c_str(), IPAddress(Settings.ip_address[2]).toString().c_str(), IPAddress(Settings.ip_address[3]).toString().c_str(),
WiFi.macAddress().c_str(), Settings.webserver, Settings.sta_config);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "5"));
}
if (((0 == payload) || (6 == payload)) && Settings.flag.mqtt_enabled) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS6_MQTT "\":{\"" D_CMND_MQTTHOST "\":\"%s\",\"" D_CMND_MQTTPORT "\":%d,\"" D_CMND_MQTTCLIENT D_JSON_MASK "\":\"%s\",\"" D_CMND_MQTTCLIENT "\":\"%s\",\"" D_CMND_MQTTUSER "\":\"%s\",\"MqttType\":%d,\"MAX_PACKET_SIZE\":%d,\"KEEPALIVE\":%d}}"),
Settings.mqtt_host, Settings.mqtt_port, Settings.mqtt_client, mqtt_client, Settings.mqtt_user, MqttLibraryType(), MQTT_MAX_PACKET_SIZE, MQTT_KEEPALIVE);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "6"));
}
if ((0 == payload) || (7 == payload)) {
if (99 == Settings.timezone) {
snprintf_P(stemp, sizeof(stemp), PSTR("%d" ), Settings.timezone);
} else {
snprintf_P(stemp, sizeof(stemp), PSTR("\"%s\"" ), GetTimeZone().c_str());
}
#if defined(USE_TIMERS) && defined(USE_SUNRISE)
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS7_TIME "\":{\"" D_JSON_UTC_TIME "\":\"%s\",\"" D_JSON_LOCAL_TIME "\":\"%s\",\"" D_JSON_STARTDST "\":\"%s\",\"" D_JSON_ENDDST "\":\"%s\",\"" D_CMND_TIMEZONE "\":%s,\"" D_JSON_SUNRISE "\":\"%s\",\"" D_JSON_SUNSET "\":\"%s\"}}"),
GetTime(0).c_str(), GetTime(1).c_str(), GetTime(2).c_str(), GetTime(3).c_str(), stemp, GetSun(0).c_str(), GetSun(1).c_str());
#else
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS7_TIME "\":{\"" D_JSON_UTC_TIME "\":\"%s\",\"" D_JSON_LOCAL_TIME "\":\"%s\",\"" D_JSON_STARTDST "\":\"%s\",\"" D_JSON_ENDDST "\":\"%s\",\"" D_CMND_TIMEZONE "\":%s}}"),
GetTime(0).c_str(), GetTime(1).c_str(), GetTime(2).c_str(), GetTime(3).c_str(), stemp);
#endif // USE_TIMERS and USE_SUNRISE
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "7"));
}
if (energy_flg) {
if ((0 == payload) || (9 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":%d,\"" D_CMND_POWERLOW "\":%d,\"" D_CMND_POWERHIGH "\":%d,\"" D_CMND_VOLTAGELOW "\":%d,\"" D_CMND_VOLTAGEHIGH "\":%d,\"" D_CMND_CURRENTLOW "\":%d,\"" D_CMND_CURRENTHIGH "\":%d}}"),
Settings.energy_power_delta, Settings.energy_min_power, Settings.energy_max_power, Settings.energy_min_voltage, Settings.energy_max_voltage, Settings.energy_min_current, Settings.energy_max_current);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "9"));
}
}
if ((0 == payload) || (8 == payload) || (10 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS10_SENSOR "\":"));
MqttShowSensor();
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
if (8 == payload) {
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "8"));
} else {
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "10"));
}
}
if ((0 == payload) || (11 == payload)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_STATUS D_STATUS11_STATUS "\":"));
MqttShowState();
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "11"));
}
}
void MqttShowPWMState(void)
{
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s\"" D_CMND_PWM "\":{"), mqtt_data);
bool first = true;
for (byte i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 + i] < 99) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_PWM "%d\":%d"), mqtt_data, first ? "" : ",", i+1, Settings.pwm_value[i]);
first = false;
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
}
void MqttShowState(void)
{
char stemp1[33];
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s{\"" D_JSON_TIME "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\""), mqtt_data, GetDateAndTime(DT_LOCAL).c_str(), GetUptime().c_str());
#ifdef USE_ADC_VCC
dtostrfd((double)ESP.getVcc()/1000, 3, stemp1);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_JSON_VCC "\":%s"), mqtt_data, stemp1);
#endif
for (byte i = 0; i < devices_present; i++) {
if (i == light_device -1) {
LightState(1);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":\"%s\""), mqtt_data, GetPowerDevice(stemp1, i +1, sizeof(stemp1), Settings.flag.device_index_enable), GetStateText(bitRead(power, i)));
if (SONOFF_IFAN02 == Settings.module) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_FANSPEED "\":%d"), mqtt_data, GetFanspeed());
break;
}
}
}
if (pwm_present) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,"), mqtt_data);
MqttShowPWMState();
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_RSSI "\":%d}}"),
mqtt_data, Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], WiFi.BSSIDstr().c_str(), WiFi.channel(), WifiGetRssiAsQuality(WiFi.RSSI()));
}
boolean MqttShowSensor(void)
{
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s{\"" D_JSON_TIME "\":\"%s\""), mqtt_data, GetDateAndTime(DT_LOCAL).c_str());
int json_data_start = strlen(mqtt_data);
for (byte i = 0; i < MAX_SWITCHES; i++) {
#ifdef USE_TM1638
if ((pin[GPIO_SWT1 +i] < 99) || ((pin[GPIO_TM16CLK] < 99) && (pin[GPIO_TM16DIO] < 99) && (pin[GPIO_TM16STB] < 99))) {
#else
if (pin[GPIO_SWT1 +i] < 99) {
#endif // USE_TM1638
boolean swm = ((FOLLOW_INV == Settings.switchmode[i]) || (PUSHBUTTON_INV == Settings.switchmode[i]) || (PUSHBUTTONHOLD_INV == Settings.switchmode[i]));
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_JSON_SWITCH "%d\":\"%s\""), mqtt_data, i +1, GetStateText(swm ^ lastwallswitch[i]));
}
}
XsnsCall(FUNC_JSON_APPEND);
boolean json_data_available = (strlen(mqtt_data) - json_data_start);
if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE))) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), mqtt_data, PressureUnit().c_str());
}
if (strstr_P(mqtt_data, PSTR(D_JSON_TEMPERATURE))) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), mqtt_data, TempUnit());
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
if (json_data_available) XdrvCall(FUNC_SHOW_SENSOR);
return json_data_available;
}
/********************************************************************************************/
void PerformEverySecond(void)
{
uptime++;
if (BOOT_LOOP_TIME == uptime) {
RtcReboot.fast_reboot_count = 0;
RtcRebootSave();
Settings.bootcount++; // Moved to here to stop flash writes during start-up
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings.bootcount);
AddLog(LOG_LEVEL_DEBUG);
}
if ((4 == uptime) && (SONOFF_IFAN02 == Settings.module)) { // Microcontroller needs 3 seconds before accepting commands
SetDevicePower(1, SRC_RETRY); // Sync with default power on state microcontroller being Light ON and Fan OFF
SetDevicePower(power, SRC_RETRY); // Set required power on state
}
if (seriallog_timer) {
seriallog_timer--;
if (!seriallog_timer) {
if (seriallog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED));
}
seriallog_level = 0;
}
}
if (syslog_timer) { // Restore syslog level
syslog_timer--;
if (!syslog_timer) {
syslog_level = Settings.syslog_level;
if (Settings.syslog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose)
}
}
}
ResetGlobalValues();
if (Settings.tele_period) {
tele_period++;
if (tele_period == Settings.tele_period -1) {
XsnsCall(FUNC_PREP_BEFORE_TELEPERIOD);
}
if (tele_period >= Settings.tele_period) {
tele_period = 0;
mqtt_data[0] = '\0';
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
mqtt_data[0] = '\0';
if (MqttShowSensor()) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
#ifdef USE_RULES
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_RULES
}
}
}
XdrvCall(FUNC_EVERY_SECOND);
XsnsCall(FUNC_EVERY_SECOND);
if ((2 == RtcTime.minute) && latest_uptime_flag) {
latest_uptime_flag = false;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_TIME "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\"}"), GetDateAndTime(DT_LOCAL).c_str(), GetUptime().c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_UPTIME));
}
if ((3 == RtcTime.minute) && !latest_uptime_flag) latest_uptime_flag = true;
}
/*********************************************************************************************\
* Button handler with single press only or multi-press and hold on all buttons
\*********************************************************************************************/
void ButtonHandler(void)
{
uint8_t button = NOT_PRESSED;
uint8_t button_present = 0;
uint8_t hold_time_extent = IMMINENT_RESET_FACTOR; // Extent hold time factor in case of iminnent Reset command
uint16_t loops_per_second = 1000 / Settings.button_debounce;
char scmnd[20];
uint8_t maxdev = (devices_present > MAX_KEYS) ? MAX_KEYS : devices_present;
for (byte button_index = 0; button_index < maxdev; button_index++) {
button = NOT_PRESSED;
button_present = 0;
if (!button_index && ((SONOFF_DUAL == Settings.module) || (CH4 == Settings.module))) {
button_present = 1;
if (dual_button_code) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BUTTON " " D_CODE " %04X"), dual_button_code);
AddLog(LOG_LEVEL_DEBUG);
button = PRESSED;
if (0xF500 == dual_button_code) { // Button hold
holdbutton[button_index] = (loops_per_second * Settings.param[P_HOLD_TIME] / 10) -1;
hold_time_extent = 1;
}
dual_button_code = 0;
}
} else {
if (pin[GPIO_KEY1 +button_index] < 99) {
if (!((uptime < 4) && (0 == pin[GPIO_KEY1 +button_index]))) { // Block GPIO0 for 4 seconds after poweron to workaround Wemos D1 RTS circuit
button_present = 1;
button = digitalRead(pin[GPIO_KEY1 +button_index]);
}
}
}
if (button_present) {
XdrvMailbox.index = button_index;
XdrvMailbox.payload = button;
if (XdrvCall(FUNC_BUTTON_PRESSED)) {
// Serviced
}
else if (SONOFF_4CHPRO == Settings.module) {
if (holdbutton[button_index]) { holdbutton[button_index]--; }
boolean button_pressed = false;
if ((PRESSED == button) && (NOT_PRESSED == lastbutton[button_index])) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BUTTON "%d " D_LEVEL_10), button_index +1);
AddLog(LOG_LEVEL_DEBUG);
holdbutton[button_index] = loops_per_second;
button_pressed = true;
}
if ((NOT_PRESSED == button) && (PRESSED == lastbutton[button_index])) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BUTTON "%d " D_LEVEL_01), button_index +1);
AddLog(LOG_LEVEL_DEBUG);
if (!holdbutton[button_index]) { button_pressed = true; } // Do not allow within 1 second
}
if (button_pressed) {
if (!SendKey(0, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
}
}
else {
if ((PRESSED == button) && (NOT_PRESSED == lastbutton[button_index])) {
if (Settings.flag.button_single) { // Allow only single button press for immediate action
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BUTTON "%d " D_IMMEDIATE), button_index +1);
AddLog(LOG_LEVEL_DEBUG);
if (!SendKey(0, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} else {
multipress[button_index] = (multiwindow[button_index]) ? multipress[button_index] +1 : 1;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_BUTTON "%d " D_MULTI_PRESS " %d"), button_index +1, multipress[button_index]);
AddLog(LOG_LEVEL_DEBUG);
multiwindow[button_index] = loops_per_second / 2; // 0.5 second multi press window
}
blinks = 201;
}
if (NOT_PRESSED == button) {
holdbutton[button_index] = 0;
} else {
holdbutton[button_index]++;
if (Settings.flag.button_single) { // Allow only single button press for immediate action
if (holdbutton[button_index] == loops_per_second * hold_time_extent * Settings.param[P_HOLD_TIME] / 10) { // Button held for factor times longer
// Settings.flag.button_single = 0;
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_SETOPTION "13 0")); // Disable single press only
ExecuteCommand(scmnd, SRC_BUTTON);
}
} else {
if (Settings.flag.button_restrict) { // Button restriction
if (holdbutton[button_index] == loops_per_second * Settings.param[P_HOLD_TIME] / 10) { // Button hold
multipress[button_index] = 0;
SendKey(0, button_index +1, 3); // Execute Hold command via MQTT if ButtonTopic is set
}
} else {
if (holdbutton[button_index] == loops_per_second * hold_time_extent * Settings.param[P_HOLD_TIME] / 10) { // Button held for factor times longer
multipress[button_index] = 0;
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
}
}
if (!Settings.flag.button_single) { // Allow multi-press
if (multiwindow[button_index]) {
multiwindow[button_index]--;
} else {
if (!restart_flag && !holdbutton[button_index] && (multipress[button_index] > 0) && (multipress[button_index] < MAX_BUTTON_COMMANDS +3)) {
boolean single_press = false;
if (multipress[button_index] < 3) { // Single or Double press
if ((SONOFF_DUAL_R2 == Settings.module) || (SONOFF_DUAL == Settings.module) || (CH4 == Settings.module)) {
single_press = true;
} else {
single_press = (Settings.flag.button_swap +1 == multipress[button_index]);
multipress[button_index] = 1;
}
}
if (single_press && SendKey(0, button_index + multipress[button_index], POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
// Success
} else {
if (multipress[button_index] < 3) { // Single or Double press
if (WifiState() > WIFI_RESTART) { // WPSconfig, Smartconfig or Wifimanager active
restart_flag = 1;
} else {
ExecuteCommandPower(button_index + multipress[button_index], POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} else { // 3 - 7 press
if (!Settings.flag.button_restrict) {
snprintf_P(scmnd, sizeof(scmnd), kCommands[multipress[button_index] -3]);
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
}
multipress[button_index] = 0;
}
}
}
}
}
lastbutton[button_index] = button;
}
}
/*********************************************************************************************\
* Switch handler
\*********************************************************************************************/
void SwitchHandler(byte mode)
{
uint8_t button = NOT_PRESSED;
uint8_t switchflag;
uint16_t loops_per_second = 1000 / Settings.switch_debounce;
for (byte i = 0; i < MAX_SWITCHES; i++) {
if ((pin[GPIO_SWT1 +i] < 99) || (mode)) {
if (holdwallswitch[i]) {
holdwallswitch[i]--;
if (0 == holdwallswitch[i]) {
SendKey(1, i +1, 3); // Execute command via MQTT
}
}
if (mode) {
button = virtualswitch[i];
} else {
if (!((uptime < 4) && (0 == pin[GPIO_SWT1 +i]))) { // Block GPIO0 for 4 seconds after poweron to workaround Wemos D1 RTS circuit
button = digitalRead(pin[GPIO_SWT1 +i]);
}
}
if (button != lastwallswitch[i]) {
switchflag = 3;
switch (Settings.switchmode[i]) {
case TOGGLE:
switchflag = 2; // Toggle
break;
case FOLLOW:
switchflag = button &1; // Follow wall switch state
break;
case FOLLOW_INV:
switchflag = ~button &1; // Follow inverted wall switch state
break;
case PUSHBUTTON:
if ((PRESSED == button) && (NOT_PRESSED == lastwallswitch[i])) {
switchflag = 2; // Toggle with pushbutton to Gnd
}
break;
case PUSHBUTTON_INV:
if ((NOT_PRESSED == button) && (PRESSED == lastwallswitch[i])) {
switchflag = 2; // Toggle with releasing pushbutton from Gnd
}
break;
case PUSHBUTTON_TOGGLE:
if (button != lastwallswitch[i]) {
switchflag = 2; // Toggle with any pushbutton change
}
break;
case PUSHBUTTONHOLD:
if ((PRESSED == button) && (NOT_PRESSED == lastwallswitch[i])) {
holdwallswitch[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10;
}
if ((NOT_PRESSED == button) && (PRESSED == lastwallswitch[i]) && (holdwallswitch[i])) {
holdwallswitch[i] = 0;
switchflag = 2; // Toggle with pushbutton to Gnd
}
break;
case PUSHBUTTONHOLD_INV:
if ((NOT_PRESSED == button) && (PRESSED == lastwallswitch[i])) {
holdwallswitch[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10;
}
if ((PRESSED == button) && (NOT_PRESSED == lastwallswitch[i]) && (holdwallswitch[i])) {
holdwallswitch[i] = 0;
switchflag = 2; // Toggle with pushbutton to Gnd
}
break;
}
if (switchflag < 3) {
if (!SendKey(1, i +1, switchflag)) { // Execute command via MQTT
ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < devices_present)
}
}
lastwallswitch[i] = button;
}
}
}
}
/*********************************************************************************************\
* State loops
\*********************************************************************************************/
/*-------------------------------------------------------------------------------------------*\
* Every 0.1 second
\*-------------------------------------------------------------------------------------------*/
void Every100mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop will shift in time...
power_t power_now;
if (latching_relay_pulse) {
latching_relay_pulse--;
if (!latching_relay_pulse) SetLatchingRelay(0, 0);
}
for (byte i = 0; i < MAX_PULSETIMERS; i++) {
if (pulse_timer[i] != 0L) { // Timer active?
if (TimeReached(pulse_timer[i])) { // Timer finished?
pulse_timer[i] = 0L; // Turn off this timer
ExecuteCommandPower(i +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER);
}
}
}
if (blink_mask) {
if (TimeReached(blink_timer)) {
SetNextTimeInterval(blink_timer, 100 * Settings.blinktime);
blink_counter--;
if (!blink_counter) {
StopAllPowerBlink();
} else {
blink_power ^= 1;
power_now = (power & (POWER_MASK ^ blink_mask)) | ((blink_power) ? blink_mask : 0);
SetDevicePower(power_now, SRC_IGNORE);
}
}
}
// Backlog
if (TimeReached(backlog_delay)) {
if ((backlog_pointer != backlog_index) && !backlog_mutex) {
backlog_mutex = 1;
ExecuteCommand((char*)backlog[backlog_pointer].c_str(), SRC_BACKLOG);
backlog_mutex = 0;
backlog_pointer++;
if (backlog_pointer >= MAX_BACKLOG) { backlog_pointer = 0; }
}
}
}
/*-------------------------------------------------------------------------------------------*\
* Every 0.25 second
\*-------------------------------------------------------------------------------------------*/
void Every250mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop should always be taken...
uint8_t blinkinterval = 1;
state_250mS++;
state_250mS &= 0x3;
if (mqtt_cmnd_publish) mqtt_cmnd_publish--; // Clean up
if (!Settings.flag.global_state) { // Problem blinkyblinky enabled
if (global_state.data) { // Any problem
if (global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest)
if (global_state.wifi_down) { blinkinterval = 3; } // Wifi problem so blink every second (slow)
blinks = 201; // Allow only a single blink in case the problem is solved
}
}
if (blinks || restart_flag || ota_state_flag) {
if (restart_flag || ota_state_flag) { // Overrule blinks and keep led lit
blinkstate = 1; // Stay lit
} else {
blinkspeed--;
if (!blinkspeed) {
blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds
blinkstate ^= 1; // Blink
}
}
if ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) {
// if ( (!Settings.flag.global_state && global_state.data) || ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) ) {
SetLedPower(blinkstate); // Set led on or off
}
if (!blinkstate) {
blinks--;
if (200 == blinks) blinks = 0; // Disable blink
}
}
else if (Settings.ledstate &1) {
boolean tstate = power;
if ((SONOFF_TOUCH == Settings.module) || (SONOFF_T11 == Settings.module) || (SONOFF_T12 == Settings.module) || (SONOFF_T13 == Settings.module)) {
tstate = (!power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark
}
SetLedPower(tstate);
}
/*-------------------------------------------------------------------------------------------*\
* Every second at 0.25 second interval
\*-------------------------------------------------------------------------------------------*/
switch (state_250mS) {
case 0: // Every x.0 second
PerformEverySecond();
if (ota_state_flag && (backlog_pointer == backlog_index)) {
ota_state_flag--;
if (2 == ota_state_flag) {
ota_url = Settings.ota_url;
RtcSettings.ota_loader = 0; // Try requested image first
ota_retry_counter = OTA_ATTEMPTS;
ESPhttpUpdate.rebootOnUpdate(false);
SettingsSave(1); // Free flash for OTA update
}
if (ota_state_flag <= 0) {
#ifdef USE_WEBSERVER
if (Settings.webserver) StopWebserver();
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
ota_state_flag = 92;
ota_result = 0;
ota_retry_counter--;
if (ota_retry_counter) {
strlcpy(mqtt_data, GetOtaUrl(log_data, sizeof(log_data)), sizeof(mqtt_data));
#ifndef BE_MINIMAL
if (RtcSettings.ota_loader) {
char *bch = strrchr(mqtt_data, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it
char *pch = strrchr((bch != NULL) ? bch : mqtt_data, '-'); // Change from filename-DE.bin into filename-minimal.bin
char *ech = strrchr((bch != NULL) ? bch : mqtt_data, '.'); // Change from filename.bin into filename-minimal.bin
if (!pch) pch = ech;
if (pch) {
mqtt_data[pch - mqtt_data] = '\0';
char *ech = strrchr(Settings.ota_url, '.'); // Change from filename.bin into filename-minimal.bin
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s-" D_JSON_MINIMAL "%s"), mqtt_data, ech); // Minimal filename must be filename-minimal
}
}
#endif // BE_MINIMAL
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_UPLOAD "%s"), mqtt_data);
AddLog(LOG_LEVEL_DEBUG);
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(mqtt_data));
#else
// If using core stage or 2.5.0+ the syntax has changed
WiFiClient OTAclient;
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, mqtt_data));
#endif
if (!ota_result) {
#ifndef BE_MINIMAL
int ota_error = ESPhttpUpdate.getLastError();
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_UPLOAD "Ota error %d"), ota_error);
// AddLog(LOG_LEVEL_DEBUG);
if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) {
RtcSettings.ota_loader = 1; // Try minimal image next
}
#endif // BE_MINIMAL
ota_state_flag = 2; // Upgrade failed - retry
}
}
}
if (90 == ota_state_flag) { // Allow MQTT to reconnect
ota_state_flag = 0;
if (ota_result) {
// SetFlashModeDout(); // Force DOUT for both ESP8266 and ESP8285
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING));
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str());
}
restart_flag = 2; // Restart anyway to keep memory clean webserver
MqttPublishPrefixTopic_P(STAT, PSTR(D_CMND_UPGRADE));
}
}
break;
case 1: // Every x.25 second
if (MidnightNow()) { CounterSaveState(); }
if (save_data_counter && (backlog_pointer == backlog_index)) {
save_data_counter--;
if (save_data_counter <= 0) {
if (Settings.flag.save_state) {
power_t mask = POWER_MASK;
for (byte i = 0; i < MAX_PULSETIMERS; i++) {
if ((Settings.pulse_timer[i] > 0) && (Settings.pulse_timer[i] < 30)) { // 3 seconds
mask &= ~(1 << i);
}
}
if (!((Settings.power &mask) == (power &mask))) {
Settings.power = power;
}
} else {
Settings.power = 0;
}
SettingsSave(0);
save_data_counter = Settings.save_data;
}
}
if (restart_flag && (backlog_pointer == backlog_index)) {
if ((214 == restart_flag) || (215 == restart_flag)) {
char storage[sizeof(Settings.sta_ssid) + sizeof(Settings.sta_pwd)];
memcpy(storage, Settings.sta_ssid, sizeof(storage)); // Backup current SSIDs and Passwords
if (215 == restart_flag) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
}
SettingsDefault();
memcpy(Settings.sta_ssid, storage, sizeof(storage)); // Restore current SSIDs and Passwords
restart_flag = 2;
}
else if (213 == restart_flag) {
SettingsSdkErase(); // Erase flash SDK parameters
restart_flag = 2;
}
else if (212 == restart_flag) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
restart_flag = 211;
}
if (211 == restart_flag) {
SettingsDefault();
restart_flag = 2;
}
SettingsSaveAll();
restart_flag--;
if (restart_flag <= 0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING));
EspRestart();
}
}
break;
case 2: // Every x.5 second
WifiCheck(wifi_state_flag);
wifi_state_flag = WIFI_RESTART;
break;
case 3: // Every x.75 second
if (!global_state.wifi_down) { MqttCheck(); }
break;
}
}
#ifdef USE_ARDUINO_OTA
/*********************************************************************************************\
* Allow updating via the Arduino OTA-protocol.
*
* - Once started disables current wifi clients and udp
* - Perform restart when done to re-init wifi clients
\*********************************************************************************************/
bool arduino_ota_triggered = false;
uint16_t arduino_ota_progress_dot_count = 0;
void ArduinoOTAInit(void)
{
ArduinoOTA.setPort(8266);
ArduinoOTA.setHostname(Settings.hostname);
if (Settings.web_password[0] !=0) ArduinoOTA.setPassword(Settings.web_password);
ArduinoOTA.onStart([]()
{
SettingsSave(1); // Free flash for OTA update
#ifdef USE_WEBSERVER
if (Settings.webserver) StopWebserver();
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
if (Settings.flag.mqtt_enabled) MqttDisconnect();
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED));
AddLog(LOG_LEVEL_INFO);
arduino_ota_triggered = true;
arduino_ota_progress_dot_count = 0;
delay(100); // Allow time for message xfer
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total)
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) {
arduino_ota_progress_dot_count++;
Serial.printf(".");
if (!(arduino_ota_progress_dot_count % 80)) Serial.println();
}
});
ArduinoOTA.onError([](ota_error_t error)
{
/*
From ArduinoOTA.h:
typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t;
*/
char error_str[100];
if ((LOG_LEVEL_DEBUG <= seriallog_level) && arduino_ota_progress_dot_count) Serial.println();
switch (error) {
case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break;
case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break;
case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break;
default:
snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error);
}
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str);
AddLog(LOG_LEVEL_INFO);
EspRestart();
});
ArduinoOTA.onEnd([]()
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) Serial.println();
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING));
AddLog(LOG_LEVEL_INFO);
EspRestart();
});
ArduinoOTA.begin();
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266"));
AddLog(LOG_LEVEL_INFO);
}
#endif // USE_ARDUINO_OTA
/********************************************************************************************/
void SerialInput(void)
{
while (Serial.available()) {
yield();
serial_in_byte = Serial.read();
/*-------------------------------------------------------------------------------------------*\
* Sonoff dual and ch4 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if ((SONOFF_DUAL == Settings.module) || (CH4 == Settings.module)) {
if (dual_hex_code) {
dual_hex_code--;
if (dual_hex_code) {
dual_button_code = (dual_button_code << 8) | serial_in_byte;
serial_in_byte = 0;
} else {
if (serial_in_byte != 0xA1) {
dual_button_code = 0; // 0xA1 - End of Sonoff dual button code
}
}
}
if (0xA0 == serial_in_byte) { // 0xA0 - Start of Sonoff dual button code
serial_in_byte = 0;
dual_button_code = 0;
dual_hex_code = 3;
}
}
/*-------------------------------------------------------------------------------------------*/
if (XdrvCall(FUNC_SERIAL)) {
serial_in_byte_counter = 0;
Serial.flush();
return;
}
/*-------------------------------------------------------------------------------------------*/
if (serial_in_byte > 127 && !Settings.flag.mqtt_serial_raw) { // binary data...
serial_in_byte_counter = 0;
Serial.flush();
return;
}
if (!Settings.flag.mqtt_serial) {
if (isprint(serial_in_byte)) {
if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // add char to string if it still fits
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
} else {
serial_in_byte_counter = 0;
}
}
} else {
if (serial_in_byte || Settings.flag.mqtt_serial_raw) {
if ((serial_in_byte_counter < INPUT_BUFFER_SIZE -1) &&
((serial_in_byte != Settings.serial_delimiter) || Settings.flag.mqtt_serial_raw)) { // add char to string if it still fits
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
serial_polling_window = millis();
} else {
serial_polling_window = 0;
break;
}
}
}
/*-------------------------------------------------------------------------------------------*\
* Sonoff SC 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if (SONOFF_SC == Settings.module) {
if (serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P
serial_in_buffer[serial_in_byte_counter] = 0; // serial data completed
SonoffScSerialInput(serial_in_buffer);
serial_in_byte_counter = 0;
Serial.flush();
return;
}
}
/*-------------------------------------------------------------------------------------------*/
else if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) {
serial_in_buffer[serial_in_byte_counter] = 0; // serial data completed
seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (byte)LOG_LEVEL_INFO : Settings.seriallog_level;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_COMMAND "%s"), serial_in_buffer);
AddLog(LOG_LEVEL_INFO);
ExecuteCommand(serial_in_buffer, SRC_SERIAL);
serial_in_byte_counter = 0;
serial_polling_window = 0;
Serial.flush();
return;
}
}
if (Settings.flag.mqtt_serial && serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) {
serial_in_buffer[serial_in_byte_counter] = 0; // serial data completed
if (!Settings.flag.mqtt_serial_raw) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_SERIALRECEIVED "\":\"%s\"}"), serial_in_buffer);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_SERIALRECEIVED "\":\""));
for (int i = 0; i < serial_in_byte_counter; i++) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%02x"), mqtt_data, serial_in_buffer[i]);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s\"}"), mqtt_data);
}
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED));
// XdrvRulesProcess();
serial_in_byte_counter = 0;
}
}
/********************************************************************************************/
void GpioSwitchPinMode(uint8_t index)
{
if (pin[GPIO_SWT1 +index] < 99) {
pinMode(pin[GPIO_SWT1 +index], (16 == pin[GPIO_SWT1 +index]) ? INPUT_PULLDOWN_16 : bitRead(switch_no_pullup, index) ? INPUT : INPUT_PULLUP);
/*
// Re-enable pull-up on Shelly2 as of 20181110 (#4255)
uint8_t no_pullup = bitRead(switch_no_pullup, index); // 0 = INPUT_PULLUP, 1 = INPUT
if (no_pullup) {
if (SHELLY2 == Settings.module) {
// Switchmodes : TOGGLE, FOLLOW, FOLLOW_INV, PUSHBUTTON, PUSHBUTTON_INV, PUSHBUTTONHOLD, PUSHBUTTONHOLD_INV, PUSHBUTTON_TOGGLE, MAX_SWITCH_OPTION
no_pullup = (Settings.switchmode[index] < PUSHBUTTON); // INPUT on TOGGLE, FOLLOW and FOLLOW_INV. INPUT_PULLUP on anything else
}
}
pinMode(pin[GPIO_SWT1 +index], (16 == pin[GPIO_SWT1 +index]) ? INPUT_PULLDOWN_16 : (no_pullup) ? INPUT : INPUT_PULLUP);
*/
}
}
void GpioInit(void)
{
uint8_t mpin;
uint8_t key_no_pullup = 0;
mytmplt def_module;
if (Settings.module >= MAXMODULE) {
Settings.module = MODULE;
Settings.last_module = MODULE;
}
if (Settings.module != Settings.last_module) {
baudrate = APP_BAUDRATE;
}
memcpy_P(&def_module, &kModules[Settings.module], sizeof(def_module));
strlcpy(my_module.name, def_module.name, sizeof(my_module.name));
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
if (Settings.my_gp.io[i] > GPIO_NONE) {
my_module.gp.io[i] = Settings.my_gp.io[i];
}
if ((def_module.gp.io[i] > GPIO_NONE) && (def_module.gp.io[i] < GPIO_USER)) {
my_module.gp.io[i] = def_module.gp.io[i];
}
}
for (byte i = 0; i < GPIO_MAX; i++) {
pin[i] = 99;
}
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
mpin = ValidGPIO(i, my_module.gp.io[i]);
// snprintf_P(log_data, sizeof(log_data), PSTR("DBG: gpio pin %d, mpin %d"), i, mpin);
// AddLog(LOG_LEVEL_DEBUG);
if (mpin) {
if ((mpin >= GPIO_SWT1_NP) && (mpin < (GPIO_SWT1_NP + MAX_SWITCHES))) {
bitSet(switch_no_pullup, mpin - GPIO_SWT1_NP);
mpin -= (GPIO_SWT1_NP - GPIO_SWT1);
}
else if ((mpin >= GPIO_KEY1_NP) && (mpin < (GPIO_KEY1_NP + MAX_KEYS))) {
bitSet(key_no_pullup, mpin - GPIO_KEY1_NP);
mpin -= (GPIO_KEY1_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_REL1_INV) && (mpin < (GPIO_REL1_INV + MAX_RELAYS))) {
bitSet(rel_inverted, mpin - GPIO_REL1_INV);
mpin -= (GPIO_REL1_INV - GPIO_REL1);
}
else if ((mpin >= GPIO_LED1_INV) && (mpin < (GPIO_LED1_INV + MAX_LEDS))) {
bitSet(led_inverted, mpin - GPIO_LED1_INV);
mpin -= (GPIO_LED1_INV - GPIO_LED1);
}
else if ((mpin >= GPIO_PWM1_INV) && (mpin < (GPIO_PWM1_INV + MAX_PWMS))) {
bitSet(pwm_inverted, mpin - GPIO_PWM1_INV);
mpin -= (GPIO_PWM1_INV - GPIO_PWM1);
}
else if ((mpin >= GPIO_CNTR1_NP) && (mpin < (GPIO_CNTR1_NP + MAX_COUNTERS))) {
bitSet(counter_no_pullup, mpin - GPIO_CNTR1_NP);
mpin -= (GPIO_CNTR1_NP - GPIO_CNTR1);
}
#ifdef USE_DHT
else if ((mpin >= GPIO_DHT11) && (mpin <= GPIO_SI7021)) {
if (DhtSetup(i, mpin)) {
dht_flg = 1;
mpin = GPIO_DHT11;
} else {
mpin = 0;
}
}
#endif // USE_DHT
}
if (mpin) pin[mpin] = i;
}
if ((2 == pin[GPIO_TXD]) || (H801 == Settings.module)) { Serial.set_tx(2); }
analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h)
analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
#ifdef USE_SPI
spi_flg = ((((pin[GPIO_SPI_CS] < 99) && (pin[GPIO_SPI_CS] > 14)) || (pin[GPIO_SPI_CS] < 12)) || (((pin[GPIO_SPI_DC] < 99) && (pin[GPIO_SPI_DC] > 14)) || (pin[GPIO_SPI_DC] < 12)));
if (spi_flg) {
for (byte i = 0; i < GPIO_MAX; i++) {
if ((pin[i] >= 12) && (pin[i] <=14)) pin[i] = 99;
}
my_module.gp.io[12] = GPIO_SPI_MISO;
pin[GPIO_SPI_MISO] = 12;
my_module.gp.io[13] = GPIO_SPI_MOSI;
pin[GPIO_SPI_MOSI] = 13;
my_module.gp.io[14] = GPIO_SPI_CLK;
pin[GPIO_SPI_CLK] = 14;
}
#endif // USE_SPI
#ifdef USE_I2C
i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99));
if (i2c_flg) Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]);
#endif // USE_I2C
devices_present = 1;
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
if (Settings.flag.pwm_control) {
for (byte i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 +i] < 99) light_type++; // Use Dimmer/Color control for all PWM as SetOption15 = 1
}
}
if (SONOFF_BRIDGE == Settings.module) {
Settings.flag.mqtt_serial = 0;
baudrate = 19200;
}
if (XdrvCall(FUNC_MODULE_INIT)) {
// Serviced
}
else if (SONOFF_DUAL == Settings.module) {
Settings.flag.mqtt_serial = 0;
devices_present = 2;
baudrate = 19200;
}
else if (CH4 == Settings.module) {
Settings.flag.mqtt_serial = 0;
devices_present = 4;
baudrate = 19200;
}
else if (SONOFF_SC == Settings.module) {
Settings.flag.mqtt_serial = 0;
devices_present = 0;
baudrate = 19200;
}
else if (SONOFF_BN == Settings.module) { // PWM Single color led (White)
light_type = LT_PWM1;
}
else if (SONOFF_LED == Settings.module) { // PWM Dual color led (White warm and cold)
light_type = LT_PWM2;
}
else if (AILIGHT == Settings.module) { // RGBW led
light_type = LT_RGBW;
}
else if (SONOFF_B1 == Settings.module) { // RGBWC led
light_type = LT_RGBWC;
}
else {
if (!light_type) devices_present = 0;
for (byte i = 0; i < MAX_RELAYS; i++) {
if (pin[GPIO_REL1 +i] < 99) {
pinMode(pin[GPIO_REL1 +i], OUTPUT);
devices_present++;
if (EXS_RELAY == Settings.module) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? 1 : 0);
if (i &1) { devices_present--; }
}
}
}
}
for (byte i = 0; i < MAX_KEYS; i++) {
if (pin[GPIO_KEY1 +i] < 99) {
pinMode(pin[GPIO_KEY1 +i], (16 == pin[GPIO_KEY1 +i]) ? INPUT_PULLDOWN_16 : bitRead(key_no_pullup, i) ? INPUT : INPUT_PULLUP);
}
}
for (byte i = 0; i < MAX_LEDS; i++) {
if (pin[GPIO_LED1 +i] < 99) {
pinMode(pin[GPIO_LED1 +i], OUTPUT);
digitalWrite(pin[GPIO_LED1 +i], bitRead(led_inverted, i));
}
}
for (byte i = 0; i < MAX_SWITCHES; i++) {
lastwallswitch[i] = 1; // Init global to virtual switch state;
if (pin[GPIO_SWT1 +i] < 99) {
GpioSwitchPinMode(i);
lastwallswitch[i] = digitalRead(pin[GPIO_SWT1 +i]); // Set global now so doesn't change the saved power state on first switch check
}
virtualswitch[i] = lastwallswitch[i];
}
#ifdef USE_WS2812
if (!light_type && (pin[GPIO_WS2812] < 99)) { // RGB led
devices_present++;
light_type = LT_WS2812;
}
#endif // USE_WS2812
if (!light_type) {
for (byte i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (pin[GPIO_PWM1 +i] < 99) {
pwm_present = true;
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]);
}
}
}
SetLedPower(Settings.ledstate &8);
XdrvCall(FUNC_PRE_INIT);
}
extern "C" {
extern struct rst_info resetInfo;
}
void setup(void)
{
byte idx;
RtcRebootLoad();
if (!RtcRebootValid()) { RtcReboot.fast_reboot_count = 0; }
RtcReboot.fast_reboot_count++;
RtcRebootSave();
Serial.begin(baudrate);
delay(10);
Serial.println();
seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded
snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0
if (VERSION & 0xff) { // Development or patched version 6.3.0.10
snprintf_P(my_version, sizeof(my_version), PSTR("%s.%d"), my_version, VERSION & 0xff);
}
char code_image[20];
snprintf_P(my_image, sizeof(my_image), PSTR("(%s)"), GetTextIndexed(code_image, sizeof(code_image), CODE_IMAGE, kCodeImage));
SettingsLoad();
SettingsDelta();
OsWatchInit();
GetFeatures();
if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well
XdrvCall(FUNC_SETTINGS_OVERRIDE);
}
baudrate = Settings.baudrate * 1200;
mdns_delayed_start = Settings.param[P_MDNS_DELAYED_START];
seriallog_level = Settings.seriallog_level;
seriallog_timer = SERIALLOG_TIMER;
syslog_level = Settings.syslog_level;
stop_flash_rotate = Settings.flag.stop_flash_rotate;
save_data_counter = Settings.save_data;
sleep = Settings.sleep;
#ifndef USE_EMULATION
Settings.flag2.emulation = 0;
#endif // USE_EMULATION
// Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts)
if (RtcReboot.fast_reboot_count > 1) { // Restart twice
Settings.flag3.user_esp8285_enable = 0; // Disable ESP8285 Generic GPIOs interfering with flash SPI
if (RtcReboot.fast_reboot_count > 2) { // Restart 3 times
for (byte i = 0; i < MAX_RULE_SETS; i++) {
if (bitRead(Settings.rule_stop, i)) {
bitWrite(Settings.rule_enabled, i, 0); // Disable rules causing boot loop
}
}
}
if (RtcReboot.fast_reboot_count > 3) { // Restarted 4 times
Settings.rule_enabled = 0; // Disable all rules
}
if (RtcReboot.fast_reboot_count > 4) { // Restarted 5 times
Settings.module = SONOFF_BASIC; // Reset module to Sonoff Basic
// Settings.last_module = SONOFF_BASIC;
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
Settings.my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors
}
}
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count);
AddLog(LOG_LEVEL_DEBUG);
}
Format(mqtt_client, Settings.mqtt_client, sizeof(mqtt_client));
Format(mqtt_topic, Settings.mqtt_topic, sizeof(mqtt_topic));
if (strstr(Settings.hostname, "%")) {
strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname));
snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname, mqtt_topic, ESP.getChipId() & 0x1FFF);
} else {
snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname);
}
GpioInit();
SetSerialBaudrate(baudrate);
WifiConnect();
if (MOTOR == Settings.module) Settings.poweronstate = POWER_ALL_ON; // Needs always on else in limbo!
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) {
SetDevicePower(1, SRC_RESTART);
} else {
if ((resetInfo.reason == REASON_DEFAULT_RST) || (resetInfo.reason == REASON_EXT_SYS_RST)) {
switch (Settings.poweronstate) {
case POWER_ALL_OFF:
case POWER_ALL_OFF_PULSETIME_ON:
power = 0;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_ON: // All on
power = (1 << devices_present) -1;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_SAVED_TOGGLE:
power = (Settings.power & ((1 << devices_present) -1)) ^ POWER_MASK;
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
break;
case POWER_ALL_SAVED:
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
break;
}
} else {
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
}
}
// Issue #526 and #909
for (byte i = 0; i < devices_present; i++) {
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
bitWrite(power, i, digitalRead(pin[GPIO_REL1 +i]) ^ bitRead(rel_inverted, i));
}
if ((i < MAX_PULSETIMERS) && (bitRead(power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate))) {
SetPulseTimer(i, Settings.pulse_timer[i]);
}
}
blink_powersave = power;
snprintf_P(log_data, sizeof(log_data), PSTR(D_PROJECT " %s %s (" D_CMND_TOPIC " %s, " D_FALLBACK " %s, " D_CMND_GROUPTOPIC " %s) " D_VERSION " %s%s-" ARDUINO_ESP8266_RELEASE),
PROJECT, Settings.friendlyname[0], mqtt_topic, mqtt_client, Settings.mqtt_grptopic, my_version, my_image);
AddLog(LOG_LEVEL_INFO);
#ifdef BE_MINIMAL
snprintf_P(log_data, sizeof(log_data), PSTR(D_WARNING_MINIMAL_VERSION));
AddLog(LOG_LEVEL_INFO);
#endif // BE_MINIMAL
RtcInit();
#ifdef USE_ARDUINO_OTA
ArduinoOTAInit();
#endif // USE_ARDUINO_OTA
XdrvCall(FUNC_INIT);
XsnsCall(FUNC_INIT);
}
void loop(void)
{
uint32_t my_sleep = millis();
XdrvCall(FUNC_LOOP);
OsWatchLoop();
if (TimeReached(button_debounce)) {
SetNextTimeInterval(button_debounce, Settings.button_debounce);
ButtonHandler();
}
if (TimeReached(switch_debounce)) {
SetNextTimeInterval(switch_debounce, Settings.switch_debounce);
SwitchHandler(0);
}
if (TimeReached(state_50msecond)) {
SetNextTimeInterval(state_50msecond, 50);
XdrvCall(FUNC_EVERY_50_MSECOND);
XsnsCall(FUNC_EVERY_50_MSECOND);
}
if (TimeReached(state_100msecond)) {
SetNextTimeInterval(state_100msecond, 100);
Every100mSeconds();
XdrvCall(FUNC_EVERY_100_MSECOND);
XsnsCall(FUNC_EVERY_100_MSECOND);
}
if (TimeReached(state_250msecond)) {
SetNextTimeInterval(state_250msecond, 250);
Every250mSeconds();
XdrvCall(FUNC_EVERY_250_MSECOND);
XsnsCall(FUNC_EVERY_250_MSECOND);
}
if (!serial_local) SerialInput();
#ifdef USE_ARDUINO_OTA
ArduinoOTA.handle();
// Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails)
while (arduino_ota_triggered) ArduinoOTA.handle();
#endif // USE_ARDUINO_OTA
// yield(); // yield == delay(0), delay contains yield, auto yield in loop
delay(sleep); // https://github.com/esp8266/Arduino/issues/2021
uint32_t my_activity = millis() - my_sleep;
if (my_activity < (uint32_t)Settings.param[P_LOOP_SLEEP_DELAY]) {
delay((uint32_t)Settings.param[P_LOOP_SLEEP_DELAY] - my_activity); // Provide time for background tasks like wifi
} else {
if (global_state.wifi_down) {
delay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/3 of my_activity period
}
}
}