/*
xnrg_12_solaxX1.ino - Solax X1 inverter RS485 support for Tasmota
Copyright (C) 2021 Pablo Zerón
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_SOLAX_X1
/*********************************************************************************************\
* Solax X1 Inverter
\*********************************************************************************************/
#define XNRG_12 12
#ifndef SOLAXX1_SPEED
#define SOLAXX1_SPEED 9600 // default solax rs485 speed
#endif
#define INVERTER_ADDRESS 0x0A
#define D_SOLAX_X1 "SolaxX1"
#include
enum solaxX1_Error
{
solaxX1_ERR_NO_ERROR,
solaxX1_ERR_CRC_ERROR
};
union {
uint32_t ErrMessage;
struct {
//BYTE0
uint8_t TzProtectFault:1;//0
uint8_t MainsLostFault:1;//1
uint8_t GridVoltFault:1;//2
uint8_t GridFreqFault:1;//3
uint8_t PLLLostFault:1;//4
uint8_t BusVoltFault:1;//5
uint8_t ErrBit06:1;//6
uint8_t OciFault:1;//7
//BYTE1
uint8_t Dci_OCP_Fault:1;//8
uint8_t ResidualCurrentFault:1;//9
uint8_t PvVoltFault:1;//10
uint8_t Ac10Mins_Voltage_Fault:1;//11
uint8_t IsolationFault:1;//12
uint8_t TemperatureOverFault:1;//13
uint8_t FanFault:1;//14
uint8_t ErrBit15:1;//15
//BYTE2
uint8_t SpiCommsFault:1;//16
uint8_t SciCommsFault:1;//17
uint8_t ErrBit18:1;//18
uint8_t InputConfigFault:1;//19
uint8_t EepromFault:1;//20
uint8_t RelayFault:1;//21
uint8_t SampleConsistenceFault:1;//22
uint8_t ResidualCurrent_DeviceFault:1;//23
//BYTE3
uint8_t ErrBit24:1;//24
uint8_t ErrBit25:1;//25
uint8_t ErrBit26:1;//26
uint8_t ErrBit27:1;//27
uint8_t ErrBit28:1;//28
uint8_t DCI_DeviceFault:1;//29
uint8_t OtherDeviceFault:1;//30
uint8_t ErrBit31:1;//31
};
} ErrCode;
const char kSolaxMode[] PROGMEM = D_WAITING "|" D_CHECKING "|" D_WORKING "|" D_FAILURE "|" D_OFF;
const char kSolaxError[] PROGMEM =
D_SOLAX_ERROR_0 "|" D_SOLAX_ERROR_1 "|" D_SOLAX_ERROR_2 "|" D_SOLAX_ERROR_3 "|" D_SOLAX_ERROR_4 "|" D_SOLAX_ERROR_5 "|"
D_SOLAX_ERROR_6 "|" D_SOLAX_ERROR_7 "|" D_SOLAX_ERROR_8;
/*********************************************************************************************/
TasmotaSerial *solaxX1Serial;
struct SOLAXX1 {
int16_t temperature = 0;
float energy_today = 0;
float dc1_voltage = 0;
float dc2_voltage = 0;
float dc1_current = 0;
float dc2_current = 0;
uint32_t runtime_total = 0;
float dc1_power = 0;
float dc2_power = 0;
uint8_t status = 0;
uint32_t errorCode = 0;
} solaxX1;
union {
uint8_t status;
struct {
uint8_t freeBit7:1; // Bit7
uint8_t freeBit6:1; // Bit6
uint8_t freeBit5:1; // Bit5
uint8_t queryOffline:1; // Bit4
uint8_t queryOfflineSend:1; // Bit3
uint8_t hasAddress:1; // Bit2
uint8_t inverterAddressSend:1; // Bit1
uint8_t inverterSnReceived:1; // Bit0
};
} protocolStatus;
uint8_t header[2] = {0xAA, 0x55};
uint8_t source[2] = {0x00, 0x00};
uint8_t destination[2] = {0x00, 0x00};
uint8_t controlCode[1] = {0x00};
uint8_t functionCode[1] = {0x00};
uint8_t dataLength[1] = {0x00};
uint8_t data[16] = {0};
uint8_t message[30];
/*********************************************************************************************/
bool solaxX1_RS485ReceiveReady(void)
{
return (solaxX1Serial->available() > 1);
}
void solaxX1_RS485Send(uint16_t msgLen)
{
memcpy(message, header, 2);
memcpy(message + 2, source, 2);
memcpy(message + 4, destination, 2);
memcpy(message + 6, controlCode, 1);
memcpy(message + 7, functionCode, 1);
memcpy(message + 8, dataLength, 1);
memcpy(message + 9, data, sizeof(data));
uint16_t crc = solaxX1_calculateCRC(message, msgLen); // calculate out crc bytes
while (solaxX1Serial->available() > 0)
{ // read serial if any old data is available
solaxX1Serial->read();
}
if (PinUsed(GPIO_SOLAXX1_RTS)) {
digitalWrite(Pin(GPIO_SOLAXX1_RTS), HIGH);
}
solaxX1Serial->flush();
solaxX1Serial->write(message, msgLen);
solaxX1Serial->write(highByte(crc));
solaxX1Serial->write(lowByte(crc));
solaxX1Serial->flush();
if (PinUsed(GPIO_SOLAXX1_RTS)) {
digitalWrite(Pin(GPIO_SOLAXX1_RTS), LOW);
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, message, msgLen);
}
uint8_t solaxX1_RS485Receive(uint8_t *value)
{
uint8_t len = 0;
while (solaxX1Serial->available() > 0)
{
value[len++] = (uint8_t)solaxX1Serial->read();
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, value, len);
uint16_t crc = solaxX1_calculateCRC(value, len - 2); // calculate out crc bytes
if (value[len - 1] == lowByte(crc) && value[len - 2] == highByte(crc))
{ // check calc crc with received crc
return solaxX1_ERR_NO_ERROR;
}
else
{
return solaxX1_ERR_CRC_ERROR;
}
}
uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen)
{
uint8_t i;
uint16_t wChkSum;
wChkSum = 0;
for (i = 0; i < bLen; i++)
{
wChkSum = wChkSum + bExternTxPackage[i];
}
return wChkSum;
}
void solaxX1_SendInverterAddress(void)
{
source[0] = 0x00;
destination[0] = 0x00;
destination[1] = 0x00;
controlCode[0] = 0x10;
functionCode[0] = 0x01;
dataLength[0] = 0x0F;
data[14] = INVERTER_ADDRESS; // Inverter Address, It must be unique in case of more inverters in the same rs485 net.
solaxX1_RS485Send(24);
}
void solaxX1_QueryLiveData(void)
{
source[0] = 0x01;
destination[0] = 0x00;
destination[1] = INVERTER_ADDRESS;
controlCode[0] = 0x11;
functionCode[0] = 0x02;
dataLength[0] = 0x00;
solaxX1_RS485Send(9);
}
uint8_t solaxX1_ParseErrorCode(uint32_t code){
ErrCode.ErrMessage = code;
if (code == 0) return 0;
if (ErrCode.MainsLostFault) return 1;
if (ErrCode.GridVoltFault) return 2;
if (ErrCode.GridFreqFault) return 3;
if (ErrCode.PvVoltFault) return 4;
if (ErrCode.IsolationFault) return 5;
if (ErrCode.TemperatureOverFault) return 6;
if (ErrCode.FanFault) return 7;
if (ErrCode.OtherDeviceFault) return 8;
return 0;
}
/*********************************************************************************************/
uint8_t solaxX1_send_retry = 20;
uint8_t solaxX1_queryData_count = 0;
void solaxX1250MSecond(void) // Every 250 milliseconds
{
uint8_t value[61] = {0};
bool data_ready = solaxX1_RS485ReceiveReady();
if (data_ready)
{
if (protocolStatus.hasAddress)
{
uint8_t error = solaxX1_RS485Receive(value);
if (error)
{
DEBUG_SENSOR_LOG(PSTR("SX1: Data response CRC error"));
}
else
{
solaxX1_send_retry = 20;
Energy.data_valid[0] = 0;
solaxX1.temperature = (value[9] << 8) | value[10]; // Temperature
solaxX1.energy_today = (float)((value[11] << 8) | value[12]) * 0.1f; // Energy Today
solaxX1.dc1_voltage = (float)((value[13] << 8) | value[14]) * 0.1f; // PV1 Voltage
solaxX1.dc2_voltage = (float)((value[15] << 8) | value[16]) * 0.1f; // PV2 Voltage
solaxX1.dc1_current = (float)((value[17] << 8) | value[18]) * 0.1f; // PV1 Current
solaxX1.dc2_current = (float)((value[19] << 8) | value[20]) * 0.1f; // PV2 Current
Energy.current[0] = (float)((value[21] << 8) | value[22]) * 0.1f; // AC Current
Energy.voltage[0] = (float)((value[23] << 8) | value[24]) * 0.1f; // AC Voltage
Energy.frequency[0] = (float)((value[25] << 8) | value[26]) * 0.01f; // AC Frequency
Energy.active_power[0] = (float)((value[27] << 8) | value[28]); // AC Power
//temporal = (float)((value[29] << 8) | value[30]) * 0.1f; // Not Used
Energy.import_active[0] = (float)((value[31] << 24) | (value[32] << 16) | (value[33] << 8) | value[34]) * 0.1f; // Energy Total
solaxX1.runtime_total = ((value[35] << 24) | (value[36] << 16) | (value[37] << 8) | value[38]); // Work Time Total
solaxX1.status = (uint8_t)((value[39] << 8) | value[40]); // Work mode
//temporal = (float)((value[41] << 8) | value[42]); // Grid voltage fault value 0.1V
//temporal = (float)((value[43] << 8) | value[44]); // Gird frequency fault value 0.01Hz
//temporal = (float)((value[45] << 8) | value[46]); // Dc injection fault value 1mA
//temporal = (float)((value[47] << 8) | value[48]); // Temperature fault value
//temporal = (float)((value[49] << 8) | value[50]); // Pv1 voltage fault value 0.1V
//temporal = (float)((value[51] << 8) | value[52]); // Pv2 voltage fault value 0.1V
//temporal = (float)((value[53] << 8) | value[54]); // GFC fault value
solaxX1.errorCode = ((value[58] << 24) | (value[57] << 16) | (value[56] << 8) | value[55]); // Error Code
solaxX1.dc1_power = solaxX1.dc1_voltage * solaxX1.dc1_current;
solaxX1.dc2_power = solaxX1.dc2_voltage * solaxX1.dc2_current;
EnergyUpdateTotal(); // 484.708 kWh
}
} else { // end hasAddress
// check address confirmation from inverter
if (protocolStatus.inverterAddressSend)
{
uint8_t error = solaxX1_RS485Receive(value);
if (error)
{
DEBUG_SENSOR_LOG(PSTR("SX1: Address confirmation response CRC error"));
}
else
{
if (value[6] == 0x10 && value[7] == 0x81 && value[9] == 0x06)
{
DEBUG_SENSOR_LOG(PSTR("SX1: Set hasAddress"));
protocolStatus.status = 0b00100000; // hasAddress
}
}
}
// Check inverter serial number and send the set address request
if (protocolStatus.queryOfflineSend)
{
uint8_t error = solaxX1_RS485Receive(value);
if (error)
{
DEBUG_SENSOR_LOG(PSTR("SX1: Query Offline response CRC error"));
}
else
{
// Serial number from query response
if (value[6] == 0x10 && value[7] == 0x80 && protocolStatus.inverterSnReceived == false)
{
for (uint8_t i = 9; i <= 22; i++)
{
data[i - 9] = value[i];
}
solaxX1_SendInverterAddress();
protocolStatus.status = 0b1100000; // inverterSnReceived and inverterAddressSend
DEBUG_SENSOR_LOG(PSTR("SX1: Set inverterSnReceived and inverterAddressSend"));
}
}
}
}
}
if (protocolStatus.hasAddress) {
if (solaxX1_queryData_count <= 0) {
solaxX1_queryData_count = 5;
DEBUG_SENSOR_LOG(PSTR("SX1: Send Retry count: %d"), solaxX1_send_retry);
solaxX1_QueryLiveData();
}
solaxX1_queryData_count--;
}
// request to the inverter the serial number if offline
if (protocolStatus.queryOffline)
{
// We sent the message to query inverters in offline status
source[0] = 0x01;
destination[1] = 0x00;
controlCode[0] = 0x10;
functionCode[0] = 0x00;
dataLength[0] = 0x00;
solaxX1_RS485Send(9);
protocolStatus.status = 0b00010000; // queryOfflineSend
solaxX1_send_retry = 20;
DEBUG_SENSOR_LOG(PSTR("SX1: Query Offline Send"));
}
if (solaxX1_send_retry == 0) {
if (protocolStatus.hasAddress) {
protocolStatus.status = 0b00001000; // queryOffline
Energy.data_valid[0] = ENERGY_WATCHDOG;
solaxX1.temperature = solaxX1.dc1_voltage = solaxX1.dc2_voltage = solaxX1.dc1_current = solaxX1.dc2_current = solaxX1.dc1_power = 0;
solaxX1.dc2_power = Energy.current[0] = Energy.voltage[0] = Energy.frequency[0] = Energy.active_power[0] = 0;
solaxX1.status = 4; // off(line)
} else {
if (protocolStatus.queryOfflineSend) {
protocolStatus.status = 0b00001000; // queryOffline
DEBUG_SENSOR_LOG(PSTR("SX1: Set Query Offline"));
}
solaxX1_send_retry = 20;
}
}
if (!data_ready && solaxX1_send_retry > 0) { solaxX1_send_retry--; }
}
void solaxX1SnsInit(void)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: Solax X1 Inverter Init"));
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: RX-pin: %d, TX-pin: %d, RTS-pin: %d"), Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), Pin(GPIO_SOLAXX1_RTS));
// DEBUG_SENSOR_LOG(PSTR("SX1: RX pin: %d, TX pin: %d"), Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX));
protocolStatus.status = 0b00100000; // hasAddress
solaxX1Serial = new TasmotaSerial(Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), 1);
if (solaxX1Serial->begin(SOLAXX1_SPEED)) {
if (solaxX1Serial->hardwareSerial()) { ClaimSerial(); }
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
if (PinUsed(GPIO_SOLAXX1_RTS)) {
pinMode(Pin(GPIO_SOLAXX1_RTS), OUTPUT);
}
}
void solaxX1DrvInit(void)
{
if (PinUsed(GPIO_SOLAXX1_RX) && PinUsed(GPIO_SOLAXX1_TX)) {
TasmotaGlobal.energy_driver = XNRG_12;
}
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_solaxX1_DATA1[] PROGMEM =
"{s}" D_SOLAX_X1 " " D_SOLAR_POWER "{m}%s " D_UNIT_WATT "{e}"
"{s}" D_SOLAX_X1 " " D_PV1_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}" D_SOLAX_X1 " " D_PV1_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}" D_SOLAX_X1 " " D_PV1_POWER "{m}%s " D_UNIT_WATT "{e}";
#ifdef SOLAXX1_PV2
const char HTTP_SNS_solaxX1_DATA2[] PROGMEM =
"{s}" D_SOLAX_X1 " " D_PV2_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}" D_SOLAX_X1 " " D_PV2_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}" D_SOLAX_X1 " " D_PV2_POWER "{m}%s " D_UNIT_WATT "{e}";
#endif
const char HTTP_SNS_solaxX1_DATA3[] PROGMEM =
"{s}" D_SOLAX_X1 " " D_UPTIME "{m}%s " D_UNIT_HOUR "{e}"
"{s}" D_SOLAX_X1 " " D_STATUS "{m}%s"
"{s}" D_SOLAX_X1 " " D_ERROR "{m}%s";
#endif // USE_WEBSERVER
void solaxX1Show(bool json)
{
char solar_power[33];
dtostrfd(solaxX1.dc1_power + solaxX1.dc2_power, Settings->flag2.wattage_resolution, solar_power);
char pv1_voltage[33];
dtostrfd(solaxX1.dc1_voltage, Settings->flag2.voltage_resolution, pv1_voltage);
char pv1_current[33];
dtostrfd(solaxX1.dc1_current, Settings->flag2.current_resolution, pv1_current);
char pv1_power[33];
dtostrfd(solaxX1.dc1_power, Settings->flag2.wattage_resolution, pv1_power);
#ifdef SOLAXX1_PV2
char pv2_voltage[33];
dtostrfd(solaxX1.dc2_voltage, Settings->flag2.voltage_resolution, pv2_voltage);
char pv2_current[33];
dtostrfd(solaxX1.dc2_current, Settings->flag2.current_resolution, pv2_current);
char pv2_power[33];
dtostrfd(solaxX1.dc2_power, Settings->flag2.wattage_resolution, pv2_power);
#endif
char runtime[33];
dtostrfd(solaxX1.runtime_total, 0, runtime);
char status[33];
GetTextIndexed(status, sizeof(status), solaxX1.status, kSolaxMode);
if (json)
{
ResponseAppend_P(PSTR(",\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s"),
solar_power, pv1_voltage, pv1_current, pv1_power);
#ifdef SOLAXX1_PV2
ResponseAppend_P(PSTR(",\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s"),
pv2_voltage, pv2_current, pv2_power);
#endif
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%d,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%d"),
solaxX1.temperature, runtime, status, solaxX1.errorCode);
#ifdef USE_DOMOTICZ
// Avoid bad temperature report at beginning of the day (spikes of 1200 celsius degrees)
if (0 == TasmotaGlobal.tele_period && solaxX1.temperature < 100) { DomoticzSensor(DZ_TEMP, solaxX1.temperature); }
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_solaxX1_DATA1, solar_power, pv1_voltage, pv1_current, pv1_power);
#ifdef SOLAXX1_PV2
WSContentSend_PD(HTTP_SNS_solaxX1_DATA2, pv2_voltage, pv2_current, pv2_power);
#endif
WSContentSend_Temp(D_SOLAX_X1, solaxX1.temperature);
char errorCodeString[33];
WSContentSend_PD(HTTP_SNS_solaxX1_DATA3, runtime, status,
GetTextIndexed(errorCodeString, sizeof(errorCodeString), solaxX1_ParseErrorCode(solaxX1.errorCode), kSolaxError));
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg12(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_250_MSECOND:
solaxX1250MSecond();
break;
case FUNC_JSON_APPEND:
solaxX1Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
solaxX1Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
solaxX1SnsInit();
break;
case FUNC_PRE_INIT:
solaxX1DrvInit();
break;
}
return result;
}
#endif // USE_SOLAX_X1_NRG
#endif // USE_ENERGY_SENSOR