/*
xnrg_24_biopdu.ino - BioPDU-625x12 (based on xnrg_05_pzem_ac.ino)
Copyright (C) 2023-24 Fabrizio Amodio
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef ESP32
#if defined(USE_ENERGY_SENSOR) && defined(USE_I2C)
#ifdef USE_BIOPDU
/*********************************************************************************************\
Biomine 625x12 Custom Board rev 2.0
6 x 25A Relays
6 x Independent PZEM-004T-100A-D-P Modbus AC energy sensor
3bit serial switch
Integrated MCP23008
SSD1309 OLED Display I2C
Template {"NAME":"Olimex ESP32-PoE-BioPDU","GPIO":[1,10209,10210,1,10144,1,0,0,5536,640,1,1,608,0,5600,1,1,1,1,5568,1,1,1,1,6210,0,0,0,1,10208,1,1,10176,1,1,1],"FLAG":0,"BASE":1}
BioPDU 625x12 Factory Settings:
Template {"NAME":"Olimex ESP32-PoE-BioPDU","GPIO":[1,10209,10210,1,10144,1,0,0,5536,640,1,1,608,0,5600,1,1,1,1,5568,1,1,1,1,6210,0,0,0,1,10208,1,1,10176,1,1,1],"FLAG":0,"BASE":1}
Module 0
EthType 0
EthAddress 0
EthClockMode 3
SetOption21 1
SetOption26 1
SetOption65 1
SetOption129 1
SetOption150 1
EnergyDisplay 1
EnergyCols 6
displaymodel 17
displaymode 0
displayrows 8
displaycols 25
PowerOnState1 ON
PowerLock1 1
TelePeriod 30
i2cscan
Sensor29 0,1,0
Sensor29 1,5,2
Sensor29 2,5,2
Sensor29 3,5,2
Sensor29 4,5,2
Sensor29 5,5,2
Sensor29 6,5,2
Sensor29 7,1,0
compile with build flags:
${env:tasmota32.build_flags}
USE_ETHERNET
ETH_TYPE=0
ETH_ADDRESS=0
ETH_CLKMODE=3
USE_MCP230xx
USE_MCP230xx_ADDR=0x20
USE_MCP230xx_OUTPUT
USE_DISPLAY
USE_UNIVERSAL_DISPLAY
USE_ALL_EPD_FONTS
USE_TINY_FONT
USE_BIOPDU
extra dirs:
lib_extra_dirs = ${env:tasmota32_base.lib_extra_dirs} lib/libesp32, lib/lib_basic, lib/lib_display, lib/lib_ssl, lib/lib_rf, lib/lib_i2c, lib/lib_div
\*********************************************************************************************/
#define XNRG_24 24
#define BIOPDU_MAX_PHASES 6 // BioPDU support max six phases/channels
const uint8_t BIOPDU_DEVICE_ADDRESS = 0x01; // PZEM default address
const uint32_t BIOPDU_STABILIZE = 10; // Number of seconds to stabilize 1 device
#include
TasmotaModbus *BioPduModbus;
struct BIOPDU
{
float energy = 0;
float last_energy = 0;
uint8_t send_retry = 0;
uint8_t phase = 0;
uint8_t address = 0;
uint8_t address_step = ADDR_IDLE;
uint8_t pins = 0;
uint8_t current_mux = 99;
} BioPdu;
void BioPduSetPins(uint8_t current)
{
if (BioPdu.current_mux != current)
{
for (uint8_t p = 0; p < BioPdu.pins; p++)
{
digitalWrite(Pin(GPIO_BIOPDU_BIT, p), (current + 1) & (1 << p) ? 1 : 0);
}
BioPdu.current_mux = current;
}
}
void BioPduEverySecond(void)
{
static uint32_t lastms = 0;
if (millis() >= lastms + 1000)
{
lastms = millis();
EnergyUpdateTotal();
}
}
void BioPduEvery250ms(void)
{
bool data_ready = BioPduModbus->ReceiveReady();
if (data_ready)
{
uint8_t buffer[30]; // At least 5 + (2 * 10) = 25
uint8_t registers = 10;
if (ADDR_RECEIVE == BioPdu.address_step)
{
registers = 2; // Need 1 byte extra as response is F8 06 00 02 00 01 FD A3
BioPdu.address_step--;
}
uint8_t error = BioPduModbus->ReceiveBuffer(buffer, registers);
// AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, BioPduModbus->ReceiveCount());
if (error)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("PDU: phase %d error %d"), BioPdu.phase, error);
}
else
{
Energy->data_valid[BioPdu.phase] = 0;
if (10 == registers)
{
// 0 1 2 3 4 5 6 7 8 9 = ModBus register
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 = Buffer index
// Id Cc Sz Volt- Current---- Power------ Energy----- Frequ PFact Alarm Crc--
// 01 04 14 08 D1 00 6C 00 00 00 F4 00 00 00 26 00 00 01 F4 00 64 00 00 51 34
// 01 04 14 08 CE 00 22 00 00 00 00 00 00 00 02 00 00 01 F4 00 00 00 00 33 FE
Energy->voltage[BioPdu.phase] = (float)((buffer[3] << 8) + buffer[4]) / 10.0f; // 6553.0 V
Energy->current[BioPdu.phase] = (float)((buffer[7] << 24) + (buffer[8] << 16) + (buffer[5] << 8) + buffer[6]) / 1000.0f; // 4294967.000 A
Energy->active_power[BioPdu.phase] = (float)((buffer[11] << 24) + (buffer[12] << 16) + (buffer[9] << 8) + buffer[10]) / 10.0f; // 429496729.0 W
Energy->frequency[BioPdu.phase] = (float)((buffer[17] << 8) + buffer[18]) / 10.0f; // 50.0 Hz
Energy->power_factor[BioPdu.phase] = (float)((buffer[19] << 8) + buffer[20]) / 100.0f; // 1.00
Energy->import_active[BioPdu.phase] = (float)((buffer[15] << 24) + (buffer[16] << 16) + (buffer[13] << 8) + buffer[14]) / 1000.0f; // 4294967.295 kWh
// Sanity check to prevent spike on power ON
if (Energy->voltage[BioPdu.phase] < 0 || Energy->voltage[BioPdu.phase] > 300 // Voltage range 0-300
|| Energy->current[BioPdu.phase] < 0 || Energy->current[BioPdu.phase] > 25 // Ampere range 0-25
|| Energy->active_power[BioPdu.phase] < 0 || Energy->active_power[BioPdu.phase] > 5500) // Watt range 0-5500
{
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("PDU: phase %d, spike detected"), BioPdu.phase);
Energy->voltage[BioPdu.phase] = 0;
Energy->current[BioPdu.phase] = 0;
Energy->active_power[BioPdu.phase] = 0;
Energy->frequency[BioPdu.phase] = 0;
Energy->power_factor[BioPdu.phase] = 0;
Energy->import_active[BioPdu.phase] = 0;
}
}
}
}
if (0 == BioPdu.send_retry || data_ready)
{
if (ADDR_SEND == BioPdu.address_step)
{
BioPduModbus->Send(0xF8, 0x06, 0x0002, (uint16_t)BioPdu.address);
BioPdu.address_step--;
}
else
{
uint8_t gpio = MCP230xx_readGPIO(0);
BioPdu.send_retry = 1 /*ENERGY_WATCHDOG*/;
for (uint8_t p = 0; p < Energy->phase_count; p++)
{
if (++BioPdu.phase == Energy->phase_count)
{
BioPdu.phase = 0;
}
if ((gpio >> (BioPdu.phase + 1)) & 1)
{
BioPduSetPins(BioPdu.phase);
delay(1);
uint8_t res = BioPduModbus->Send(BIOPDU_DEVICE_ADDRESS /*+ BioPdu.phase*/, 0x04, 0, 10);
if (res != 0)
{
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("PDU: phase %d modbus_error="), BioPdu.phase, res);
}
break;
}
}
}
}
else
{
BioPdu.send_retry--;
}
}
void BioPduSnsInit(void)
{
BioPduModbus = new TasmotaModbus(Pin(GPIO_BIOPDU_PZEM016_RX), Pin(GPIO_BIOPDU_PZEM0XX_TX));
uint8_t result = BioPduModbus->Begin(9600);
if (result)
{
if (2 == result)
{
ClaimSerial();
}
BioPdu.phase = Energy->phase_count - 1;
}
else
{
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void BioPduDrvInit(void)
{
if (PinUsed(GPIO_BIOPDU_PZEM016_RX) && PinUsed(GPIO_BIOPDU_PZEM0XX_TX) && PinUsed(GPIO_BIOPDU_BIT))
{
TasmotaGlobal.energy_driver = XNRG_24;
AddLog(LOG_LEVEL_DEBUG, PSTR("PDU: checking pins"));
for (uint8_t p = 0; p < 3; p++)
{
if (PinUsed(GPIO_BIOPDU_BIT, p))
{
pinMode(Pin(GPIO_BIOPDU_BIT, p), OUTPUT);
digitalWrite(Pin(GPIO_BIOPDU_BIT, p), 0);
AddLog(LOG_LEVEL_DEBUG, PSTR("PDU: Add GPIO %d/%d for pin %d"), GPIO_BIOPDU_BIT, p, BioPdu.pins);
BioPdu.pins++;
}
else
{
break;
}
}
Energy->phase_count = std::min((uint8_t)(pow(2, BioPdu.pins) - 1), (uint8_t)BIOPDU_MAX_PHASES); // Start off with 6 phases
AddLog(LOG_LEVEL_DEBUG, PSTR("PDU: number of pins=%d, max_phase=%d"), BioPdu.pins, Energy->phase_count);
}
}
bool BioPduCommand(void)
{
bool serviced = true;
if (CMND_MODULEADDRESS == Energy->command_code)
{
BioPdu.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3
BioPdu.address_step = ADDR_SEND;
}
else
serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg24(uint32_t function)
{
bool result = false;
switch (function)
{
case FUNC_EVERY_250_MSECOND:
if (TasmotaGlobal.uptime > 4)
{
BioPduEvery250ms();
} // Fix start up issue #5875
break;
case FUNC_ENERGY_EVERY_SECOND:
if (TasmotaGlobal.uptime > (BIOPDU_STABILIZE * BIOPDU_MAX_PHASES))
{
BioPduEverySecond();
}
break;
case FUNC_COMMAND:
result = BioPduCommand();
break;
case FUNC_INIT:
BioPduSnsInit();
break;
case FUNC_PRE_INIT:
BioPduDrvInit();
break;
}
return result;
}
#endif // USE_BIOPDU
#endif // USE_ENERGY_SENSOR
#endif // ESP32