/* xnrg_12_solaxX1.ino - Solax X1 inverter RS485 support for Tasmota Copyright (C) 2021 by Pablo Zerón Copyright (C) 2024 by Stefan Wershoven This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_SOLAX_X1 /*********************************************************************************************\ * Solax X1 Inverter \*********************************************************************************************/ #define XNRG_12 12 #ifndef SOLAXX1_SPEED #define SOLAXX1_SPEED 9600 // default solax rs485 speed #endif // #define SOLAXX1_READCONFIG // enable to read inverters config; disable to save codespace (3k1) #define INVERTER_ADDRESS 0x0A #define D_SOLAX_X1 "SolaxX1" #include const char kSolaxMode[] PROGMEM = D_OFF "|" D_SOLAX_MODE_0 "|" D_SOLAX_MODE_1 "|" D_SOLAX_MODE_2 "|" D_SOLAX_MODE_3 "|" D_SOLAX_MODE_4 "|" D_SOLAX_MODE_5 "|" D_SOLAX_MODE_6; const char kSolaxError[] PROGMEM = D_SOLAX_ERROR_0 "|" D_SOLAX_ERROR_1 "|" D_SOLAX_ERROR_2 "|" D_SOLAX_ERROR_3 "|" D_SOLAX_ERROR_4 "|" D_SOLAX_ERROR_5 "|" D_SOLAX_ERROR_6 "|" D_SOLAX_ERROR_7 "|" D_SOLAX_ERROR_8; #ifdef SOLAXX1_READCONFIG const char kSolaxSafetyType[] PROGMEM = "VDE 0126|VDE-AR-N 4105|AS 4777|G98|C10/11|ÖVE/ÖNORM E 8001|EN 50438 NL|EN 50438 DK|CEB|CEI021|NRS 097-2-1|VDE 0126 Greece/Iceland|" "UTE C15-712|IEC 61727|G99|VDE 0126 Greece/Co|Guyana|C15-712 France/Iceland 50|C15-712 France/Iceland 60|New Zeeland|RD1699|Chile|" "EN 50438 Ireland|Philippines|Czech PPDS|Czech 50438|EN 50549 EU|Denmark 2019 EU|RD 1699 Island|EN50549 Poland|MEA Thailand|" "PEA Thailand|ACEA|AS 4777 2020 B|AS 4777 2020 C|Sri Lanka|BRAZIL 240|EN 50549 SK|EN 50549 EU|G98/NI|Denmark 2019 EU|RD 1699 Island"; #endif // SOLAXX1_READCONFIG union { uint32_t ErrMessage; struct { //BYTE0 uint8_t TzProtectFault:1;//0 uint8_t MainsLostFault:1;//1 uint8_t GridVoltFault:1;//2 uint8_t GridFreqFault:1;//3 uint8_t PLLLostFault:1;//4 uint8_t BusVoltFault:1;//5 uint8_t ErrBit06:1;//6 uint8_t OciFault:1;//7 //BYTE1 uint8_t Dci_OCP_Fault:1;//8 uint8_t ResidualCurrentFault:1;//9 uint8_t PvVoltFault:1;//10 uint8_t Ac10Mins_Voltage_Fault:1;//11 uint8_t IsolationFault:1;//12 uint8_t TemperatureOverFault:1;//13 uint8_t FanFault:1;//14 uint8_t ErrBit15:1;//15 //BYTE2 uint8_t SpiCommsFault:1;//16 uint8_t SciCommsFault:1;//17 uint8_t ErrBit18:1;//18 uint8_t InputConfigFault:1;//19 uint8_t EepromFault:1;//20 uint8_t RelayFault:1;//21 uint8_t SampleConsistenceFault:1;//22 uint8_t ResidualCurrent_DeviceFault:1;//23 //BYTE3 uint8_t ErrBit24:1;//24 uint8_t ErrBit25:1;//25 uint8_t ErrBit26:1;//26 uint8_t ErrBit27:1;//27 uint8_t ErrBit28:1;//28 uint8_t DCI_DeviceFault:1;//29 uint8_t OtherDeviceFault:1;//30 uint8_t ErrBit31:1;//31 }; } solaxX1_ErrCode; struct SOLAXX1_LIVEDATA { int16_t temperature = 0; float energy_today = 0; float dc1_voltage = 0; float dc2_voltage = 0; float dc1_current = 0; float dc2_current = 0; uint32_t runtime_total = 0; float dc1_power = 0; float dc2_power = 0; int16_t runMode = 0; uint32_t errorCode = 0; uint8_t SerialNumber[16] = {0x00}; } solaxX1; struct SOLAXX1_GLOBALDATA { bool AddressAssigned = true; uint8_t SendRetry_count = 20; uint8_t QueryData_count = 0; uint8_t QueryID_count = 240; bool Command_QueryID = false;; bool Command_QueryConfig = false; } solaxX1_global; struct SOLAXX1_SENDDATA { uint8_t Header[2] = {0xAA, 0x55}; uint8_t Source[2] = {0x00, 0x00}; uint8_t Destination[2] = {0x00, 0x00}; uint8_t ControlCode[1] = {0x00}; uint8_t FunctionCode[1] = {0x00}; uint8_t DataLength[1] = {0x00}; uint8_t Payload[16] = {0x00}; } solaxX1_SendData; TasmotaSerial *solaxX1Serial; /*********************************************************************************************/ void solaxX1_RS485Send(void) { uint8_t message[30]; memcpy(message, solaxX1_SendData.Header, 2); memcpy(message + 2, solaxX1_SendData.Source, 2); memcpy(message + 4, solaxX1_SendData.Destination, 2); memcpy(message + 6, solaxX1_SendData.ControlCode, 1); memcpy(message + 7, solaxX1_SendData.FunctionCode, 1); memcpy(message + 8, solaxX1_SendData.DataLength, 1); memcpy(message + 9, solaxX1_SendData.Payload, sizeof(solaxX1_SendData.Payload)); uint16_t crc = solaxX1_calculateCRC(message, 9 + solaxX1_SendData.DataLength[0]); // calculate out crc bytes while (solaxX1Serial->available() > 0) { // read serial if any old data is available solaxX1Serial->read(); } if (PinUsed(GPIO_SOLAXX1_RTS)) { digitalWrite(Pin(GPIO_SOLAXX1_RTS), HIGH); } solaxX1Serial->flush(); solaxX1Serial->write(message, 9 + solaxX1_SendData.DataLength[0]); solaxX1Serial->write(highByte(crc)); solaxX1Serial->write(lowByte(crc)); solaxX1Serial->flush(); if (PinUsed(GPIO_SOLAXX1_RTS)) { digitalWrite(Pin(GPIO_SOLAXX1_RTS), LOW); } AddLogBuffer(LOG_LEVEL_DEBUG_MORE, message, 9 + solaxX1_SendData.DataLength[0]); } bool solaxX1_RS485Receive(uint8_t *ReadBuffer) { uint8_t len = 0; while (solaxX1Serial->available() > 0) { ReadBuffer[len++] = (uint8_t)solaxX1Serial->read(); } AddLogBuffer(LOG_LEVEL_DEBUG_MORE, ReadBuffer, len); uint16_t crc = solaxX1_calculateCRC(ReadBuffer, len - 2); // calculate out crc bytes return !(ReadBuffer[len - 1] == lowByte(crc) && ReadBuffer[len - 2] == highByte(crc)); } uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen) { uint8_t i; uint16_t wChkSum = 0; for (i = 0; i < bLen; i++) { wChkSum = wChkSum + bExternTxPackage[i]; } return wChkSum; } void solaxX1_ExtractText(uint8_t *DataIn, uint8_t *DataOut, uint8_t Begin, uint8_t End) { uint8_t i; for (i = Begin; i <= End; i++) { DataOut[i - Begin] = DataIn[i]; } DataOut[End - Begin + 1] = 0; } void solaxX1_QueryOfflineInverters(void) { solaxX1_SendData.Source[0] = 0x01; solaxX1_SendData.Destination[0] = 0x00; solaxX1_SendData.Destination[1] = 0x00; solaxX1_SendData.ControlCode[0] = 0x10; solaxX1_SendData.FunctionCode[0] = 0x00; solaxX1_SendData.DataLength[0] = 0x00; solaxX1_RS485Send(); } void solaxX1_SendInverterAddress(void) { solaxX1_SendData.Source[0] = 0x00; solaxX1_SendData.Destination[0] = 0x00; solaxX1_SendData.Destination[1] = 0x00; solaxX1_SendData.ControlCode[0] = 0x10; solaxX1_SendData.FunctionCode[0] = 0x01; solaxX1_SendData.DataLength[0] = 0x0F; solaxX1_SendData.Payload[14] = INVERTER_ADDRESS; // Inverter Address, It must be unique in case of more inverters in the same rs485 net. solaxX1_RS485Send(); } void solaxX1_QueryLiveData(void) { solaxX1_SendData.Source[0] = 0x01; solaxX1_SendData.Destination[0] = 0x00; solaxX1_SendData.Destination[1] = INVERTER_ADDRESS; solaxX1_SendData.ControlCode[0] = 0x11; solaxX1_SendData.FunctionCode[0] = 0x02; solaxX1_SendData.DataLength[0] = 0x00; solaxX1_RS485Send(); } void solaxX1_QueryIDData(void) { solaxX1_SendData.Source[0] = 0x01; solaxX1_SendData.Destination[0] = 0x00; solaxX1_SendData.Destination[1] = INVERTER_ADDRESS; solaxX1_SendData.ControlCode[0] = 0x11; solaxX1_SendData.FunctionCode[0] = 0x03; solaxX1_SendData.DataLength[0] = 0x00; solaxX1_RS485Send(); } void solaxX1_QueryConfigData(void) { solaxX1_SendData.Source[0] = 0x01; solaxX1_SendData.Destination[0] = 0x00; solaxX1_SendData.Destination[1] = INVERTER_ADDRESS; solaxX1_SendData.ControlCode[0] = 0x11; solaxX1_SendData.FunctionCode[0] = 0x04; solaxX1_SendData.DataLength[0] = 0x00; solaxX1_RS485Send(); } uint8_t solaxX1_ParseErrorCode(uint32_t code) { solaxX1_ErrCode.ErrMessage = code; if (code == 0) return 0; if (solaxX1_ErrCode.MainsLostFault) return 1; if (solaxX1_ErrCode.GridVoltFault) return 2; if (solaxX1_ErrCode.GridFreqFault) return 3; if (solaxX1_ErrCode.PvVoltFault) return 4; if (solaxX1_ErrCode.IsolationFault) return 5; if (solaxX1_ErrCode.TemperatureOverFault) return 6; if (solaxX1_ErrCode.FanFault) return 7; if (solaxX1_ErrCode.OtherDeviceFault) return 8; return 0; } /*********************************************************************************************/ void solaxX1_250MSecond(void) { // Every 250 milliseconds uint8_t DataRead[80] = {0}; uint8_t TempData[16] = {0}; char TempDataChar[32]; float TempFloat; if (solaxX1Serial->available()) { if (solaxX1_RS485Receive(DataRead)) { // CRC-error -> no further action DEBUG_SENSOR_LOG(PSTR("SX1: Data response CRC error")); return; } solaxX1_global.SendRetry_count = 20; // Inverter is responding if (DataRead[0] != 0xAA || DataRead[1] != 0x55) { // Check for header DEBUG_SENSOR_LOG(PSTR("SX1: Check for header failed")); return; } if (DataRead[6] == 0x11 && DataRead[7] == 0x82) { // received "Response for query (live data)" Energy->data_valid[0] = 0; solaxX1.temperature = (DataRead[9] << 8) | DataRead[10]; // Temperature solaxX1.energy_today = ((DataRead[11] << 8) | DataRead[12]) * 0.1f; // Energy Today solaxX1.dc1_voltage = ((DataRead[13] << 8) | DataRead[14]) * 0.1f; // PV1 Voltage solaxX1.dc2_voltage = ((DataRead[15] << 8) | DataRead[16]) * 0.1f; // PV2 Voltage solaxX1.dc1_current = ((DataRead[17] << 8) | DataRead[18]) * 0.1f; // PV1 Current solaxX1.dc2_current = ((DataRead[19] << 8) | DataRead[20]) * 0.1f; // PV2 Current Energy->current[0] = ((DataRead[21] << 8) | DataRead[22]) * 0.1f; // AC Current Energy->voltage[0] = ((DataRead[23] << 8) | DataRead[24]) * 0.1f; // AC Voltage Energy->frequency[0] = ((DataRead[25] << 8) | DataRead[26]) * 0.01f; // AC Frequency Energy->active_power[0] = ((DataRead[27] << 8) | DataRead[28]); // AC Power //temporal = (float)((DataRead[29] << 8) | DataRead[30]) * 0.1f; // Not Used Energy->import_active[0] = ((DataRead[31] << 24) | (DataRead[32] << 16) | (DataRead[33] << 8) | DataRead[34]) * 0.1f; // Energy Total uint32_t runtime_total = (DataRead[35] << 24) | (DataRead[36] << 16) | (DataRead[37] << 8) | DataRead[38]; // Work Time Total if (runtime_total) solaxX1.runtime_total = runtime_total; // Work Time valid solaxX1.runMode = (DataRead[39] << 8) | DataRead[40]; // Work mode //temporal = (float)((DataRead[41] << 8) | DataRead[42]); // Grid voltage fault value 0.1V //temporal = (float)((DataRead[43] << 8) | DataRead[44]); // Gird frequency fault value 0.01Hz //temporal = (float)((DataRead[45] << 8) | DataRead[46]); // Dc injection fault value 1mA //temporal = (float)((DataRead[47] << 8) | DataRead[48]); // Temperature fault value //temporal = (float)((DataRead[49] << 8) | DataRead[50]); // Pv1 voltage fault value 0.1V //temporal = (float)((DataRead[51] << 8) | DataRead[52]); // Pv2 voltage fault value 0.1V //temporal = (float)((DataRead[53] << 8) | DataRead[54]); // GFC fault value solaxX1.errorCode = (DataRead[58] << 24) | (DataRead[57] << 16) | (DataRead[56] << 8) | DataRead[55]; // Error Code solaxX1.dc1_power = solaxX1.dc1_voltage * solaxX1.dc1_current; solaxX1.dc2_power = solaxX1.dc2_voltage * solaxX1.dc2_current; EnergyUpdateTotal(); // 484.708 kWh DEBUG_SENSOR_LOG(PSTR("SX1: received live data")); return; } // end received "Response for query (live data)" if (DataRead[6] == 0x11 && DataRead[7] == 0x83) { // received "Response for query (ID data)" solaxX1_ExtractText(DataRead, solaxX1.SerialNumber, 49, 62); // extract "real" serial number if (solaxX1_global.Command_QueryID) { AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter phases: %d"),DataRead[9]); // number of phases solaxX1_ExtractText(DataRead, TempData, 10, 15); // extract rated bus power (my be empty) AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter rated bus power: %s"),(char*)TempData); solaxX1_ExtractText(DataRead, TempData, 16, 20); // extract firmware version AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter firmware version: %s"),(char*)TempData); solaxX1_ExtractText(DataRead, TempData, 21, 34); // extract module name (my be empty) AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter module name: %s"),(char*)TempData); solaxX1_ExtractText(DataRead, TempData, 35, 48); // extract factory name AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter factory name: %s"),(char*)TempData); AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter serial number: %s"),(char*)solaxX1.SerialNumber); solaxX1_ExtractText(DataRead, TempData, 63, 66); // extract rated bus voltage AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter rated bus voltage: %s"),(char*)TempData); solaxX1_global.Command_QueryID = false; } else { AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: Inverter serial number: %s"),(char*)solaxX1.SerialNumber); } DEBUG_SENSOR_LOG(PSTR("SX1: received ID data")); return; } // end received "Response for query (ID data)" #ifdef SOLAXX1_READCONFIG if (DataRead[6] == 0x11 && DataRead[7] == 0x84) { // received "Response for query (config data)" if (solaxX1_global.Command_QueryConfig) { // This values are displayed as they were received from the inverter. They are not interpreted in any way. TempFloat = ((DataRead[9] << 8) | DataRead[10]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVpvStart: %1_f V (Inverter launch voltage threshold)"), &TempFloat); AddLog(LOG_LEVEL_INFO, PSTR("SX1: wTimeStart: %d sec (launch wait time)"), (DataRead[11] << 8) | DataRead[12]); TempFloat = ((DataRead[13] << 8) | DataRead[14]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMinProtect: %1_f V (allowed minimum grid voltage)"), &TempFloat); TempFloat = ((DataRead[15] << 8) | DataRead[16]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMaxProtect: %1_f V (allowed maximum grid voltage)"), &TempFloat); TempFloat = ((DataRead[17] << 8) | DataRead[18]) * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMinProtect: %2_f Hz (allowed minimum grid frequency)"), &TempFloat); TempFloat = ((DataRead[19] << 8) | DataRead[20]) * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMaxProtect: %2_f Hz (allowed maximum grid frequency)"), &TempFloat); AddLog(LOG_LEVEL_INFO, PSTR("SX1: wDciLimits: %d mA (DC component limits)"), (DataRead[21] << 8) | DataRead[22]); TempFloat = ((DataRead[23] << 8) | DataRead[24]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wGrid10MinAvgProtect: %1_f V (10 minutes over voltage protect)"), &TempFloat); TempFloat = ((DataRead[25] << 8) | DataRead[26]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMinSlowProtect: %1_f V (grid undervoltage protect value)"), &TempFloat); TempFloat = ((DataRead[27] << 8) | DataRead[28]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMaxSlowProtect: %1_f V (grid overvoltage protect value)"), &TempFloat); TempFloat = ((DataRead[29] << 8) | DataRead[30]) * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMinSlowProtect: %2_f Hz (grid underfrequency protect value)"), &TempFloat); TempFloat = ((DataRead[31] << 8) | DataRead[32]) * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMaxSlowProtect: %2_f Hz (grid overfrequency protect value)"), &TempFloat); GetTextIndexed(TempDataChar, sizeof(TempDataChar), (DataRead[33] << 8) | DataRead[34], kSolaxSafetyType); AddLog(LOG_LEVEL_INFO, PSTR("SX1: wSafety: %d ≙ %s"), (DataRead[33] << 8) | DataRead[34], TempDataChar); AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerfactor_mode: %d"), DataRead[35]); TempFloat = DataRead[36] * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerfactor_data: %2_f"), &TempFloat); TempFloat = DataRead[37] * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wUpperLimit: %2_f (overexcite limits)"), &TempFloat); TempFloat = DataRead[38] * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wLowerLimit: %2_f (underexcite limits)"), &TempFloat); TempFloat = DataRead[39] * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerLow: %2_f (power ratio change upper limits)"), &TempFloat); TempFloat = DataRead[40] * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerUp: %2_f (power ratio change lower limits)"), &TempFloat); AddLog(LOG_LEVEL_INFO, PSTR("SX1: Qpower_set: %d"), (DataRead[41] << 8) | DataRead[42]); TempFloat = ((DataRead[43] << 8) | DataRead[44]) * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqSetPoint: %2_f Hz (Over Frequency drop output setpoint)"), &TempFloat); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqDroopRate: %d %% (drop output slope)"), (DataRead[45] << 8) | DataRead[46]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: QuVupRate: %d %% (Q(U) curve up set point)"), (DataRead[47] << 8) | DataRead[48]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: QuVlowRate: %d %% (Q(U) curve low set point)"), (DataRead[49] << 8) | DataRead[50]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WPowerLimitsPercent: %d %%"), (DataRead[51] << 8) | DataRead[52]); TempFloat = ((DataRead[53] << 8) | DataRead[54]) * 0.01f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: WWgra: %2_f %%"), &TempFloat); TempFloat = ((DataRead[55] << 8) | DataRead[56]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv2: %1_f V"), &TempFloat); TempFloat = ((DataRead[57] << 8) | DataRead[58]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv3: %1_f V"), &TempFloat); TempFloat = ((DataRead[59] << 8) | DataRead[60]) * 0.1f; AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv4: %1_f V"), &TempFloat); AddLog(LOG_LEVEL_INFO, PSTR("SX1: wQurangeV1: %d %%"), (DataRead[61] << 8) | DataRead[62]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: wQurangeV4: %d %%"), (DataRead[63] << 8) | DataRead[64]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: BVoltPowerLimit: %d"), (DataRead[65] << 8) | DataRead[66]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WPowerManagerEnable: %d"), (DataRead[67] << 8) | DataRead[68]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WGlobalSeachMPPTStrartFlg: %d"), (DataRead[69] << 8) | DataRead[70]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFrqProtectRestrictive: %d"), (DataRead[71] << 8) | DataRead[72]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WQuDelayTimer: %d sec"), (DataRead[73] << 8) | DataRead[74]); AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqActivePowerDelayTimer: %d ms"), (DataRead[75] << 8) | DataRead[76]); solaxX1_global.Command_QueryConfig = false; } DEBUG_SENSOR_LOG(PSTR("SX1: received config data")); return; } // end received "Response for query (config data)" #endif // SOLAXX1_READCONFIG if (DataRead[6] == 0x10 && DataRead[7] == 0x80) { // received "register request" solaxX1_global.QueryData_count = 5; // give time for next query solaxX1_ExtractText(DataRead, solaxX1_SendData.Payload, 9, 22); // store serial number for register DEBUG_SENSOR_LOG(PSTR("SX1: received register request and send register address")); solaxX1_SendInverterAddress(); // "send register address" return; } if (DataRead[6] == 0x10 && DataRead[7] == 0x81 && DataRead[9] == 0x06) { // received "address confirm (ACK)" solaxX1_global.QueryData_count = 5; // give time for next query solaxX1_global.AddressAssigned = true; DEBUG_SENSOR_LOG(PSTR("SX1: received \"address confirm (ACK)\"")); return; } } // end solaxX1Serial->available() // DEBUG_SENSOR_LOG(PSTR("SX1: solaxX1_global.AddressAssigned: %d, solaxX1_global.QueryData_count: %d, solaxX1_global.SendRetry_count: %d, solaxX1_global.QueryID_count: %d"), solaxX1_global.AddressAssigned, solaxX1_global.QueryData_count, solaxX1_global.SendRetry_count, solaxX1_global.QueryID_count); if (solaxX1_global.AddressAssigned) { if (!solaxX1_global.QueryData_count) { // normal periodically query solaxX1_global.QueryData_count = 5; if (!solaxX1_global.QueryID_count || solaxX1_global.Command_QueryID) { // ID query DEBUG_SENSOR_LOG(PSTR("SX1: Send ID query")); solaxX1_QueryIDData(); } else if (solaxX1_global.Command_QueryConfig) { // Config query DEBUG_SENSOR_LOG(PSTR("SX1: Send config query")); solaxX1_QueryConfigData(); } else { // live query DEBUG_SENSOR_LOG(PSTR("SX1: Send live query")); solaxX1_QueryLiveData(); } solaxX1_global.QueryID_count++; // query ID every 256th time } // end normal periodically query solaxX1_global.QueryData_count--; if (!solaxX1_global.SendRetry_count) { // Inverter went "off" solaxX1_global.SendRetry_count = 20; DEBUG_SENSOR_LOG(PSTR("SX1: Inverter went \"off\"")); Energy->data_valid[0] = ENERGY_WATCHDOG; solaxX1.temperature = solaxX1.dc1_voltage = solaxX1.dc2_voltage = solaxX1.dc1_current = solaxX1.dc2_current = solaxX1.dc1_power = 0; solaxX1.dc2_power = Energy->current[0] = Energy->voltage[0] = Energy->frequency[0] = Energy->active_power[0] = 0; solaxX1.runMode = -1; // off(line) solaxX1_global.AddressAssigned = false; } // end Inverter went "off" } else { // sent query for inverters in offline status if (!solaxX1_global.SendRetry_count) { solaxX1_global.SendRetry_count = 20; DEBUG_SENSOR_LOG(PSTR("SX1: Sent query for inverters in offline state")); solaxX1_QueryOfflineInverters(); } } solaxX1_global.SendRetry_count--; return; } // end solaxX1_250MSecond void solaxX1_SnsInit(void) { AddLog(LOG_LEVEL_INFO, PSTR("SX1: Init - RX-pin: %d, TX-pin: %d, RTS-pin: %d"), Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), Pin(GPIO_SOLAXX1_RTS)); solaxX1Serial = new TasmotaSerial(Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), 1); if (solaxX1Serial->begin(SOLAXX1_SPEED)) { if (solaxX1Serial->hardwareSerial()) { ClaimSerial(); } #ifdef ESP32 AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: Serial UART%d"), solaxX1Serial->getUart()); #endif } else { TasmotaGlobal.energy_driver = ENERGY_NONE; } if (PinUsed(GPIO_SOLAXX1_RTS)) { pinMode(Pin(GPIO_SOLAXX1_RTS), OUTPUT); } } void solaxX1_DrvInit(void) { if (PinUsed(GPIO_SOLAXX1_RX) && PinUsed(GPIO_SOLAXX1_TX)) { TasmotaGlobal.energy_driver = XNRG_12; Energy->type_dc = true; // Handle like DC, because U*I from inverter is not valid for apparent power; U*I could be lower than active power } } bool SolaxX1_cmd(void) { if (!solaxX1_global.AddressAssigned) { AddLog(LOG_LEVEL_INFO, PSTR("SX1: No inverter registered")); return false; } if (!strcasecmp(XdrvMailbox.data, "ReadIDinfo")) { solaxX1_global.Command_QueryID = true; AddLog(LOG_LEVEL_INFO, PSTR("SX1: ReadIDinfo sent...")); return true; } else if (!strcasecmp(XdrvMailbox.data, "ReadConfig")) { #ifdef SOLAXX1_READCONFIG solaxX1_global.Command_QueryConfig = true; AddLog(LOG_LEVEL_INFO, PSTR("SX1: ReadConfig sent...")); return true; #else AddLog(LOG_LEVEL_INFO, PSTR("SX1: Command not available. Please set compiler directive '#define SOLAXX1_READCONFIG'.")); return false; #endif // SOLAXX1_READCONFIG } AddLog(LOG_LEVEL_INFO, PSTR("SX1: Unknown command: \"%s\""),XdrvMailbox.data); return false; } #ifdef USE_WEBSERVER const char HTTP_SNS_solaxX1_Num[] PROGMEM = "{s}" D_SOLAX_X1 " %s{m}%s{m}{m} %s{e}"; const char HTTP_SNS_solaxX1_Str[] PROGMEM = "{s}" D_SOLAX_X1 " %s{m}%s{e}"; #endif // USE_WEBSERVER void solaxX1_Show(uint32_t function) { char solar_power[33]; dtostrfd(solaxX1.dc1_power + solaxX1.dc2_power, Settings->flag2.wattage_resolution, solar_power); char pv1_voltage[33]; dtostrfd(solaxX1.dc1_voltage, Settings->flag2.voltage_resolution, pv1_voltage); char pv1_current[33]; dtostrfd(solaxX1.dc1_current, Settings->flag2.current_resolution, pv1_current); char pv1_power[33]; dtostrfd(solaxX1.dc1_power, Settings->flag2.wattage_resolution, pv1_power); #ifdef SOLAXX1_PV2 char pv2_voltage[33]; dtostrfd(solaxX1.dc2_voltage, Settings->flag2.voltage_resolution, pv2_voltage); char pv2_current[33]; dtostrfd(solaxX1.dc2_current, Settings->flag2.current_resolution, pv2_current); char pv2_power[33]; dtostrfd(solaxX1.dc2_power, Settings->flag2.wattage_resolution, pv2_power); #endif char status[33]; GetTextIndexed(status, sizeof(status), solaxX1.runMode + 1, kSolaxMode); switch (function) { case FUNC_JSON_APPEND: ResponseAppend_P(PSTR(",\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s"), solar_power, pv1_voltage, pv1_current, pv1_power); #ifdef SOLAXX1_PV2 ResponseAppend_P(PSTR(",\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s"), pv2_voltage, pv2_current, pv2_power); #endif ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%d,\"" D_JSON_RUNTIME "\":%d,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%d"), solaxX1.temperature, solaxX1.runtime_total, status, solaxX1.errorCode); #ifdef USE_DOMOTICZ // Avoid bad temperature report at beginning of the day (spikes of 1200 celsius degrees) if (0 == TasmotaGlobal.tele_period && solaxX1.temperature < 100) { DomoticzSensor(DZ_TEMP, solaxX1.temperature); } #endif // USE_DOMOTICZ break; #ifdef USE_WEBSERVER case FUNC_WEB_COL_SENSOR: { String table_align = Settings->flag5.gui_table_align?"right":"left"; static uint32_t LastOnlineTime; if (solaxX1.runMode != -1) LastOnlineTime = TasmotaGlobal.uptime; if (TasmotaGlobal.uptime < LastOnlineTime + 300) { // Hide numeric live data, when inverter is offline for more than 5 min WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_SOLAR_POWER, table_align.c_str(), solar_power, D_UNIT_WATT); WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV1_VOLTAGE, table_align.c_str(), pv1_voltage, D_UNIT_VOLT); WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV1_CURRENT, table_align.c_str(), pv1_current, D_UNIT_AMPERE); WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV1_POWER, table_align.c_str(), pv1_power, D_UNIT_WATT); #ifdef SOLAXX1_PV2 WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV2_VOLTAGE, table_align.c_str(), pv2_voltage, D_UNIT_VOLT); WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV2_CURRENT, table_align.c_str(), pv2_current, D_UNIT_AMPERE); WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV2_POWER, table_align.c_str(), pv2_power, D_UNIT_WATT); #endif char SXTemperature[16]; dtostrfd(solaxX1.temperature, Settings->flag2.temperature_resolution, SXTemperature); WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_TEMPERATURE, table_align.c_str(), SXTemperature, D_UNIT_DEGREE D_UNIT_CELSIUS); } WSContentSend_P(HTTP_SNS_solaxX1_Num, D_UPTIME, table_align.c_str(), String(solaxX1.runtime_total).c_str(), D_UNIT_HOUR); break; } case FUNC_WEB_SENSOR: char errorCodeString[33]; WSContentSend_P(HTTP_SNS_solaxX1_Str, D_STATUS, status); WSContentSend_P(HTTP_SNS_solaxX1_Str, D_ERROR, GetTextIndexed(errorCodeString, sizeof(errorCodeString), solaxX1_ParseErrorCode(solaxX1.errorCode), kSolaxError)); if (solaxX1.SerialNumber[0]) WSContentSend_P(HTTP_SNS_solaxX1_Str, "Inverter SN", solaxX1.SerialNumber); break; #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg12(uint32_t function) { bool result = false; switch (function) { case FUNC_EVERY_250_MSECOND: solaxX1_250MSecond(); break; #ifdef USE_WEBSERVER case FUNC_WEB_COL_SENSOR: case FUNC_WEB_SENSOR: #endif // USE_WEBSERVER case FUNC_JSON_APPEND: solaxX1_Show(function); break; case FUNC_INIT: solaxX1_SnsInit(); break; case FUNC_PRE_INIT: solaxX1_DrvInit(); break; case FUNC_COMMAND: result = SolaxX1_cmd(); break; } return result; } #endif // USE_SOLAX_X1_NRG #endif // USE_ENERGY_SENSOR