/* xnrg_16_iem3000.ino - Schneider Electric iEM3000 series Modbus energy meter support for Tasmota Copyright (C) 2022 Marius Bezuidenhout This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_IEM3000 /*********************************************************************************************\ * Schneider Electric iEM3000 series Modbus energy meter * iEM3150 / iEM3155 / iEM3250 / iEM3255 / iEM3350 / iEM3355 / iEM3455 / iEM3555 * Important! Set meter Commnication -> Parity to None \*********************************************************************************************/ #define XNRG_16 16 // can be user defined in my_user_config.h #ifndef IEM3000_SPEED #define IEM3000_SPEED 19200 // default IEM3000 Modbus address #endif // can be user defined in my_user_config.h #ifndef IEM3000_ADDR #define IEM3000_ADDR 1 // default IEM3000 Modbus address #endif #include TasmotaModbus *Iem3000Modbus; const uint16_t Iem3000_start_addresses[] { // ID (reg count/datatype) [unit] Description 0x0bb7, // 0 . IEM3000_I1_CURRENT (2/Float32) [A] I1: phase 1 current 0x0bb9, // 1 . IEM3000_I2_CURRENT (2/Float32) [A] I2: phase 2 current 0x0bbb, // 2 . IEM3000_I3_CURRENT (2/Float32) [A] I3: phase 3 current 0x0bd3, // 3 . IEM3000_L1_VOLTAGE (2/Float32) [V] Voltage L1–N 0x0bd5, // 4 . IEM3000_L2_VOLTAGE (2/Float32) [V] Voltage L2–N 0x0bd7, // 5 . IEM3000_L3_VOLTAGE (2/Float32) [V] Voltage L3–N 0x0bed, // 6 . IEM3000_P1_POWER (2/Float32) [kW] Active Power Phase 1 0x0bef, // 7 . IEM3000_P2_POWER (2/Float32) [kW] Active Power Phase 2 0x0bf1, // 8 . IEM3000_P3_POWER (2/Float32) [kW] Active Power Phase 3 0x0c25, // 9 . IEM3000_FREQUENCY (2/Float32) [Hz] Frequency 0x0dbd, // 10 . IEM3000_L1_IMPORT (4/Int64) [Wh] Active Energy Import Phase 1 0x0dc1, // 11 . IEM3000_L1_IMPORT (4/Int64) [Wh] Active Energy Import Phase 1 0x0dc5, // 12 . IEM3000_L1_IMPORT (4/Int64) [Wh] Active Energy Import Phase 1 0x0c83, // 13 . IEM3000_IMPORT (4/Int64) [Wh] Total Active Energy Import }; #define FLOAT_ParamLimit 10 struct IEM3000 { uint8_t read_state = 0; uint8_t send_retry = 0; } Iem3000; /*********************************************************************************************/ void IEM3000Every250ms(void) { bool data_ready = Iem3000Modbus->ReceiveReady(); uint8_t reg_count = 4; if (Iem3000.read_state < FLOAT_ParamLimit) { reg_count = 2; } if (data_ready) { uint8_t buffer[16]; // At least 5 + sizeof(int64_t) = 13 uint32_t error = Iem3000Modbus->ReceiveBuffer(buffer, reg_count); AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, Iem3000Modbus->ReceiveCount()); if (error) { AddLog(LOG_LEVEL_DEBUG, PSTR("SDM: Iem3000 error %d"), error); } else { Energy->data_valid[0] = 0; // 0 1 2 3 4 5 6 7 8 // SA FC BC Fh Fl Sh Sl Cl Ch // 01 04 04 43 66 33 34 1B 38 = 230.2 Volt float value; int64_t value64; if(Iem3000.read_state >= 0 && Iem3000.read_state < FLOAT_ParamLimit) { ((uint8_t*)&value)[3] = buffer[3]; // Get float values ((uint8_t*)&value)[2] = buffer[4]; ((uint8_t*)&value)[1] = buffer[5]; ((uint8_t*)&value)[0] = buffer[6]; } else { ((uint8_t*)&value64)[7] = buffer[3]; // Get int values ((uint8_t*)&value64)[6] = buffer[4]; ((uint8_t*)&value64)[5] = buffer[5]; ((uint8_t*)&value64)[4] = buffer[6]; ((uint8_t*)&value64)[3] = buffer[7]; ((uint8_t*)&value64)[2] = buffer[8]; ((uint8_t*)&value64)[1] = buffer[9]; ((uint8_t*)&value64)[0] = buffer[10]; } switch(Iem3000.read_state) { case 0: Energy->current[0] = value; break; case 1: Energy->current[1] = value; break; case 2: Energy->current[2] = value; break; case 3: Energy->voltage[0] = value; break; case 4: Energy->voltage[1] = value; break; case 5: Energy->voltage[2] = value; break; case 6: Energy->active_power[0] = value*1000; break; case 7: Energy->active_power[1] = value*1000; break; case 8: Energy->active_power[2] = value*1000; break; case 9: Energy->frequency[0] = value; break; case 10: Energy->import_active[0] = value64/1000.0; break; case 11: Energy->import_active[1] = value64/1000.0; break; case 12: Energy->import_active[2] = value64/1000.0; break; case 13: EnergyUpdateTotal(); break; } Iem3000.read_state++; if (sizeof(Iem3000_start_addresses)/2 == Iem3000.read_state) { Iem3000.read_state = 0; } } } // end data ready if (0 == Iem3000.send_retry || data_ready) { Iem3000.send_retry = 5; Iem3000Modbus->Send(IEM3000_ADDR, 0x03, Iem3000_start_addresses[Iem3000.read_state], reg_count); } else { Iem3000.send_retry--; } } void Iem3000SnsInit(void) { Iem3000Modbus = new TasmotaModbus(Pin(GPIO_IEM3000_RX), Pin(GPIO_IEM3000_TX), Pin(GPIO_NRG_MBS_TX_ENA)); uint8_t result = Iem3000Modbus->Begin(IEM3000_SPEED); if (result) { if (2 == result) { ClaimSerial(); } Energy->phase_count = 3; Energy->frequency_common = true; // Use common frequency } else { TasmotaGlobal.energy_driver = ENERGY_NONE; } } void Iem3000DrvInit(void) { if (PinUsed(GPIO_IEM3000_RX) && PinUsed(GPIO_IEM3000_TX)) { TasmotaGlobal.energy_driver = XNRG_16; } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg16(uint32_t function) { bool result = false; switch (function) { case FUNC_EVERY_250_MSECOND: IEM3000Every250ms(); break; case FUNC_INIT: Iem3000SnsInit(); break; case FUNC_PRE_INIT: Iem3000DrvInit(); break; } return result; } #endif // USE_IEM3000 #endif // USE_ENERGY_SENSOR