// Copyright 2019 Fabien Valthier /* Node MCU/ESP8266 Sketch to emulate Teco */ #include "ir_Teco.h" #include #include "IRremoteESP8266.h" #include "IRutils.h" #ifndef ARDUINO #include #endif // Constants // using SPACE modulation. const uint16_t kTecoHdrMark = 9000; const uint16_t kTecoHdrSpace = 4440; const uint16_t kTecoBitMark = 620; const uint16_t kTecoOneSpace = 1650; const uint16_t kTecoZeroSpace = 580; const uint32_t kTecoGap = kDefaultMessageGap; // Made-up value. Just a guess. using irutils::addBoolToString; using irutils::addFanToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; #if SEND_TECO // Send a Teco A/C message. // // Args: // data: Contents of the message to be sent. // nbits: Nr. of bits of data to be sent. Typically kTecoBits. // repeat: Nr. of additional times the message is to be sent. void IRsend::sendTeco(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kTecoHdrMark, kTecoHdrSpace, kTecoBitMark, kTecoOneSpace, kTecoBitMark, kTecoZeroSpace, kTecoBitMark, kTecoGap, data, nbits, 38000, false, repeat, kDutyDefault); } #endif // SEND_TECO // Class for decoding and constructing Teco AC messages. IRTecoAc::IRTecoAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { this->stateReset(); } void IRTecoAc::begin(void) { _irsend.begin(); } #if SEND_TECO void IRTecoAc::send(const uint16_t repeat) { _irsend.sendTeco(remote_state, kTecoBits, repeat); } #endif // SEND_TECO void IRTecoAc::stateReset(void) { // Mode:auto, Power:Off, fan:auto, temp:16, swing:off, sleep:off remote_state = kTecoReset; } uint64_t IRTecoAc::getRaw(void) { return remote_state; } void IRTecoAc::setRaw(const uint64_t new_code) { remote_state = new_code; } void IRTecoAc::on(void) { setPower(true); } void IRTecoAc::off(void) { setPower(false); } void IRTecoAc::setPower(const bool on) { if (on) remote_state |= kTecoPower; else remote_state &= ~kTecoPower; } bool IRTecoAc::getPower(void) { return remote_state & kTecoPower; } void IRTecoAc::setTemp(const uint8_t temp) { uint8_t newtemp = temp; newtemp = std::min(newtemp, kTecoMaxTemp); newtemp = std::max(newtemp, kTecoMinTemp); newtemp -= kTecoMinTemp; // 16=0b000 remote_state &= ~kTecoTempMask; // reinit temp remote_state |= (newtemp << 8); } uint8_t IRTecoAc::getTemp(void) { return ((remote_state & kTecoTempMask) >> 8) + kTecoMinTemp; } // Set the speed of the fan void IRTecoAc::setFan(const uint8_t speed) { uint8_t newspeed = speed; switch (speed) { case kTecoFanAuto: case kTecoFanHigh: case kTecoFanMed: case kTecoFanLow: break; default: newspeed = kTecoFanAuto; } remote_state &= ~kTecoFanMask; // reinit fan remote_state |= (newspeed << 4); } uint8_t IRTecoAc::getFan(void) { return (remote_state & kTecoFanMask) >> 4; } void IRTecoAc::setMode(const uint8_t mode) { uint8_t newmode = mode; switch (mode) { case kTecoAuto: case kTecoCool: case kTecoDry: case kTecoFan: case kTecoHeat: break; default: newmode = kTecoAuto; } remote_state &= ~kTecoModeMask; // reinit mode remote_state |= newmode; } uint8_t IRTecoAc::getMode(void) { return remote_state & kTecoModeMask; } void IRTecoAc::setSwing(const bool on) { if (on) remote_state |= kTecoSwing; else remote_state &= ~kTecoSwing; } bool IRTecoAc::getSwing(void) { return remote_state & kTecoSwing; } void IRTecoAc::setSleep(const bool on) { if (on) remote_state |= kTecoSleep; else remote_state &= ~kTecoSleep; } bool IRTecoAc::getSleep(void) { return remote_state & kTecoSleep; } bool IRTecoAc::getLight(void) { return remote_state & kTecoLight; } void IRTecoAc::setLight(const bool on) { if (on) remote_state |= kTecoLight; else remote_state &= ~kTecoLight; } bool IRTecoAc::getHumid(void) { return remote_state & kTecoHumid; } void IRTecoAc::setHumid(const bool on) { if (on) remote_state |= kTecoHumid; else remote_state &= ~kTecoHumid; } bool IRTecoAc::getSave(void) { return remote_state & kTecoSave; } void IRTecoAc::setSave(const bool on) { if (on) remote_state |= kTecoSave; else remote_state &= ~kTecoSave; } // Convert a standard A/C mode into its native mode. uint8_t IRTecoAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kTecoCool; case stdAc::opmode_t::kHeat: return kTecoHeat; case stdAc::opmode_t::kDry: return kTecoDry; case stdAc::opmode_t::kFan: return kTecoFan; default: return kTecoAuto; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRTecoAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kTecoFanLow; case stdAc::fanspeed_t::kMedium: return kTecoFanMed; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kTecoFanHigh; default: return kTecoFanAuto; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRTecoAc::toCommonMode(const uint8_t mode) { switch (mode) { case kTecoCool: return stdAc::opmode_t::kCool; case kTecoHeat: return stdAc::opmode_t::kHeat; case kTecoDry: return stdAc::opmode_t::kDry; case kTecoFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRTecoAc::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kTecoFanHigh: return stdAc::fanspeed_t::kMax; case kTecoFanMed: return stdAc::fanspeed_t::kMedium; case kTecoFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRTecoAc::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::TECO; result.model = -1; // Not supported. result.power = this->getPower(); result.mode = this->toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.swingv = this->getSwing() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.sleep = this->getSleep() ? 0 : -1; result.light = this->getLight(); // Not supported. result.swingh = stdAc::swingh_t::kOff; result.turbo = false; result.filter = false; result.econo = false; result.quiet = false; result.clean = false; result.beep = false; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRTecoAc::toString(void) { String result = ""; result.reserve(100); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), F("Power"), false); result += addModeToString(getMode(), kTecoAuto, kTecoCool, kTecoHeat, kTecoDry, kTecoFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kTecoFanHigh, kTecoFanLow, kTecoFanAuto, kTecoFanAuto, kTecoFanMed); result += addBoolToString(getSleep(), F("Sleep")); result += addBoolToString(getSwing(), F("Swing")); result += addBoolToString(getLight(), F("Light")); result += addBoolToString(getHumid(), F("Humid")); result += addBoolToString(getSave(), F("Save")); return result; } #if DECODE_TECO // Decode the supplied Teco message. // // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: The number of data bits to expect. Typically kTecoBits. // strict: Flag indicating if we should perform strict matching. // Returns: // boolean: True if it can decode it, false if it can't. // // Status: STABLE / Tested. bool IRrecv::decodeTeco(decode_results* results, const uint16_t nbits, const bool strict) { if (strict && nbits != kTecoBits) return false; // Not what is expected uint64_t data = 0; uint16_t offset = kStartOffset; // Match Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kTecoHdrMark, kTecoHdrSpace, kTecoBitMark, kTecoOneSpace, kTecoBitMark, kTecoZeroSpace, kTecoBitMark, kTecoGap, true, _tolerance, kMarkExcess, false)) return false; // Success results->decode_type = TECO; results->bits = nbits; results->value = data; results->address = 0; results->command = 0; return true; } #endif // DECODE_TECO