/* xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - saving configuration in I2C Eeprom of ZBBridge Copyright (C) 2021 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE // ======================= // ZbData v1 // File structure: // // [Array of devices] // uint8 - length of device record (excluding the length byte) // uint16 - short address // // [Device specific data first] // uint8 - length of structure (excluding the length byte) // uint8[] - device wide data // // [Array of data structures] // uint8 - length of structure // uint8[] - list of data // // returns the lenght of consumed buffer, or -1 if error int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) { size_t segment_len = buf.get8(start); if ((segment_len < 6) || (segment_len > len)) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid device wide data length=%d"), segment_len); return -1; } device.last_seen = buf.get32(start+1); device.lqi = buf.get8(start + 5); device.batterypercent = buf.get8(start + 6); return segment_len + 1; } // return true if success bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) { // First hydrate device wide data int32_t ret = hydrateDeviceWideData(device, buf, start, len); if (ret < 0) { return false; } size_t offset = ret; while (offset + 5 <= len) { // each entry is at least 5 bytes uint8_t data_len = buf.get8(start + offset); // #ifdef Z_EEPROM_DEBUG // { // char hex_char[((data_len+1) * 2) + 2]; // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateDeviceData data_len=%d contains %s"), data_len, ToHex_P(buf.buf(start+offset+1), data_len, hex_char, sizeof(hex_char))); // } // #endif Z_Data & data_elt = device.data.createFromBuffer(buf, start + offset + 1, data_len); (void)data_elt; // avoid compiler warning offset += data_len + 1; } return true; } // negative means error // positive is the segment length int32_t hydrateSingleDeviceData(const SBuffer & buf) { uint8_t segment_len = buf.len(); if (segment_len < 4) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len); return -1; } // read shortaddr uint16_t shortaddr = buf.get16(0); if (shortaddr >= 0xFFF0) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr); return -1; } #ifdef Z_EEPROM_DEBUG { if (segment_len > 3) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%*_H"), shortaddr, buf.buf(2), buf.len() - 2); } } #endif // check if the device exists, if not skip the record Z_Device & device = zigbee_devices.findShortAddr(shortaddr); if (&device != nullptr) { // parse the rest bool ret = hydrateDeviceData(device, buf, 2, segment_len - 2); if (!ret) { return -1; } } return segment_len; } SBuffer hibernateDeviceData(const struct Z_Device & device) { SBuffer buf(192); // If we have zero information about the device, just skip ir if (device.validLqi() || device.validBatteryPercent() || device.validLastSeen() || !device.data.isEmpty()) { buf.add8(0x00); // overall length, will be updated later buf.add16(device.shortaddr); // device wide data buf.add8(6); // 6 bytes buf.add32(device.last_seen); buf.add8(device.lqi); buf.add8(device.batterypercent); for (const auto & data_elt : device.data) { size_t item_len = data_elt.DataTypeToLength(data_elt.getType()); buf.add8(item_len); // place-holder for length buf.addBuffer((uint8_t*) &data_elt, item_len); } // update overall length buf.set8(0, buf.len() - 1); { // skip first 3 bytes size_t buf_len = buf.len() - 3; Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%*_H\"}"), device.shortaddr, buf_len, buf.buf(3)); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA)); } } return buf; } /*********************************************************************************************\ * * Hydrate data from the EEPROM * \*********************************************************************************************/ // Parse the entire blob // return true if ok bool hydrateDevicesData(void) { Univ_Read_File f; // universal reader const char * storage_class = PSTR(""); #ifdef USE_ZIGBEE_EEPROM if (zigbee.eeprom_ready) { f.init(ZIGB_DATA2); storage_class = PSTR("EEPROM"); } #endif // USE_ZIGBEE_EEPROM #ifdef USE_UFILESYS File file; if (!f.valid() && dfsp) { file = dfsp->open(TASM_FILE_ZIGBEE_DATA, "r"); if (file) { f.init(&file); storage_class = PSTR("File System"); } } #endif // USE_UFILESYS if (!f.valid() || f.len <= 0) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data")); return false; } uint32_t file_len = f.len; if (file_len > 0) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in %s (%d bytes)"), storage_class, file_len); } else { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in %s"), storage_class); f.close(); return false; } while (1) { uint8_t dev_record_len = 0; int32_t ret = f.readBytes(&dev_record_len, sizeof(dev_record_len)); if (ret <= 0) { break; // finished } SBuffer buf(dev_record_len); buf.setLen(dev_record_len); ret = f.readBytes(buf.getBuffer(), dev_record_len); if (ret != dev_record_len) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device data information, aborting")); f.close(); return false; } int32_t segment_len = hydrateSingleDeviceData(buf); if (segment_len <= 0) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device data information, aborting")); f.close(); return false; } } f.close(); return true; } /*********************************************************************************************\ * * Hibernate data to the EEPROM * \*********************************************************************************************/ void hibernateAllData(void) { if (Rtc.utc_time < START_VALID_TIME) { return; } Univ_Write_File f; const char * storage_class = PSTR(""); #ifdef USE_ZIGBEE_EEPROM if (!f.valid() && zigbee.eeprom_ready) { f.init(ZIGB_DATA2); storage_class = PSTR("EEPROM"); } #endif #ifdef USE_UFILESYS File file; if (!f.valid() && dfsp) { file = dfsp->open(TASM_FILE_ZIGBEE_DATA, "w"); if (file) { f.init(&file); storage_class = PSTR("File System"); } } #endif if (f.valid()) { // first prefix is number of devices uint8_t device_num = zigbee_devices.devicesSize(); for (const auto & device : zigbee_devices.getDevices()) { // allocte a buffer for a single device SBuffer buf = hibernateDeviceData(device); if (buf.len() > 0) { f.writeBytes(buf.getBuffer(), buf.len()); } } size_t buf_len = f.getCursor(); f.close(); AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to %s"), buf_len, storage_class); } } /*********************************************************************************************\ * Timer to save every 60 minutes \*********************************************************************************************/ const uint32_t Z_SAVE_DATA_TIMER = 60 * 60 * 1000; // save data every 60 minutes (in ms) // // Callback for setting the timer to save Zigbee Data in x seconds // int32_t Z_Set_Save_Data_Timer(uint8_t value) { zigbee_devices.setTimer(0x0000, 0, Z_SAVE_DATA_TIMER, 0, 0, Z_CAT_ALWAYS, 0 /* value */, &Z_SaveDataTimer); return 0; // continue } void Z_SaveDataTimer(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { hibernateAllData(); Z_Set_Save_Data_Timer(0); // set a new timer } #ifdef USE_ZIGBEE_EEPROM void ZFS_Erase(void) { if (zigbee.eeprom_present) { ZFS::erase(); AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("EEPROM")); } } #endif // USE_ZIGBEE_EEPROM #endif // USE_ZIGBEE