/* xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Sonoff-Tasmota Copyright (C) 2018 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_DHT /*********************************************************************************************\ * DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy * * Reading temperature or humidity takes about 250 milliseconds! * Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor) * Source: Adafruit Industries https://github.com/adafruit/DHT-sensor-library \*********************************************************************************************/ #define DHT_MAX_SENSORS 3 #define DHT_MAX_RETRY 8 #define MIN_INTERVAL 2000 uint32_t dht_max_cycles; uint8_t dht_data[5]; byte dht_sensors = 0; struct DHTSTRUCT { byte pin; byte type; char stype[12]; uint32_t lastreadtime; uint8_t lastresult; float t = NAN; float h = NAN; } Dht[DHT_MAX_SENSORS]; void DhtReadPrep() { for (byte i = 0; i < dht_sensors; i++) { digitalWrite(Dht[i].pin, HIGH); } } int32_t DhtExpectPulse(byte sensor, bool level) { int32_t count = 0; while (digitalRead(Dht[sensor].pin) == level) { if (count++ >= (int32_t)dht_max_cycles) { return -1; // Timeout } } return count; } void DhtRead(byte sensor) { int32_t cycles[80]; uint32_t currenttime = millis(); if ((currenttime - Dht[sensor].lastreadtime) < MIN_INTERVAL) { return; } Dht[sensor].lastreadtime = currenttime; dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0; // digitalWrite(Dht[sensor].pin, HIGH); // delay(250); if (Dht[sensor].lastresult > DHT_MAX_RETRY) { Dht[sensor].lastresult = 0; digitalWrite(Dht[sensor].pin, HIGH); // Retry read prep delay(250); } pinMode(Dht[sensor].pin, OUTPUT); digitalWrite(Dht[sensor].pin, LOW); if (GPIO_SI7021 == Dht[sensor].type) { delayMicroseconds(500); } else { delay(20); } noInterrupts(); digitalWrite(Dht[sensor].pin, HIGH); delayMicroseconds(40); pinMode(Dht[sensor].pin, INPUT_PULLUP); delayMicroseconds(10); if (-1 == DhtExpectPulse(sensor, LOW)) { AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE)); Dht[sensor].lastresult++; return; } if (-1 == DhtExpectPulse(sensor, HIGH)) { AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_HIGH " " D_PULSE)); Dht[sensor].lastresult++; return; } for (int i = 0; i < 80; i += 2) { cycles[i] = DhtExpectPulse(sensor, LOW); cycles[i+1] = DhtExpectPulse(sensor, HIGH); } interrupts(); for (int i = 0; i < 40; ++i) { int32_t lowCycles = cycles[2*i]; int32_t highCycles = cycles[2*i+1]; if ((-1 == lowCycles) || (-1 == highCycles)) { AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_PULSE)); Dht[sensor].lastresult++; return; } dht_data[i/8] <<= 1; if (highCycles > lowCycles) { dht_data[i / 8] |= 1; } } snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DHT D_RECEIVED " %02X, %02X, %02X, %02X, %02X =? %02X"), dht_data[0], dht_data[1], dht_data[2], dht_data[3], dht_data[4], (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF); AddLog(LOG_LEVEL_DEBUG); if (dht_data[4] == ((dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF)) { Dht[sensor].lastresult = 0; } else { AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE)); Dht[sensor].lastresult++; } } boolean DhtReadTempHum(byte sensor, float &t, float &h) { if (NAN == Dht[sensor].h) { t = NAN; h = NAN; } else { if (Dht[sensor].lastresult > DHT_MAX_RETRY) { // Reset after 8 misses Dht[sensor].t = NAN; Dht[sensor].h = NAN; } t = Dht[sensor].t; h = Dht[sensor].h; } DhtRead(sensor); if (!Dht[sensor].lastresult) { switch (Dht[sensor].type) { case GPIO_DHT11: h = dht_data[0]; t = dht_data[2]; break; case GPIO_DHT22: case GPIO_SI7021: h = ((dht_data[0] << 8) | dht_data[1]) * 0.1; t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1; if (dht_data[2] & 0x80) { t *= -1; } break; } t = ConvertTemp(t); if (!isnan(t)) { Dht[sensor].t = t; } if (!isnan(h)) { Dht[sensor].h = h; } } return (!isnan(t) && !isnan(h)); } boolean DhtSetup(byte pin, byte type) { boolean success = false; if (dht_sensors < DHT_MAX_SENSORS) { Dht[dht_sensors].pin = pin; Dht[dht_sensors].type = type; dht_sensors++; success = true; } return success; } /********************************************************************************************/ void DhtInit() { dht_max_cycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for reading pulses from DHT sensor. for (byte i = 0; i < dht_sensors; i++) { pinMode(Dht[i].pin, INPUT_PULLUP); Dht[i].lastreadtime = 0; Dht[i].lastresult = 0; GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames); if (dht_sensors > 1) { snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s-%02d"), Dht[i].stype, Dht[i].pin); } } } void DhtShow(boolean json) { char temperature[10]; char humidity[10]; byte dsxflg = 0; for (byte i = 0; i < dht_sensors; i++) { float t = NAN; float h = NAN; if (DhtReadTempHum(i, t, h)) { // Read temperature dtostrfd(t, Settings.flag2.temperature_resolution, temperature); dtostrfd(h, Settings.flag2.humidity_resolution, humidity); if (json) { snprintf_P(mqtt_data, sizeof(mqtt_data), JSON_SNS_TEMPHUM, mqtt_data, Dht[i].stype, temperature, humidity); #ifdef USE_DOMOTICZ if (!dsxflg) { DomoticzTempHumSensor(temperature, humidity); dsxflg++; } #endif // USE_DOMOTICZ #ifdef USE_KNX KNX_Sensor(KNX_temperature, t); KNX_Sensor(KNX_humidity, h); #endif // USE_KNX #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, Dht[i].stype, temperature, TempUnit()); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, Dht[i].stype, humidity); #endif // USE_WEBSERVER } } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ #define XSNS_06 boolean Xsns06(byte function) { boolean result = false; if (dht_flg) { switch (function) { case FUNC_INIT: DhtInit(); break; case FUNC_PREP_BEFORE_TELEPERIOD: DhtReadPrep(); break; case FUNC_JSON_APPEND: DhtShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_APPEND: DhtShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_DHT