/*
xsns_53_sml.ino - SML,OBIS,EBUS,RAW,COUNTER interface for Tasmota
Created by Gerhard Mutz on 07.10.11.
adapted for Tasmota
Copyright (C) 2021 Gerhard Mutz and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_SML_M
#define XSNS_53 53
// default baudrate of D0 output
#define SML_BAUDRATE 9600
// send this every N seconds (for meters that only send data on demand)
// not longer supported, use scripting instead
//#define SML_SEND_SEQ
// debug counter input to led for counter1 and 2
//#define DEBUG_CNT_LED1 2
//#define DEBUG_CNT_LED1 2
// use analog optical counter sensor with AD Converter ADS1115 (not yet functional)
//#define ANALOG_OPTO_SENSOR
// fototransistor with pullup at A0, A1 of ADS1115 A3 and +3.3V
// level and amplification are automatically set
#include
// use special no wait serial driver, should be always on
#ifndef ESP32
#define SPECIAL_SS
#endif
#ifndef TMSBSIZ
#define TMSBSIZ 256
#endif
// addresses a bug in meter DWS74
//#define DWS74_BUG
// JSON Strings do not translate
// max 23 char
#define DJ_TPWRIN "Total_in"
#define DJ_TPWRIN0 "Total_in_0"
#define DJ_TPWRIN1 "Total_in_1"
#define DJ_TPWROUT "Total_out"
#define DJ_TPWRCURR "Power_curr"
#define DJ_TPWRCURR1 "Power_p1"
#define DJ_TPWRCURR2 "Power_p2"
#define DJ_TPWRCURR3 "Power_p3"
#define DJ_CURR1 "Curr_p1"
#define DJ_CURR2 "Curr_p2"
#define DJ_CURR3 "Curr_p3"
#define DJ_VOLT1 "Volt_p1"
#define DJ_VOLT2 "Volt_p2"
#define DJ_VOLT3 "Volt_p3"
#define DJ_METERNR "Meter_number"
#define DJ_METERSID "Meter_id"
#define DJ_CSUM "Curr_summ"
#define DJ_VAVG "Volt_avg"
#define DJ_COUNTER "Count"
struct METER_DESC {
int8_t srcpin;
uint8_t type;
uint16_t flag;
int32_t params;
char prefix[8];
int8_t trxpin;
uint8_t tsecs;
char *txmem;
uint8_t index;
uint8_t max_index;
uint8_t sopt;
};
// this descriptor method is no longer supported
// but still functional for simple meters
// use scripting method instead
// meter list , enter new meters here
//=====================================================
#define EHZ161_0 1
#define EHZ161_1 2
#define EHZ363 3
#define EHZH 4
#define EDL300 5
#define Q3B 6
#define COMBO3 7
#define COMBO2 8
#define COMBO3a 9
#define Q3B_V1 10
#define EHZ363_2 11
#define COMBO3b 12
#define WGS_COMBO 13
#define EBZD_G 14
#define SML_NO_OP 15
#define Q3C 16
// select this meter
// SML_NO_OP ignores hardcoded interface
#define METER SML_NO_OP
//#define METER EHZ161_1
#if METER==SML_NO_OP
#undef METERS_USED
#define METERS_USED 0
struct METER_DESC const meter_desc[]={};
const uint8_t meter[]="";
#endif
#if METER==EHZ161_0
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}};
const uint8_t meter[]=
"1,1-0:1.8.0*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.0*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,1-0:21.7.0*255(@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",0|"
"1,1-0:41.7.0*255(@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",0|"
"1,1-0:61.7.0*255(@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",0|"
"1,=m 3+4+5 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZ161_1
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}};
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZ363
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 Richtungszähler EHZ SML 8 bit 9600 baud, binär
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x02,0x08,0x00,0xff
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x10,0x07,0x00,0xff
"1,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
//0x77,0x07,0x01,0x00,0x00,0x00,0x09,0xff
"1,77070100000009ff@#," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZH
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 Richtungszähler EHZ SML 8 bit 9600 baud, binär
// verbrauch total
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x0f,0x07,0x00,0xff
"1,770701000f0700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0";
#endif
//=====================================================
#if METER==EDL300
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 Richtungszähler EHZ SML 8 bit 9600 baud, binär
// verbrauch total
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100020801ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x0f,0x07,0x00,0xff
"1,770701000f0700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0";
#endif
#if METER==EBZD_G
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"strom",-1,1,0}};
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
// ..
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100010801ff@1000," D_TPWRCURR1 ",kWh," DJ_TPWRCURR1 ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x02,0xff
"1,77070100010802ff@1000," D_TPWRCURR2 ",kWh," DJ_TPWRCURR2 ",4|"
// 77 07 01 00 10 07 00 FF
"1,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
// ..
"1,77070100600100ff@#," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==Q3B
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x02,0x08,0x01,0xff
"1,77070100020801ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x01,0x07,0x00,0xff
"1,77070100010700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0";
#endif
#if METER==COMBO3
// 3 Zähler Beispiel
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}, // harware serial RX pin
[1]={14,'s',0,SML_BAUDRATE,"SML",-1,1,0}, // GPIO14 software serial
[2]={4,'o',0,SML_BAUDRATE,"OBIS2",-1,1,0}}; // GPIO4 software serial
// 3 Zähler definiert
const uint8_t meter[]=
"1,1-0:1.8.0*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.0*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,1-0:21.7.0*255(@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",0|"
"1,1-0:41.7.0*255(@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",0|"
"1,1-0:61.7.0*255(@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",0|"
"1,=m 3+4+5 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"2,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"2,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"2,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"3,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"3,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"3,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"3,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
#if METER==COMBO2
// 2 Zähler Beispiel
#undef METERS_USED
#define METERS_USED 2
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS1",-1,1,0}, // harware serial RX pin
[1]={14,'o',0,SML_BAUDRATE,"OBIS2",-1,1,0}}; // GPIO14 software serial
// 2 Zähler definiert
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"2,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"2,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"2,=d 6 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"2,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
#if METER==COMBO3a
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS1",-1,1,0}, // harware serial RX pin
[1]={14,'o',0,SML_BAUDRATE,"OBIS2",-1,1,0},
[2]={1,'o',0,SML_BAUDRATE,"OBIS3",-1,1,0}};
// 3 Zähler definiert
const uint8_t meter[]=
"1,=h --- Zähler Nr 1 ---|"
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"2,=h --- Zähler Nr 2 ---|"
"2,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"2,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"2,=d 6 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"2,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"3,=h --- Zähler Nr 3 ---|"
"3,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"3,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"3,=d 10 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"3,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==Q3B_V1
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}};
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,=d 1 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZ363_2
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 direction meter EHZ SML 8 bit 9600 baud, binary
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x02,0x08,0x00,0xff
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100010801ff@1000," D_TPWRCURR1 ",kWh," DJ_TPWRCURR1 ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x02,0xff
"1,77070100010802ff@1000," D_TPWRCURR2 ",kWh," DJ_TPWRCURR2 ",4|"
//0x77,0x07,0x01,0x00,0x10,0x07,0x00,0xff
"1,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
//0x77,0x07,0x01,0x00,0x00,0x00,0x09,0xff
"1,77070100000009ff@#," D_METERNR ",," DJ_METERNR ",0";
#endif
// example OBIS power meter + gas and water counter
#if METER==COMBO3b
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}, // harware serial RX pin
[1]={14,'c',0,50,"Gas"}, // GPIO14 gas counter
[2]={1,'c',0,10,"Wasser"}}; // water counter
// 3 meters defined
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
// with counters the comparison string must be exactly this string
"2,1-0:1.8.0*255(@100," D_GasIN ",cbm," DJ_COUNTER ",2|"
"3,1-0:1.8.0*255(@100," D_H2oIN ",cbm," DJ_COUNTER ",2";
#endif
#if METER==WGS_COMBO
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={1,'c',0,10,"H20",-1,1,0}, // GPIO1 water counter
[1]={4,'c',0,50,"GAS",-1,1,0}, // GPIO4 gas counter
[2]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}}; // SML harware serial RX pin
const uint8_t meter[]=
//----------------------------Wasserzähler--sensor53 c1------------------------------------
//"1,=h==================|"
"1,1-0:1.8.0*255(@10000," D_H2oIN ",cbm," DJ_COUNTER ",4|" // 1
//----------------------------Gaszähler-----sensor53 c2------------------------------------
// bei gaszählern (countern) muss der Vergleichsstring so aussehen wie hier
"2,=h==================|"
"2,1-0:1.8.0*255(@100," D_GasIN ",cbm," DJ_COUNTER ",3|" // 2
//----------------------------Stromzähler-EHZ363W5--sensor53 d0----------------------------
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"3,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",3|" // 3 Zählerstand Total
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x10,0x07,0x00,0xff
"3,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",2|" // 4 Aktuelle Leistung
"3,=h -------------------------------|"
"3,=m 10+11+12 @100," D_StL1L2L3 ",A," DJ_CSUM ",2|" // 5 Summe Aktuelle Ströme
//"3,=h -------------------------------|"
"3,=m 13+14+15/#3 @100," D_SpL1L2L3 ",V," DJ_VAVG ",2|" // 6 Mittelwert Spannungen
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x24,0x07,0x00,0xff
"3,77070100240700ff@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",2|" // 7 Wirkleistung L1
//0x77,0x07,0x01,0x00,0x38,0x07,0x00,0xff
"3,77070100380700ff@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",2|" // 8 Wirkleistung L2
//0x77,0x07,0x01,0x00,0x4c,0x07,0x00,0xff
"3,770701004c0700ff@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",2|" // 9 Wirkleistung L3
"3,=h -------------------------------|"
//0x77,0x07,0x01,0x00,0x1f,0x07,0x00,0xff
"3,770701001f0700ff@100," D_Strom_L1 ",A," DJ_CURR1 ",2|" // 10 Strom L1
//0x77,0x07,0x01,0x00,0x33,0x07,0x00,0xff
"3,77070100330700ff@100," D_Strom_L2 ",A," DJ_CURR2 ",2|" // 11 Strom L2
//0x77,0x07,0x01,0x00,0x47,0x07,0x00,0xff
"3,77070100470700ff@100," D_Strom_L3 ",A," DJ_CURR3 ",2|" // 12 Strom L3
"3,=h -------------------------------|"
//0x77,0x07,0x01,0x00,0x20,0x07,0x00,0xff
"3,77070100200700ff@100," D_Spannung_L1 ",V," DJ_VOLT1 ",2|" // 13 Spannung L1
//0x77,0x07,0x01,0x00,0x34,0x07,0x00,0xff
"3,77070100340700ff@100," D_Spannung_L2 ",V," DJ_VOLT2 ",2|" // 14 Spannung L2
//0x77,0x07,0x01,0x00,0x48,0x07,0x00,0xff
"3,77070100480700ff@100," D_Spannung_L3 ",V," DJ_VOLT3 ",2|" // 15 Spannung L3
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x00,0x00,0x09,0xff
"3,77070100000009ff@#," D_METERSID ",," DJ_METERSID ",0|" // 16 Service ID
"3,=h--------------------------------"; // letzte Zeile
#endif
#if METER==Q3C
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070101010800ff@1000," D_TPWRIN0 ",kWh," DJ_TPWRIN0 ",2|" // Verbrauch T0
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070101010801ff@1000," D_TPWRIN1 ",kWh," DJ_TPWRIN1 ",2|" // Verbrauch T1
//0x77,0x07,0x01,0x00,0x01,0x07,0x00,0xff
"1,77070100010700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|" // Strom Gesamt
//0x77,0x07,0x01,0x00,0x01,0x07,0x00,0xff
"1,77070100150700ff@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",0|" // Strom L1
//0x77,0x07,0x01,0x00,0x01,0x07,0x00,0xff
"1,77070100290700ff@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",0|" // Strom L2
//0x77,0x07,0x01,0x00,0x01,0x07,0x00,0xff
"1,770701003D0700ff@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",0"; // Strom L3
#endif
// this driver uses double because meter vars would not fit in float
//=====================================================
// median filter eliminates outliers, but uses much RAM and CPU cycles
// 672 bytes extra RAM with SML_MAX_VARS = 16
// default compile on, but must be enabled by descriptor flag 16
// may be undefined if RAM must be saved
#define USE_SML_MEDIAN_FILTER
// max number of vars , may be adjusted
#ifndef SML_MAX_VARS
#define SML_MAX_VARS 20
#endif
// max number of meters , may be adjusted
#ifndef MAX_METERS
#define MAX_METERS 5
#endif
double meter_vars[SML_MAX_VARS];
// calulate deltas
#define MAX_DVARS MAX_METERS*2
double dvalues[MAX_DVARS];
uint32_t dtimes[MAX_DVARS];
uint8_t meters_used;
uint8_t dvalid[SML_MAX_VARS];
struct METER_DESC const *meter_desc_p;
const uint8_t *meter_p;
uint16_t meter_spos[MAX_METERS];
// software serial pointers
#ifdef ESP8266
TasmotaSerial *meter_ss[MAX_METERS];
#endif // ESP8266
// serial buffers, may be made larger depending on telegram lenght
#ifndef SML_BSIZ
#define SML_BSIZ 48
#endif
uint8_t smltbuf[MAX_METERS][SML_BSIZ];
// meter nr as string
#define METER_ID_SIZE 24
char meter_id[MAX_METERS][METER_ID_SIZE];
#define VBUS_SYNC 0xaa
#define SML_SYNC 0x77
#define EBUS_SYNC 0xaa
#define EBUS_ESC 0xa9
uint8_t sml_send_blocks;
uint8_t sml_100ms_cnt;
uint8_t sml_desc_cnt;
uint8_t sml_json_enable = 1;
#ifdef USE_SML_MEDIAN_FILTER
// median filter, should be odd size
#define MEDIAN_SIZE 5
struct SML_MEDIAN_FILTER {
double buffer[MEDIAN_SIZE];
int8_t index;
} sml_mf[SML_MAX_VARS];
#ifndef FLT_MAX
#define FLT_MAX 99999999
#endif
double sml_median_array(double *array,uint8_t len) {
uint8_t ind[len];
uint8_t mind=0,index=0,flg;
double min=FLT_MAX;
for (uint8_t hcnt=0; hcntbuffer[mf->index]=in;
mf->index++;
if (mf->index>=MEDIAN_SIZE) mf->index=0;
return sml_median_array(mf->buffer,MEDIAN_SIZE);
/*
// sort list and take median
memmove(tbuff,mf->buffer,sizeof(tbuff));
for (byte ocnt=0; ocnttbuff[count+1]) {
tmp=tbuff[count];
tbuff[count]=tbuff[count+1];
tbuff[count+1]=tmp;
flag=1;
}
}
if (!flag) break;
}
return tbuff[MEDIAN_SIZE/2];
*/
}
#endif
// ESP32 software serial read only
#ifdef ESP32
#ifdef USE_ESP32_SW_SERIAL
#ifndef ESP32_SWS_BUFFER_SIZE
#define ESP32_SWS_BUFFER_SIZE 256
#endif
class SML_ESP32_SERIAL : public Stream {
public:
SML_ESP32_SERIAL(uint32_t uart_index);
virtual ~SML_ESP32_SERIAL();
bool begin(uint32_t speed, uint32_t smode, int32_t recpin, int32_t trxpin);
int32_t peek(void);
int32_t read(void) override;
size_t write(uint8_t byte) override;
int32_t available(void) override;
void flush(void) override;
void setRxBufferSize(uint32_t size);
void updateBaudRate(uint32_t baud);
void rxRead(void);
using Print::write;
private:
// Member variables
void setbaud(uint32_t speed);
uint32_t uart_index;
int8_t m_rx_pin;
int8_t m_tx_pin;
uint32_t cfgmode;
uint32_t ss_byte;
uint32_t ss_bstart;
uint32_t ss_index;
uint32_t m_bit_time;
uint32_t m_in_pos;
uint32_t m_out_pos;
uint16_t serial_buffer_size;
bool m_valid;
uint8_t *m_buffer;
HardwareSerial *hws;
};
void IRAM_ATTR sml_callRxRead(void *self) { ((SML_ESP32_SERIAL*)self)->rxRead(); };
SML_ESP32_SERIAL::SML_ESP32_SERIAL(uint32_t index) {
uart_index = index;
m_valid = true;
}
SML_ESP32_SERIAL::~SML_ESP32_SERIAL(void) {
if (hws) {
hws->end();
} else {
detachInterrupt(m_rx_pin);
if (m_buffer) {
free(m_buffer);
}
}
}
void SML_ESP32_SERIAL::setbaud(uint32_t speed) {
m_bit_time = ESP.getCpuFreqMHz() * 1000000 / speed;
}
bool SML_ESP32_SERIAL::begin(uint32_t speed, uint32_t smode, int32_t recpin, int32_t trxpin) {
if (!m_valid) { return false; }
m_buffer = 0;
if (recpin < 0) {
setbaud(speed);
m_rx_pin = -recpin;
serial_buffer_size = ESP32_SWS_BUFFER_SIZE;
m_buffer = (uint8_t*)malloc(serial_buffer_size);
if (m_buffer == NULL) return false;
pinMode(m_rx_pin, INPUT);
attachInterruptArg(m_rx_pin, sml_callRxRead, this, CHANGE);
m_in_pos = m_out_pos = 0;
hws = nullptr;
} else {
cfgmode = smode;
m_rx_pin = recpin;
m_tx_pin = trxpin;
hws = new HardwareSerial(uart_index);
if (hws) {
hws->begin(speed, cfgmode, m_rx_pin, m_tx_pin);
}
}
return true;
}
void SML_ESP32_SERIAL::flush(void) {
if (hws) {
hws->flush();
} else {
m_in_pos = m_out_pos = 0;
}
}
int32_t SML_ESP32_SERIAL::peek(void) {
if (hws) {
return hws->peek();
} else {
if (m_in_pos == m_out_pos) return -1;
return m_buffer[m_out_pos];
}
}
int32_t SML_ESP32_SERIAL::read(void) {
if (hws) {
return hws->read();
} else {
if (m_in_pos == m_out_pos) return -1;
uint32_t ch = m_buffer[m_out_pos];
m_out_pos = (m_out_pos +1) % serial_buffer_size;
return ch;
}
}
int32_t SML_ESP32_SERIAL::available(void) {
if (hws) {
return hws->available();
} else {
int avail = m_in_pos - m_out_pos;
if (avail < 0) avail += serial_buffer_size;
return avail;
}
}
size_t SML_ESP32_SERIAL::write(uint8_t byte) {
if (hws) {
return hws->write(byte);
}
return 0;
}
void SML_ESP32_SERIAL::setRxBufferSize(uint32_t size) {
if (hws) {
hws->setRxBufferSize(size);
} else {
if (m_buffer) {
free(m_buffer);
}
serial_buffer_size = size;
m_buffer = (uint8_t*)malloc(size);
}
}
void SML_ESP32_SERIAL::updateBaudRate(uint32_t baud) {
if (hws) {
hws->updateBaudRate(baud);
} else {
setbaud(baud);
}
}
// no wait mode only 8N1 (or 7X1, obis only, ignoring parity)
void IRAM_ATTR SML_ESP32_SERIAL::rxRead(void) {
uint32_t diff;
uint32_t level;
#define SML_LASTBIT 9
level = digitalRead(m_rx_pin);
if (!level && !ss_index) {
// start condition
ss_bstart = ESP.getCycleCount() - (m_bit_time / 4);
ss_byte = 0;
ss_index++;
} else {
// now any bit changes go here
// calc bit number
diff = (ESP.getCycleCount() - ss_bstart) / m_bit_time;
if (!level && diff > SML_LASTBIT) {
// start bit of next byte, store and restart
// leave irq at change
for (uint32_t i = ss_index; i <= SML_LASTBIT; i++) {
ss_byte |= (1 << i);
}
uint32_t next = (m_in_pos + 1) % serial_buffer_size;
if (next != (uint32_t)m_out_pos) {
m_buffer[m_in_pos] = ss_byte >> 1;
m_in_pos = next;
}
ss_bstart = ESP.getCycleCount() - (m_bit_time / 4);
ss_byte = 0;
ss_index = 1;
return;
}
if (diff >= SML_LASTBIT) {
// bit zero was 0,
uint32_t next = (m_in_pos + 1) % serial_buffer_size;
if (next != (uint32_t)m_out_pos) {
m_buffer[m_in_pos] = ss_byte >> 1;
m_in_pos = next;
}
ss_byte = 0;
ss_index = 0;
} else {
// shift in
for (uint32_t i = ss_index; i < diff; i++) {
if (!level) ss_byte |= (1 << i);
}
ss_index = diff;
}
}
}
#endif // USE_ESP32_SW_SERIAL
#endif // ESP32
#ifdef ESP32
#ifndef USE_ESP32_SW_SERIAL
HardwareSerial *meter_ss[MAX_METERS];
#else
SML_ESP32_SERIAL *meter_ss[MAX_METERS];
#endif
#endif // ESP32
#ifdef ANALOG_OPTO_SENSOR
// sensor over ADS1115 with i2c Bus
uint8_t ads1115_up;
// ads1115 driver
#define SAMPLE_BIT (0x8000)
#define ADS1115_COMP_QUEUE_SHIFT 0
#define ADS1115_COMP_LATCH_SHIFT 2
#define ADS1115_COMP_POLARITY_SHIFT 3
#define ADS1115_COMP_MODE_SHIFT 4
#define ADS1115_DATA_RATE_SHIFT 5
#define ADS1115_MODE_SHIFT 8
#define ADS1115_PGA_SHIFT 9
#define ADS1115_MUX_SHIFT 12
enum ads1115_comp_queue {
ADS1115_COMP_QUEUE_AFTER_ONE = 0,
ADS1115_COMP_QUEUE_AFTER_TWO = 0x1 << ADS1115_COMP_QUEUE_SHIFT,
ADS1115_COMP_QUEUE_AFTER_FOUR = 0x2 << ADS1115_COMP_QUEUE_SHIFT,
ADS1115_COMP_QUEUE_DISABLE = 0x3 << ADS1115_COMP_QUEUE_SHIFT,
ADS1115_COMP_QUEUE_MASK = 0x3 << ADS1115_COMP_QUEUE_SHIFT,
};
enum ads1115_comp_latch {
ADS1115_COMP_LATCH_NO = 0,
ADS1115_COMP_LATCH_YES = 1 << ADS1115_COMP_LATCH_SHIFT,
ADS1115_COMP_LATCH_MASK = 1 << ADS1115_COMP_LATCH_SHIFT,
};
enum ads1115_comp_polarity {
ADS1115_COMP_POLARITY_ACTIVE_LOW = 0,
ADS1115_COMP_POLARITY_ACTIVE_HIGH = 1 << ADS1115_COMP_POLARITY_SHIFT,
ADS1115_COMP_POLARITY_MASK = 1 << ADS1115_COMP_POLARITY_SHIFT,
};
enum ads1115_comp_mode {
ADS1115_COMP_MODE_WINDOW = 0,
ADS1115_COMP_MODE_HYSTERESIS = 1 << ADS1115_COMP_MODE_SHIFT,
ADS1115_COMP_MODE_MASK = 1 << ADS1115_COMP_MODE_SHIFT,
};
enum ads1115_data_rate {
ADS1115_DATA_RATE_8_SPS = 0,
ADS1115_DATA_RATE_16_SPS = 0x1 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_32_SPS = 0x2 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_64_SPS = 0x3 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_128_SPS = 0x4 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_250_SPS = 0x5 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_475_SPS = 0x6 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_860_SPS = 0x7 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_MASK = 0x7 << ADS1115_DATA_RATE_SHIFT,
};
enum ads1115_mode {
ADS1115_MODE_CONTINUOUS = 0,
ADS1115_MODE_SINGLE_SHOT = 1 << ADS1115_MODE_SHIFT,
ADS1115_MODE_MASK = 1 << ADS1115_MODE_SHIFT,
};
enum ads1115_pga {
ADS1115_PGA_TWO_THIRDS = 0, //±6.144 V
ADS1115_PGA_ONE = 0x1 << ADS1115_PGA_SHIFT, //±4.096 V
ADS1115_PGA_TWO = 0x2 << ADS1115_PGA_SHIFT, //±2.048 V
ADS1115_PGA_FOUR = 0x3 << ADS1115_PGA_SHIFT, //±1.024 V
ADS1115_PGA_EIGHT = 0x4 << ADS1115_PGA_SHIFT, //±0.512 V
ADS1115_PGA_SIXTEEN = 0x5 << ADS1115_PGA_SHIFT, //±0.256 V
ADS1115_PGA_MASK = 0x7 << ADS1115_PGA_SHIFT,
};
enum ads1115_mux {
ADS1115_MUX_DIFF_AIN0_AIN1 = 0,
ADS1115_MUX_DIFF_AIN0_AIN3 = 0x1 << ADS1115_MUX_SHIFT,
ADS1115_MUX_DIFF_AIN1_AIN3 = 0x2 << ADS1115_MUX_SHIFT,
ADS1115_MUX_DIFF_AIN2_AIN3 = 0x3 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN0 = 0x4 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN1 = 0x5 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN2 = 0x6 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN3 = 0x7 << ADS1115_MUX_SHIFT,
ADS1115_MUX_MASK = 0x7 << ADS1115_MUX_SHIFT,
};
class ADS1115 {
public:
ADS1115(uint8_t address = 0x48);
void begin();
uint8_t trigger_sample();
uint8_t reset();
bool is_sample_in_progress();
int16_t read_sample();
float sample_to_float(int16_t val);
float read_sample_float();
void set_comp_queue(enum ads1115_comp_queue val) { set_config(val, ADS1115_COMP_QUEUE_MASK); }
void set_comp_latching(enum ads1115_comp_latch val) { set_config(val, ADS1115_COMP_LATCH_MASK); }
void set_comp_polarity(enum ads1115_comp_polarity val) { set_config(val, ADS1115_COMP_POLARITY_MASK); }
void set_comp_mode(enum ads1115_comp_mode val) { set_config(val, ADS1115_COMP_MODE_MASK); }
void set_data_rate(enum ads1115_data_rate val) { set_config(val, ADS1115_DATA_RATE_MASK); }
void set_mode(enum ads1115_mode val) { set_config(val, ADS1115_MODE_MASK); }
void set_pga(enum ads1115_pga val) { set_config(val, ADS1115_PGA_MASK); m_voltage_range = val >> ADS1115_PGA_SHIFT; }
void set_mux(enum ads1115_mux val) { set_config(val, ADS1115_MUX_MASK); }
private:
void set_config(uint16_t val, uint16_t mask) {
m_config = (m_config & ~mask) | val;
}
uint8_t write_register(uint8_t reg, uint16_t val);
uint16_t read_register(uint8_t reg);
uint8_t m_address;
uint16_t m_config;
int m_voltage_range;
};
enum ads1115_register {
ADS1115_REGISTER_CONVERSION = 0,
ADS1115_REGISTER_CONFIG = 1,
ADS1115_REGISTER_LOW_THRESH = 2,
ADS1115_REGISTER_HIGH_THRESH = 3,
};
#define FACTOR 32768.0
static float ranges[] = { 6.144 / FACTOR, 4.096 / FACTOR, 2.048 / FACTOR, 1.024 / FACTOR, 0.512 / FACTOR, 0.256 / FACTOR};
ADS1115::ADS1115(uint8_t address)
{
m_address = address;
m_config = ADS1115_COMP_QUEUE_AFTER_ONE |
ADS1115_COMP_LATCH_NO |
ADS1115_COMP_POLARITY_ACTIVE_LOW |
ADS1115_COMP_MODE_WINDOW |
ADS1115_DATA_RATE_128_SPS |
ADS1115_MODE_SINGLE_SHOT |
ADS1115_MUX_GND_AIN0;
set_pga(ADS1115_PGA_ONE);
}
uint8_t ADS1115::write_register(uint8_t reg, uint16_t val)
{
Wire.beginTransmission(m_address);
Wire.write(reg);
Wire.write(val>>8);
Wire.write(val & 0xFF);
return Wire.endTransmission();
}
uint16_t ADS1115::read_register(uint8_t reg)
{
Wire.beginTransmission(m_address);
Wire.write(reg);
Wire.endTransmission();
uint8_t result = Wire.requestFrom((int)m_address, 2, 1);
if (result != 2) {
return 0;
}
uint16_t val;
val = Wire.read() << 8;
val |= Wire.read();
return val;
}
void ADS1115::begin()
{
Wire.begin();
}
uint8_t ADS1115::trigger_sample()
{
return write_register(ADS1115_REGISTER_CONFIG, m_config | SAMPLE_BIT);
}
uint8_t ADS1115::reset()
{
Wire.beginTransmission(0);
Wire.write(0x6);
return Wire.endTransmission();
}
bool ADS1115::is_sample_in_progress()
{
uint16_t val = read_register(ADS1115_REGISTER_CONFIG);
return (val & SAMPLE_BIT) == 0;
}
int16_t ADS1115::read_sample()
{
return read_register(ADS1115_REGISTER_CONVERSION);
}
float ADS1115::sample_to_float(int16_t val)
{
return val * ranges[m_voltage_range];
}
float ADS1115::read_sample_float()
{
return sample_to_float(read_sample());
}
ADS1115 adc;
void ADS1115_init(void) {
ads1115_up=0;
if (!TasmotaGlobal.i2c_enabled) return;
adc.begin();
adc.set_data_rate(ADS1115_DATA_RATE_128_SPS);
adc.set_mode(ADS1115_MODE_CONTINUOUS);
adc.set_mux(ADS1115_MUX_DIFF_AIN0_AIN3);
adc.set_pga(ADS1115_PGA_TWO);
int16_t val = adc.read_sample();
ads1115_up=1;
}
#endif
char sml_start;
uint8_t dump2log=0;
uint8_t ser_act_LED_pin=255;
uint8_t ser_act_meter_num=0;
#define SML_SAVAILABLE Serial_available()
#define SML_SREAD Serial_read()
#define SML_SPEAK Serial_peek()
bool Serial_available() {
uint8_t num=dump2log&7;
if (num<1 || num>meters_used) num=1;
if (!meter_ss[num-1]) return 0;
return meter_ss[num-1]->available();
}
uint8_t Serial_read() {
uint8_t num=dump2log&7;
if (num<1 || num>meters_used) num=1;
if (!meter_ss[num-1]) return 0;
return meter_ss[num-1]->read();
}
uint8_t Serial_peek() {
uint8_t num=dump2log&7;
if (num<1 || num>meters_used) num=1;
if (!meter_ss[num-1]) return 0;
return meter_ss[num-1]->peek();
}
#ifndef SML_DUMP_SIZE
#define SML_DUMP_SIZE 128
#endif
uint16_t sml_logindex;
char log_data[SML_DUMP_SIZE];
#define SML_EBUS_SKIP_SYNC_DUMPS
void Dump2log(void) {
int16_t index = 0, hcnt = 0;
uint32_t d_lastms;
uint8_t dchars[16];
uint8_t type = meter_desc_p[(dump2log&7) - 1].type;
//if (!SML_SAVAILABLE) return;
if (dump2log&8) {
// combo mode
while (SML_SAVAILABLE) {
log_data[index] = ':';
index++;
log_data[index] = ' ';
index++;
d_lastms = millis();
while ((millis() - d_lastms) < 40) {
if (SML_SAVAILABLE) {
uint8_t c = SML_SREAD;
sprintf(&log_data[index], "%02x ", c);
dchars[hcnt] = c;
index += 3;
hcnt++;
if (hcnt > 15) {
// line complete, build asci chars
log_data[index] = '=';
index++;
log_data[index] = '>';
index++;
log_data[index] = ' ';
index++;
for (uint8_t ccnt = 0; ccnt < 16; ccnt++) {
if (isprint(dchars[ccnt])) {
log_data[index] = dchars[ccnt];
} else {
log_data[index] = ' ';
}
index++;
}
break;
}
}
}
if (index > 0) {
log_data[index] = 0;
AddLogData(LOG_LEVEL_INFO, log_data);
index = 0;
hcnt = 0;
}
}
} else {
if (type == 'o') {
// obis
while (SML_SAVAILABLE) {
char c = SML_SREAD&0x7f;
if (c == '\n' || c == '\r') {
if (sml_logindex > 2) {
log_data[sml_logindex] = 0;
AddLogData(LOG_LEVEL_INFO, log_data);
log_data[0] = ':';
log_data[1] = ' ';
sml_logindex = 2;
}
continue;
}
log_data[sml_logindex] = c;
if (sml_logindex < sizeof(log_data) - 2) {
sml_logindex++;
}
}
} else if (type == 'v') {
// vbus
uint8_t c;
while (SML_SAVAILABLE) {
c = SML_SREAD;
if (c == VBUS_SYNC) {
log_data[sml_logindex] = 0;
AddLogData(LOG_LEVEL_INFO, log_data);
log_data[0] = ':';
log_data[1] = ' ';
sml_logindex = 2;
}
sprintf(&log_data[sml_logindex], "%02x ", c);
if (sml_logindex < sizeof(log_data) - 7) {
sml_logindex += 3;
}
}
} else if (type == 'e') {
// ebus
uint8_t c, p;
while (SML_SAVAILABLE) {
c = SML_SREAD;
if (c == EBUS_SYNC) {
p = SML_SPEAK;
if (p != EBUS_SYNC && sml_logindex > 5) {
// new packet, plot last one
log_data[sml_logindex] = 0;
AddLogData(LOG_LEVEL_INFO, log_data);
strcpy(&log_data[0], ": aa ");
sml_logindex = 5;
}
continue;
}
sprintf(&log_data[sml_logindex], "%02x ", c);
if (sml_logindex < sizeof(log_data) - 7) {
sml_logindex += 3;
}
}
} else if (type == 's') {
// sml
uint8_t c;
while (SML_SAVAILABLE) {
c = SML_SREAD;
if (c == SML_SYNC) {
log_data[sml_logindex] = 0;
AddLogData(LOG_LEVEL_INFO, log_data);
log_data[0] = ':';
log_data[1] = ' ';
sml_logindex = 2;
}
sprintf(&log_data[sml_logindex], "%02x ", c);
if (sml_logindex < sizeof(log_data) - 7) {
sml_logindex += 3;
}
}
} else {
// raw dump
d_lastms = millis();
log_data[0] = ':';
log_data[1] = ' ';
sml_logindex = 2;
while ((millis() - d_lastms) < 40) {
while (SML_SAVAILABLE) {
sprintf(&log_data[sml_logindex], "%02x ", SML_SREAD);
sml_logindex += 3;
}
}
if (sml_logindex > 2) {
log_data[sml_logindex] = 0;
AddLogData(LOG_LEVEL_INFO, log_data);
}
}
}
}
void Hexdump(uint8_t *sbuff, uint32_t slen) {
char cbuff[slen*3+10];
char *cp = cbuff;
*cp++ = '>';
*cp++ = ' ';
for (uint32_t cnt = 0; cnt < slen; cnt ++) {
sprintf(cp, "%02x ", sbuff[cnt]);
cp += 3;
}
AddLogData(LOG_LEVEL_INFO, cbuff);
}
#ifdef ED300L
uint8_t sml_status[MAX_METERS];
uint8_t g_mindex;
#endif
// skip sml entries
uint8_t *skip_sml(uint8_t *cp,int16_t *res) {
uint8_t len,len1,type;
len=*cp&0xf;
type=*cp&0x70;
if (type==0x70) {
// list, skip entries
// list
cp++;
while (len--) {
len1=*cp&0x0f;
cp+=len1;
}
*res=0;
} else {
// skip len
*res=(signed char)*(cp+1);
cp+=len;
}
return cp;
}
// get sml binary value
// not defined for unsigned >0x7fff ffff ffff ffff (should never happen)
double sml_getvalue(unsigned char *cp,uint8_t index) {
uint8_t len,unit,type;
int16_t scaler,result;
int64_t value;
double dval;
// scan for values
// check status
#ifdef ED300L
unsigned char *cpx=cp-5;
// decode OBIS 0180 amd extract direction info
if (*cp==0x64 && *cpx==0 && *(cpx+1)==0x01 && *(cpx+2)==0x08 && *(cpx+3)==0) {
sml_status[g_mindex]=*(cp+3);
}
if (*cp==0x63 && *cpx==0 && *(cpx+1)==0x01 && *(cpx+2)==0x08 && *(cpx+3)==0) {
sml_status[g_mindex]=*(cp+2);
}
#endif
cp=skip_sml(cp,&result);
// check time
cp=skip_sml(cp,&result);
// check unit
cp=skip_sml(cp,&result);
// check scaler
cp=skip_sml(cp,&result);
scaler=result;
// get value
type=*cp&0x70;
len=*cp&0x0f;
cp++;
if (type==0x50 || type==0x60) {
// shift into 64 bit
uint64_t uvalue=0;
uint8_t nlen=len;
while (--nlen) {
uvalue<<=8;
uvalue|=*cp++;
}
if (type==0x50) {
// signed
switch (len-1) {
case 1:
// byte
value=(signed char)uvalue;
break;
case 2:
// signed 16 bit
#ifdef DWS74_BUG
if (scaler==-2) {
value=(uint32_t)uvalue;
} else {
value=(int16_t)uvalue;
}
#else
value=(int16_t)uvalue;
#endif
break;
case 3:
// signed 24 bit
value=(int32_t)(uvalue<<8);
value/=256;
break;
case 4:
// signed 32 bit
value=(int32_t)uvalue;
break;
case 5:
case 6:
case 7:
case 8:
// signed 64 bit
value=(int64_t)uvalue;
break;
}
} else {
// unsigned
value=uvalue;
}
} else {
if (!(type&0xf0)) {
// octet string serial number
// no coding found on the net
// up to now 2 types identified on Hager
if (len==9) {
// serial number on hager => 24 bit - 24 bit
cp++;
uint32_t s1,s2;
s1=*cp<<16|*(cp+1)<<8|*(cp+2);
cp+=4;
s2=*cp<<16|*(cp+1)<<8|*(cp+2);
sprintf(&meter_id[index][0],"%u-%u",s1,s2);
} else {
// server id on hager
char *str=&meter_id[index][0];
for (type=0; type= 'A' && chr <= 'F') rVal = chr + 10 - 'A';
}
return rVal;
}
uint8_t sb_counter;
// need double precision in this driver
double CharToDouble(const char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strlcpy(strbuf, str, sizeof(strbuf));
char *pt = strbuf;
while ((*pt != '\0') && isspace(*pt)) { pt++; } // Trim leading spaces
signed char sign = 1;
if (*pt == '-') { sign = -1; }
if (*pt == '-' || *pt=='+') { pt++; } // Skip any sign
double left = 0;
if (*pt != '.') {
left = atoi(pt); // Get left part
while (isdigit(*pt)) { pt++; } // Skip number
}
double right = 0;
if (*pt == '.') {
pt++;
right = atoi(pt); // Decimal part
while (isdigit(*pt)) {
pt++;
right /= 10.0;
}
}
double result = left + right;
if (sign < 0) {
return -result; // Add negative sign
}
return result;
}
// remove ebus escapes
void ebus_esc(uint8_t *ebus_buffer, unsigned char len) {
short count,count1;
for (count=0; countavailable()) {
meter_ss[meters]->read();
}
}
void sml_shift_in(uint32_t meters,uint32_t shard) {
uint32_t count;
#ifndef SML_OBIS_LINE
if (meter_desc_p[meters].type!='e' && meter_desc_p[meters].type!='m' && meter_desc_p[meters].type!='M' && meter_desc_p[meters].type!='p' && meter_desc_p[meters].type!='R' && meter_desc_p[meters].type!='v') {
#else
if (meter_desc_p[meters].type!='o' && meter_desc_p[meters].type!='e' && meter_desc_p[meters].type!='m' && meter_desc_p[meters].type!='M' && meter_desc_p[meters].type!='p' && meter_desc_p[meters].type!='R' && meter_desc_p[meters].type!='v') {
#endif
// shift in
for (count=0; countread();
if (meter_desc_p[meters].type == 'o') {
#ifndef SML_OBIS_LINE
smltbuf[meters][SML_BSIZ-1] = iob & 0x7f;
#else
iob &= 0x7f;
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters] >= SML_BSIZ) {
meter_spos[meters] = 0;
}
if (iob == 0x0a) {
SML_Decode(meters);
meter_spos[meters] = 0;
}
#endif
} else if (meter_desc_p[meters].type=='s') {
smltbuf[meters][SML_BSIZ-1]=iob;
} else if (meter_desc_p[meters].type=='r') {
smltbuf[meters][SML_BSIZ-1]=iob;
} else if (meter_desc_p[meters].type=='m' || meter_desc_p[meters].type=='M') {
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters]>=SML_BSIZ) {
meter_spos[meters]=0;
}
if (meter_spos[meters]>=8) {
uint32_t mlen=smltbuf[meters][2]+5;
if (mlen>SML_BSIZ) mlen=SML_BSIZ;
if (meter_spos[meters]>=mlen) {
SML_Decode(meters);
sml_empty_receiver(meters);
meter_spos[meters]=0;
}
}
} else if (meter_desc_p[meters].type=='p') {
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters]>=7) {
SML_Decode(meters);
sml_empty_receiver(meters);
meter_spos[meters]=0;
}
} else if (meter_desc_p[meters].type=='R') {
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters]>=SML_BSIZ) {
meter_spos[meters]=0;
}
} else if (meter_desc_p[meters].type=='v') {
if (iob==EBUS_SYNC) {
sb_counter = 0;
SML_Decode(meters);
smltbuf[meters][0] = iob;
meter_spos[meters] = 1;
} else {
if (meter_spos[meters] < SML_BSIZ) {
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
}
}
}
else {
if (iob==EBUS_SYNC) {
// should be end of telegramm
// QQ,ZZ,PB,SB,NN ..... CRC, ACK SYNC
if (meter_spos[meters]>4+5) {
// get telegramm lenght
uint16_t tlen=smltbuf[meters][4]+5;
// test crc
if (smltbuf[meters][tlen]=ebus_CalculateCRC(smltbuf[meters],tlen)) {
ebus_esc(smltbuf[meters],tlen);
SML_Decode(meters);
} else {
// crc error
//AddLog(LOG_LEVEL_INFO, PSTR("ebus crc error"));
}
}
meter_spos[meters] = 0;
return;
}
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters]>=SML_BSIZ) {
meter_spos[meters]=0;
}
}
sb_counter++;
#ifndef SML_OBIS_LINE
if (meter_desc_p[meters].type!='e' && meter_desc_p[meters].type!='m' && meter_desc_p[meters].type!='M' && meter_desc_p[meters].type!='p' && meter_desc_p[meters].type!='R' && meter_desc_p[meters].type!='v') SML_Decode(meters);
#else
if (meter_desc_p[meters].type!='o' && meter_desc_p[meters].type!='e' && meter_desc_p[meters].type!='m' && meter_desc_p[meters].type!='M' && meter_desc_p[meters].type!='p' && meter_desc_p[meters].type!='R' && meter_desc_p[meters].type!='v') SML_Decode(meters);
#endif
}
// polled every 50 ms
void SML_Poll(void) {
uint32_t meters;
for (meters = 0; meters < meters_used; meters++) {
if (meter_desc_p[meters].type != 'c') {
// poll for serial input
if (!meter_ss[meters]) continue;
if (ser_act_LED_pin!=255 && (ser_act_meter_num==0 || ser_act_meter_num-1==meters)) {
digitalWrite(ser_act_LED_pin, meter_ss[meters]->available() && !digitalRead(ser_act_LED_pin)); // Invert LED, if queue is continuously full
}
while (meter_ss[meters]->available()) {
sml_shift_in(meters, 0);
}
}
}
}
#define VBUS_BAD_CRC 0
// get vbus septet with 6 bytes
uint32_t vbus_get_septet(uint8_t *cp) {
uint32_t result = 0;
//AddLog(LOG_LEVEL_INFO,PSTR("septet: %02x %02x %02x %02x %02x %02x"),cp[0] ,cp[1],cp[2],cp[3],cp[4],cp[5]);
uint8_t Crc = 0x7F;
for (uint32_t i = 0; i < 5; i++) {
Crc = (Crc - cp[i]) & 0x7f;
}
if (Crc != cp[5]) {
result = VBUS_BAD_CRC;
} else {
result = (cp[3] | ((cp[4]&8)<<4));
result <<= 8;
result |= (cp[2] | ((cp[4]&4)<<5));
result <<= 8;
result |= (cp[1] | ((cp[4]&2)<<6));
result <<= 8;
result |= (cp[0] | ((cp[4]&1)<<7));
}
//AddLog(LOG_LEVEL_INFO,PSTR("septet r: %d"),result);
return result;
}
void SML_Decode(uint8_t index) {
const char *mp=(const char*)meter_p;
int8_t mindex;
uint8_t *cp;
uint8_t dindex = 0, vindex = 0;
delay(0);
while (mp != NULL) {
// check list of defines
if (*mp == 0) break;
// new section
mindex = ((*mp) & 7) - 1;
if (mindex < 0 || mindex >= meters_used) mindex = 0;
mp += 2;
if (*mp == '=' && *(mp+1) == 'h') {
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
// =d must handle dindex
if (*mp == '=' && *(mp + 1) == 'd') {
if (index != mindex) {
dindex++;
}
}
if (index!=mindex) goto nextsect;
// start of serial source buffer
cp = &smltbuf[mindex][0];
// compare
if (*mp == '=') {
// calculated entry, check syntax
mp++;
// do math m 1+2+3
if (*mp == 'm' && !sb_counter) {
// only every 256 th byte
// else it would be calculated every single serial byte
mp++;
while (*mp == ' ') mp++;
// 1. index
double dvar;
uint8_t opr;
uint8_t mind;
int32_t ind;
mind = strtol((char*)mp, (char**)&mp, 10);
if (mind < 1 || mind > SML_MAX_VARS) mind = 1;
dvar = meter_vars[mind - 1];
while (*mp==' ') mp++;
for (uint8_t p = 0; p < 8; p++) {
if (*mp == '@') {
// store result
meter_vars[vindex] = dvar;
mp++;
break;
}
opr = *mp;
mp++;
uint8_t iflg = 0;
if (*mp == '#') {
iflg = 1;
mp++;
}
ind = strtol((char*)mp, (char**)&mp, 10);
mind = ind;
if (mind < 1 || mind > SML_MAX_VARS) mind = 1;
switch (opr) {
case '+':
if (iflg) dvar += ind;
else dvar += meter_vars[mind - 1];
break;
case '-':
if (iflg) dvar -= ind;
else dvar -= meter_vars[mind - 1];
break;
case '*':
if (iflg) dvar *= ind;
else dvar *= meter_vars[mind - 1];
break;
case '/':
if (iflg) dvar /= ind;
else dvar /= meter_vars[mind - 1];
break;
}
while (*mp==' ') mp++;
if (*mp == '@') {
// store result
meter_vars[vindex] = dvar;
mp++;
break;
}
}
double fac = CharToDouble((char*)mp);
meter_vars[vindex] /= fac;
SML_Immediate_MQTT((const char*)mp, vindex, mindex);
dvalid[vindex] = 1;
// get sfac
} else if (*mp=='d') {
// calc deltas d ind 10 (eg every 10 secs)
if (dindex < MAX_DVARS) {
// only n indexes
mp++;
while (*mp == ' ') mp++;
uint8_t ind = atoi(mp);
while (*mp >= '0' && *mp <= '9') mp++;
if (ind < 1 || ind > SML_MAX_VARS) ind = 1;
uint32_t delay = atoi(mp) * 1000;
uint32_t dtime = millis() - dtimes[dindex];
if (dtime > delay) {
// calc difference
dtimes[dindex] = millis();
double vdiff = meter_vars[ind - 1] - dvalues[dindex];
dvalues[dindex] = meter_vars[ind - 1];
double dres = (double)360000.0 * vdiff / ((double)dtime / 10000.0);
dvalid[vindex] += 1;
if (dvalid[vindex] >= 2) {
// differece is only valid after 2. calculation
dvalid[vindex] = 2;
#ifdef USE_SML_MEDIAN_FILTER
if (meter_desc_p[mindex].flag & 16) {
meter_vars[vindex] = sml_median(&sml_mf[vindex], dres);
} else {
meter_vars[vindex] = dres;
}
#else
meter_vars[vindex] = dres;
#endif
}
mp=strchr(mp,'@');
if (mp) {
mp++;
double fac = CharToDouble((char*)mp);
meter_vars[vindex] /= fac;
SML_Immediate_MQTT((const char*)mp, vindex, mindex);
}
}
//dvalid[vindex] = 1;
dindex++;
}
} else if (*mp == 'h') {
// skip html tag line
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
} else {
// compare value
uint8_t found = 1;
double ebus_dval = 99;
float mbus_dval = 99;
while (*mp != '@') {
if (meter_desc_p[mindex].type == 'o' || meter_desc_p[mindex].type == 'c') {
if (*mp++ != *cp++) {
found=0;
}
} else {
if (meter_desc_p[mindex].type == 's') {
// sml
uint8_t val = hexnibble(*mp++) << 4;
val |= hexnibble(*mp++);
if (val != *cp++) {
found=0;
}
} else {
// ebus mbus pzem vbus or raw
// XXHHHHSSUU
if (*mp == 'x') {
if (*(mp + 1) == 'x') {
//ignore one byte
mp += 2;
cp++;
} else {
mp++;
if (isdigit(*mp)) {
uint8_t skip = strtol((char*)mp, (char**)&mp, 10);
cp += skip;
}
}
} else if (!strncmp(mp,"UUuuUUuu",8)) {
uint32_t val= (cp[0]<<24)|(cp[1]<<16)|(cp[2]<<8)|(cp[3]<<0);
ebus_dval=val;
mbus_dval=val;
mp+=8;
cp+=4;
} else if (*mp=='U' && *(mp+1)=='U' && *(mp+2)=='u' && *(mp+3)=='u'){
uint16_t val = cp[1]|(cp[0]<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
} else if (!strncmp(mp,"SSssSSss",8)) {
int32_t val= (cp[0]<<24)|(cp[1]<<16)|(cp[2]<<8)|(cp[3]<<0);
ebus_dval=val;
mbus_dval=val;
mp+=8;
cp+=4;
} else if (*mp=='u' && *(mp+1)=='u' && *(mp+2)=='U' && *(mp+3)=='U'){
uint16_t val = cp[0]|(cp[1]<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
} else if (*mp=='u' && *(mp+1)=='u') {
uint8_t val = *cp++;
mbus_dval=val;
ebus_dval=val;
mp+=2;
} else if (*mp=='s' && *(mp+1)=='s' && *(mp+2)=='S' && *(mp+3)=='S') {
int16_t val = *cp|(*(cp+1)<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
} else if (*mp=='S' && *(mp+1)=='S' && *(mp+2)=='s' && *(mp+3)=='s') {
int16_t val = cp[1]|(cp[0]<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
}
else if (*mp=='s' && *(mp+1)=='s') {
int8_t val = *cp++;
mbus_dval=val;
ebus_dval=val;
mp+=2;
}
else if (!strncmp(mp,"ffffffff",8)) {
uint32_t val= (cp[0]<<24)|(cp[1]<<16)|(cp[2]<<8)|(cp[3]<<0);
float *fp=(float*)&val;
ebus_dval=*fp;
mbus_dval=*fp;
mp+=8;
cp+=4;
}
else if (!strncmp(mp,"FFffFFff",8)) {
// reverse word float
uint32_t val= (cp[1]<<0)|(cp[0]<<8)|(cp[3]<<16)|(cp[2]<<24);
float *fp=(float*)&val;
ebus_dval=*fp;
mbus_dval=*fp;
mp+=8;
cp+=4;
}
else if (!strncmp(mp,"eeeeee",6)) {
uint32_t val=(cp[0]<<16)|(cp[1]<<8)|(cp[2]<<0);
mbus_dval=val;
mp+=6;
cp+=3;
}
else if (!strncmp(mp,"vvvvvv",6)) {
mbus_dval=(float)((cp[0]<<8)|(cp[1])) + ((float)cp[2]/10.0);
mp+=6;
cp+=3;
}
else if (!strncmp(mp,"cccccc",6)) {
mbus_dval=(float)((cp[0]<<8)|(cp[1])) + ((float)cp[2]/100.0);
mp+=6;
cp+=3;
}
else if (!strncmp(mp,"pppp",4)) {
mbus_dval=(float)((cp[0]<<8)|cp[1]);
mp+=4;
cp+=2;
}
else if (*mp == 'v') {
// vbus values vul, vsl, vuwh, vuwl, wswh, vswl, vswh
// vub3, vsb3 etc
mp++;
int16_t offset = -1;
if (*mp == 'o') {
mp++;
offset = strtol((char*)mp, (char**)&mp, 10);
cp += (offset / 4) * 6;
}
uint8_t usign;
if (*mp == 'u') {
usign = 1;
} else if (*mp == 's') {
usign = 0;
}
mp++;
switch (*mp) {
case 'l':
mp++;
// get long value
if (usign) {
ebus_dval = vbus_get_septet(cp);
} else {
ebus_dval = (int32_t)vbus_get_septet(cp);
}
break;
case 'w':
mp++;
char wflg;
if (offset >= 0) {
if (offset % 4) {
wflg = 'h';
} else {
wflg = 'l';
}
} else {
wflg = *mp;
mp++;
}
// get word value
if (wflg == 'h') {
// high word
if (usign) ebus_dval = (vbus_get_septet(cp) >> 16) & 0xffff;
else ebus_dval = (int16_t)((vbus_get_septet(cp) >> 16) & 0xffff);
} else {
// low word
if (usign) ebus_dval = vbus_get_septet(cp) & 0xffff;
else ebus_dval = (int16_t)(vbus_get_septet(cp) & 0xffff);
}
break;
case 'b':
mp++;
char bflg;
if (offset >= 0) {
bflg = 0x30 | (offset % 4);
} else {
bflg = *mp;
mp++;
}
switch (bflg) {
case '3':
if (usign) ebus_dval = vbus_get_septet(cp) >> 24;
else ebus_dval = (int8_t)(vbus_get_septet(cp) >> 24);
break;
case '2':
if (usign) ebus_dval = (vbus_get_septet(cp) >> 16) & 0xff;
else ebus_dval = (int8_t)((vbus_get_septet(cp) >> 16) & 0xff);
break;
case '1':
if (usign) ebus_dval = (vbus_get_septet(cp) >> 8) & 0xff;
else ebus_dval = (int8_t)((vbus_get_septet(cp) >> 8) & 0xff);
break;
case '0':
if (usign) ebus_dval = vbus_get_septet(cp) & 0xff;
else ebus_dval = (int8_t)(vbus_get_septet(cp) & 0xff);
break;
}
break;
case 't':
mp++;
{ uint16_t time;
if (offset % 4) {
time = (vbus_get_septet(cp) >> 16) & 0xffff;
} else {
time = vbus_get_septet(cp) & 0xffff;
}
sprintf(&meter_id[mindex][0], "%02d:%02d", time / 60, time % 60);
}
break;
}
cp += 6;
}
else {
uint8_t val = hexnibble(*mp++) << 4;
val |= hexnibble(*mp++);
if (val!=*cp++) {
found=0;
}
}
}
}
}
if (found) {
// matches, get value
dvalid[vindex] = 1;
mp++;
#ifdef ED300L
g_mindex=mindex;
#endif
if (*mp == '#') {
// get string value
getstr:
mp++;
if (meter_desc_p[mindex].type != 'v') {
if (meter_desc_p[mindex].type == 'o') {
uint32_t p;
for (p = 0; p < METER_ID_SIZE - 2; p++) {
if (*cp == *mp) {
break;
}
meter_id[mindex][p] = *cp++;
}
meter_id[mindex][p] = 0;
} else {
sml_getvalue(cp,mindex);
}
}
} else {
double dval;
if (meter_desc_p[mindex].type!='e' && meter_desc_p[mindex].type!='r' && meter_desc_p[mindex].type!='m' && meter_desc_p[mindex].type!='M' && meter_desc_p[mindex].type!='p' && meter_desc_p[mindex].type!='v') {
// get numeric values
if (meter_desc_p[mindex].type=='o' || meter_desc_p[mindex].type=='c') {
if (*mp == '(') {
mp++;
// skip this number of brackets
uint8_t toskip = strtol((char*)mp,(char**)&mp, 10);
mp++;
char *lcp = (char*)cp;
if (toskip) {
char *bp = (char*)cp;
for (uint32_t cnt = 0; cnt < toskip; cnt++) {
bp = strchr(bp, '(');
if (!bp) {
break;
}
bp++;
lcp = bp;
}
}
if (*mp=='#') {
cp = (uint8_t*)lcp;
goto getstr;
}
dval=CharToDouble((char*)lcp);
} else {
dval=CharToDouble((char*)cp);
}
} else {
dval = sml_getvalue(cp,mindex);
}
} else {
// ebus pzem vbus or mbus or raw
if (*mp=='b') {
mp++;
uint8_t shift = *mp&7;
ebus_dval = (uint32_t)ebus_dval>>shift;
ebus_dval = (uint32_t)ebus_dval&1;
mp+=2;
}
if (*mp=='i') {
// mbus index
mp++;
uint8_t mb_index=strtol((char*)mp,(char**)&mp,10);
if (mb_index!=meter_desc_p[mindex].index) {
goto nextsect;
}
uint16_t pos = smltbuf[mindex][2]+3;
if (pos>32) pos=32;
uint16_t crc = MBUS_calculateCRC(&smltbuf[mindex][0],pos);
if (lowByte(crc)!=smltbuf[mindex][pos]) goto nextsect;
if (highByte(crc)!=smltbuf[mindex][pos+1]) goto nextsect;
dval=mbus_dval;
//AddLog(LOG_LEVEL_INFO, PSTR(">> %s"),mp);
mp++;
} else {
if (meter_desc_p[mindex].type=='p') {
uint8_t crc = SML_PzemCrc(&smltbuf[mindex][0],6);
if (crc!=smltbuf[mindex][6]) goto nextsect;
dval=mbus_dval;
} else {
dval=ebus_dval;
}
}
}
#ifdef USE_SML_MEDIAN_FILTER
if (meter_desc_p[mindex].flag&16) {
meter_vars[vindex]=sml_median(&sml_mf[vindex],dval);
} else {
meter_vars[vindex]=dval;
}
#else
meter_vars[vindex]=dval;
#endif
//AddLog(LOG_LEVEL_INFO, PSTR(">> %s"),mp);
// get scaling factor
double fac = CharToDouble((char*)mp);
meter_vars[vindex] /= fac;
SML_Immediate_MQTT((const char*)mp, vindex, mindex);
}
}
//AddLog(LOG_LEVEL_INFO, PSTR("set valid in line %d"), vindex);
}
nextsect:
// next section
if (vindex=meters_used) lastmind=0;
while (mp != NULL) {
if (*mp==0) break;
// setup sections
mindex=((*mp)&7)-1;
if (mindex<0 || mindex>=meters_used) mindex=0;
if (meter_desc_p[mindex].prefix[0]=='*' && meter_desc_p[mindex].prefix[1]==0) {
nojson = 1;
} else {
nojson = 0;
}
mp+=2;
if (*mp=='=' && *(mp+1)=='h') {
mp+=2;
// html tag
if (json) {
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
// web ui export
uint8_t i;
for (i=0;i(arg);
uint32_t time = micros();
uint32_t debounce_time;
if (digitalRead(meter_desc_p[sml_counters[index].sml_cnt_old_state].srcpin) == bitRead(sml_counter_pinstate, index)) {
return;
}
debounce_time = time - sml_counters[index].sml_counter_ltime;
if (debounce_time <= sml_counters[index].sml_debounce * 1000) return;
if bitRead(sml_counter_pinstate, index) {
// falling edge
RtcSettings.pulse_counter[index]++;
sml_counters[index].sml_cnt_updated=1;
}
sml_counters[index].sml_counter_ltime = time;
sml_counter_pinstate ^= (1<') break;
if (*lp==0) break;
}
//AddLog(LOG_LEVEL_INFO, PSTR("len=%d"),mlen);
return mlen+32;
}
#else
uint32_t SML_getscriptsize(char *lp) {
uint32_t mlen=0;
for (uint32_t cnt=0;cnt 0)) {
return true;
}
return false;
}
void SML_Init(void) {
meters_used=METERS_USED;
meter_desc_p=meter_desc;
meter_p=meter;
sml_desc_cnt=0;
for (uint32_t cnt=0;cntrule_enabled, 0)) {
uint8_t meter_script=Run_Scripter(">M",-2,0);
if (meter_script==99) {
// use script definition
if (script_meter) free(script_meter);
script_meter = 0;
uint8_t *tp = 0;
uint16_t index = 0;
uint8_t section = 0;
int8_t srcpin = 0;
uint8_t dec_line = 0;
char *lp = glob_script_mem.scriptptr;
sml_send_blocks = 0;
while (lp) {
if (!section) {
if (*lp == '>' && *(lp+1) == 'M') {
lp += 2;
meters_used = strtol(lp, 0, 10);
section = 1;
uint32_t mlen = SML_getscriptsize(lp);
if (mlen == 0) return; // missing end #
script_meter = (uint8_t*)calloc(mlen, 1);
if (!script_meter) {
goto dddef_exit;
}
tp = script_meter;
goto next_line;
}
}
else {
if (!*lp || *lp == '#' || *lp == '>') {
if (*(tp-1) == '|') *(tp-1) = 0;
break;
}
if (*lp == '+') {
// add descriptor +1,1,c,0,10,H20
//toLogEOL(">>",lp);
lp++;
index = *lp&7;
lp += 2;
if (index < 1 || index > meters_used) {
AddLog(LOG_LEVEL_INFO, PSTR("illegal meter number!"));
goto next_line;
}
index--;
srcpin = strtol(lp,&lp,10);
if (Gpio_used(abs(srcpin))) {
AddLog(LOG_LEVEL_INFO, PSTR("SML: Error: Duplicate GPIO %d defined. Not usable for RX in meter number %d"),abs(srcpin),index+1);
dddef_exit:
if (script_meter) free(script_meter);
script_meter = 0;
meters_used = METERS_USED;
goto init10;
}
script_meter_desc[index].srcpin = srcpin;
if (*lp != ',') goto next_line;
lp++;
script_meter_desc[index].type = *lp;
lp++;
if (*lp != ',') {
switch (*lp) {
case 'N':
lp++;
script_meter_desc[index].sopt = 0x10 | (*lp & 3);
lp++;
break;
case 'E':
lp++;
script_meter_desc[index].sopt = 0x20 | (*lp & 3);
lp++;
break;
case 'O':
lp++;
script_meter_desc[index].sopt = 0x30 | (*lp & 3);
lp++;
break;
default:
script_meter_desc[index].sopt = *lp&7;
lp++;
}
} else {
script_meter_desc[index].sopt = 0;
}
lp++;
script_meter_desc[index].flag = strtol(lp, &lp, 10);
if (*lp != ',') goto next_line;
lp++;
script_meter_desc[index].params = strtol(lp, &lp, 10);
if (*lp != ',') goto next_line;
lp++;
script_meter_desc[index].prefix[7] = 0;
for (uint32_t cnt = 0; cnt < 8; cnt++) {
if (*lp == SCRIPT_EOL || *lp == ',') {
script_meter_desc[index].prefix[cnt] = 0;
break;
}
script_meter_desc[index].prefix[cnt] = *lp++;
}
if (*lp == ',') {
lp++;
script_meter_desc[index].trxpin = strtol(lp, &lp, 10);
if (Gpio_used(script_meter_desc[index].trxpin)) {
AddLog(LOG_LEVEL_INFO, PSTR("SML: Error: Duplicate GPIO %d defined. Not usable for TX in meter number %d"),script_meter_desc[index].trxpin,index+1);
goto dddef_exit;
}
if (*lp != ',') goto next_line;
lp++;
script_meter_desc[index].tsecs = strtol(lp, &lp, 10);
if (*lp == ',') {
lp++;
#if 1
// look ahead
uint16_t txlen = 0;
uint16_t tx_entries = 1;
char *txp = lp;
while (*txp) {
if (*txp == ',') tx_entries++;
if (*txp == SCRIPT_EOL) {
if (tx_entries > 1) {
if (*(txp - 1) != ',' ) {
break;
}
// line ends with ,
} else {
// single entry
break;
}
}
txp++;
txlen++;
}
if (txlen) {
script_meter_desc[index].txmem = (char*)calloc(txlen + 2, 1);
if (script_meter_desc[index].txmem) {
// now copy send blocks
char *txp = lp;
uint16_t tind = 0;
for (uint32_t cnt = 0; cnt < txlen; cnt++) {
if (*txp == SCRIPT_EOL) {
txp++;
} else {
script_meter_desc[index].txmem[tind] = *txp++;
tind++;
}
}
}
//AddLog(LOG_LEVEL_INFO, PSTR(">>> %s - %d"), script_meter_desc[index].txmem, txlen);
script_meter_desc[index].index = 0;
script_meter_desc[index].max_index = tx_entries;
sml_send_blocks++;
lp += txlen;
}
#else
char txbuff[SML_SRCBSIZE];
uint32_t txlen = 0, tx_entries = 1;
for (uint32_t cnt = 0; cnt < sizeof(txbuff); cnt++) {
if (*lp == SCRIPT_EOL && *(lp - 1) != ',' ) {
txbuff[cnt] = 0;
txlen = cnt;
break;
}
if (*lp == ',') tx_entries++;
txbuff[cnt] = *lp++;
}
if (txlen) {
script_meter_desc[index].txmem = (char*)calloc(txlen + 2, 1);
if (script_meter_desc[index].txmem) {
strcpy(script_meter_desc[index].txmem, txbuff);
}
script_meter_desc[index].index = 0;
script_meter_desc[index].max_index = tx_entries;
sml_send_blocks++;
}
#endif
}
}
if (*lp == SCRIPT_EOL) lp--;
goto next_line;
}
#ifdef SML_REPLACE_VARS
char dstbuf[SML_SRCBSIZE*2];
Replace_Cmd_Vars(lp, 1, dstbuf,sizeof(dstbuf));
lp += SML_getlinelen(lp);
//AddLog(LOG_LEVEL_INFO, PSTR("%s"),dstbuf);
char *lp1 = dstbuf;
if (*lp1 == '-' || isdigit(*lp1)) {
//toLogEOL(">>",lp);
// add meters line -1,1-0:1.8.0*255(@10000,H2OIN,cbm,COUNTER,4|
if (*lp1 == '-') lp1++;
uint8_t mnum = strtol(lp1, 0, 10);
if (mnum < 1 || mnum > meters_used) {
AddLog(LOG_LEVEL_INFO, PSTR("illegal meter number!"));
goto next_line;
}
// 1,=h—————————————
if (strncmp(lp1 + 1, ",=h", 3)) {
dec_line++;
if (dec_line >= SML_MAX_VARS) {
AddLog(LOG_LEVEL_INFO, PSTR("too many decode lines: %d !"), dec_line);
goto next_line;
}
}
while (1) {
if (*lp1 == 0) {
*tp++ = '|';
goto next_line;
}
*tp++ = *lp1++;
index++;
if (index >= METER_DEF_SIZE) break;
}
}
#else
if (*lp == '-' || isdigit(*lp)) {
//toLogEOL(">>",lp);
// add meters line -1,1-0:1.8.0*255(@10000,H2OIN,cbm,COUNTER,4|
if (*lp == '-') lp++;
uint8_t mnum = strtol(lp,0,10);
if (mnum < 1 || mnum > meters_used) {
AddLog(LOG_LEVEL_INFO, PSTR("illegal meter number!"));
goto next_line;
}
if (strncmp(lp + 1, ",=h", 3)) {
dec_line++;
if (dec_line >= SML_MAX_VARS) {
AddLog(LOG_LEVEL_INFO, PSTR("too many decode lines: %d !"), dec_line);
goto next_line;
}
}
while (1) {
if (*lp == SCRIPT_EOL) {
if (*(tp-1) != '|') *tp++ = '|';
goto next_line;
}
*tp++ = *lp++;
index++;
if (index >= METER_DEF_SIZE) break;
}
}
#endif
}
next_line:
if (*lp==SCRIPT_EOL) {
lp++;
} else {
lp = strchr(lp, SCRIPT_EOL);
if (!lp) break;
lp++;
}
}
*tp=0;
meter_desc_p=script_meter_desc;
meter_p=script_meter;
}
}
#endif
init10:
typedef void (*function)();
uint8_t cindex=0;
// preloud counters
for (byte i = 0; i < MAX_COUNTERS; i++) {
RtcSettings.pulse_counter[i] = Settings->pulse_counter[i];
sml_counters[i].sml_cnt_last_ts=millis();
}
uint32_t uart_index = 2;
for (uint8_t meters = 0; meters < meters_used; meters++) {
if (meter_desc_p[meters].type == 'c') {
if (meter_desc_p[meters].flag & 2) {
// analog mode
#ifdef ANALOG_OPTO_SENSOR
ADS1115_init();
sml_counters[cindex].ana_max=-32768;
sml_counters[cindex].ana_min=+32767;
#endif
} else {
// counters, set to input with pullup
if (meter_desc_p[meters].flag&1) {
pinMode(meter_desc_p[meters].srcpin,INPUT_PULLUP);
} else {
pinMode(meter_desc_p[meters].srcpin,INPUT);
}
// check for irq mode
if (meter_desc_p[meters].params<=0) {
// init irq mode
attachInterruptArg(meter_desc_p[meters].srcpin, SML_CounterIsr,&sml_cnt_index[cindex], CHANGE);
sml_counters[cindex].sml_cnt_old_state=meters;
sml_counters[cindex].sml_debounce=-meter_desc_p[meters].params;
}
InjektCounterValue(meters,RtcSettings.pulse_counter[cindex]);
cindex++;
}
} else {
// serial input, init
#ifdef SPECIAL_SS
if (meter_desc_p[meters].type=='m' || meter_desc_p[meters].type=='M' || meter_desc_p[meters].type=='p' || meter_desc_p[meters].type=='R' || meter_desc_p[meters].type=='v') {
meter_ss[meters] = new TasmotaSerial(meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin,1,0,TMSBSIZ);
} else {
meter_ss[meters] = new TasmotaSerial(meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin,1,1,TMSBSIZ);
}
#else
#ifdef ESP8266
meter_ss[meters] = new TasmotaSerial(meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin,1,0,TMSBSIZ);
#endif // ESP8266
#ifdef ESP32
// use hardware serial
#ifdef USE_ESP32_SW_SERIAL
meter_ss[meters] = new SML_ESP32_SERIAL(uart_index);
if (meter_desc_p[meters].srcpin >= 0) {
if (uart_index == 0) { ClaimSerial(); }
uart_index--;
if (uart_index < 0) uart_index = 0;
}
#else
meter_ss[meters] = new HardwareSerial(uart_index);
if (uart_index == 0) { ClaimSerial(); }
uart_index--;
if (uart_index < 0) uart_index = 0;
meter_ss[meters]->setRxBufferSize(TMSBSIZ);
#endif // USE_ESP32_SW_SERIAL
#endif // ESP32
#endif // SPECIAL_SS
SerialConfig smode = SERIAL_8N1;
if (meter_desc_p[meters].sopt & 0xf0) {
// new serial config
switch (meter_desc_p[meters].sopt >> 4) {
case 1:
if ((meter_desc_p[meters].sopt & 1) == 1) smode = SERIAL_8N1;
else smode = SERIAL_8N2;
break;
case 2:
if ((meter_desc_p[meters].sopt & 1) == 1) smode = SERIAL_8E1;
else smode = SERIAL_8E2;
break;
case 3:
if ((meter_desc_p[meters].sopt & 1) == 1) smode = SERIAL_8O1;
else smode = SERIAL_8O2;
break;
}
} else {
// depecated serial config
if (meter_desc_p[meters].sopt == 2) {
smode = SERIAL_8N2;
}
if (meter_desc_p[meters].type=='M') {
smode = SERIAL_8E1;
if (meter_desc_p[meters].sopt == 2) {
smode = SERIAL_8E2;
}
}
}
#ifdef ESP8266
if (meter_ss[meters]->begin(meter_desc_p[meters].params)) {
meter_ss[meters]->flush();
}
if (meter_ss[meters]->hardwareSerial()) {
Serial.begin(meter_desc_p[meters].params, smode);
ClaimSerial();
//Serial.setRxBufferSize(512);
}
#endif // ESP8266
#ifdef ESP32
meter_ss[meters]->begin(meter_desc_p[meters].params, smode, meter_desc_p[meters].srcpin, meter_desc_p[meters].trxpin);
//meter_ss[meters]->setRxBufferSize(TMSBSIZ);
#endif // ESP32
}
}
}
#ifdef USE_SML_SCRIPT_CMD
uint32_t sml_getv(uint32_t sel) {
if (!sel) {
for (uint8_t cnt = 0; cnt < SML_MAX_VARS; cnt++) {
dvalid[cnt] = 0;
}
sel = 0;
} else {
if (sel < 1) sel = 1;
sel = dvalid[sel - 1];
}
return sel;
}
uint32_t SML_SetBaud(uint32_t meter, uint32_t br) {
if (meter < 1 || meter > meters_used) return 0;
meter--;
if (!meter_ss[meter]) return 0;
#ifdef ESP8266
if (meter_ss[meter]->begin(br)) {
meter_ss[meter]->flush();
}
if (meter_ss[meter]->hardwareSerial()) {
if (meter_desc_p[meter].type=='M') {
Serial.begin(br, SERIAL_8E1);
}
}
#endif // ESP8266
#ifdef ESP32
meter_ss[meter]->flush();
meter_ss[meter]->updateBaudRate(br);
/*
if (meter_desc_p[meter].type=='M') {
meter_ss[meter]->begin(br,SERIAL_8E1,meter_desc_p[meter].srcpin,meter_desc_p[meter].trxpin);
} else {
meter_ss[meter]->begin(br,SERIAL_8N1,meter_desc_p[meter].srcpin,meter_desc_p[meter].trxpin);
}*/
#endif // ESP32
return 1;
}
uint32_t SML_Status(uint32_t meter) {
if (meter<1 || meter>meters_used) return 0;
meter--;
#ifdef ED300L
return sml_status[meter];
#else
return 0;
#endif
}
uint32_t SML_Write(uint32_t meter,char *hstr) {
if (meter<1 || meter>meters_used) return 0;
meter--;
if (!meter_ss[meter]) return 0;
SML_Send_Seq(meter,hstr);
return 1;
}
uint32_t SML_Read(int32_t meter,char *str, uint32_t slen) {
uint8_t hflg=0;
if (meter<0) {
meter=abs(meter);
hflg=1;
}
if (meter<1 || meter>meters_used) return 0;
meter--;
if (!meter_ss[meter]) return 0;
if (!meter_spos[meter]) {
return 0;
}
smltbuf[meter][meter_spos[meter]]=0;
if (!hflg) {
strlcpy(str,(char*)&smltbuf[meter][0],slen);
} else {
uint32_t index=0;
for (uint32_t cnt=0; cnt=slen-2) break;
}
}
meter_spos[meter]=0;
return 1;
}
float SML_GetVal(uint32_t index) {
if (index < 1 || index > SML_MAX_VARS) { index = 1;}
return meter_vars[index-1];
}
char *SML_GetSVal(uint32_t index) {
if (index < 1 || index > MAX_METERS) { index = 1;}
return &meter_id[index - 1][0];
}
#endif // USE_SML_SCRIPT_CMD
void SetDBGLed(uint8_t srcpin, uint8_t ledpin) {
pinMode(ledpin, OUTPUT);
if (digitalRead(srcpin)) {
digitalWrite(ledpin,LOW);
} else {
digitalWrite(ledpin,HIGH);
}
}
// fast counter polling
void SML_Counter_Poll(void) {
uint16_t meters,cindex=0;
uint32_t ctime=millis();
for (meters=0; meters0) {
if (ctime-sml_counters[cindex].sml_cnt_last_ts>meter_desc_p[meters].params) {
sml_counters[cindex].sml_cnt_last_ts=ctime;
if (meter_desc_p[meters].flag&2) {
// analog mode, get next value
#ifdef ANALOG_OPTO_SENSOR
if (ads1115_up) {
int16_t val = adc.read_sample();
if (val>sml_counters[cindex].ana_max) sml_counters[cindex].ana_max=val;
if (val10) {
sml_counters[cindex].sml_cnt_last_ts=ctime;
#ifdef DEBUG_CNT_LED1
if (cindex==0) SetDBGLed(meter_desc_p[meters].srcpin,DEBUG_CNT_LED1);
#endif
#ifdef DEBUG_CNT_LED2
if (cindex==1) SetDBGLed(meter_desc_p[meters].srcpin,DEBUG_CNT_LED2);
#endif
}
if (sml_counters[cindex].sml_cnt_updated) {
InjektCounterValue(sml_counters[cindex].sml_cnt_old_state,RtcSettings.pulse_counter[cindex]);
sml_counters[cindex].sml_cnt_updated=0;
}
}
cindex++;
}
}
}
#ifdef USE_SCRIPT
char *SML_Get_Sequence(char *cp,uint32_t index) {
if (!index) return cp;
uint32_t cindex=0;
while (cp) {
cp=strchr(cp,',');
if (cp) {
cp++;
cindex++;
if (cindex==index) {
return cp;
}
}
}
return cp;
}
void SML_Check_Send(void) {
sml_100ms_cnt++;
char *cp;
for (uint32_t cnt=sml_desc_cnt; cnt=0 && script_meter_desc[cnt].txmem) {
//AddLog(LOG_LEVEL_INFO, PSTR("100 ms>> %d - %s - %d"),sml_desc_cnt,script_meter_desc[cnt].txmem,script_meter_desc[cnt].tsecs);
if ((sml_100ms_cnt>=script_meter_desc[cnt].tsecs)) {
sml_100ms_cnt=0;
//AddLog(LOG_LEVEL_INFO, PSTR("100 ms>> 2"),cp);
if (script_meter_desc[cnt].max_index>1) {
script_meter_desc[cnt].index++;
if (script_meter_desc[cnt].index>=script_meter_desc[cnt].max_index) {
script_meter_desc[cnt].index=0;
sml_desc_cnt++;
}
cp=SML_Get_Sequence(script_meter_desc[cnt].txmem,script_meter_desc[cnt].index);
//SML_Send_Seq(cnt,cp);
} else {
cp=script_meter_desc[cnt].txmem;
//SML_Send_Seq(cnt,cp);
sml_desc_cnt++;
}
//AddLog(LOG_LEVEL_INFO, PSTR(">> %s"),cp);
SML_Send_Seq(cnt,cp);
if (sml_desc_cnt>=meters_used) {
sml_desc_cnt=0;
}
break;
}
} else {
sml_desc_cnt++;
}
if (sml_desc_cnt>=meters_used) {
sml_desc_cnt=0;
}
}
}
uint8_t sml_hexnibble(char chr) {
uint8_t rVal = 0;
if (isdigit(chr)) {
rVal = chr - '0';
} else {
if (chr >= 'A' && chr <= 'F') rVal = chr + 10 - 'A';
if (chr >= 'a' && chr <= 'f') rVal = chr + 10 - 'a';
}
return rVal;
}
// send sequence every N Seconds
void SML_Send_Seq(uint32_t meter,char *seq) {
uint8_t sbuff[48];
uint8_t *ucp = sbuff, slen = 0;
char *cp = seq;
uint8_t rflg = 0;
if (*cp == 'r') {
rflg = 1;
cp++;
}
while (*cp) {
if (!*cp || !*(cp+1)) break;
if (*cp == ',') break;
uint8_t iob = (sml_hexnibble(*cp) << 4) | sml_hexnibble(*(cp + 1));
cp += 2;
*ucp++ = iob;
slen++;
if (slen >= sizeof(sbuff)-6) break; // leave space for checksum
}
if (script_meter_desc[meter].type == 'm' || script_meter_desc[meter].type == 'M') {
if (!rflg) {
*ucp++ = 0;
*ucp++ = 2;
slen += 2;
}
// append crc
uint16_t crc = MBUS_calculateCRC(sbuff, slen);
*ucp++ = lowByte(crc);
*ucp++ = highByte(crc);
slen += 2;
}
if (script_meter_desc[meter].type == 'o') {
for (uint32_t cnt = 0; cnt < slen; cnt++) {
sbuff[cnt] |= (CalcEvenParity(sbuff[cnt]) << 7);
}
}
if (script_meter_desc[meter].type == 'p') {
*ucp++ = 0xc0;
*ucp++ = 0xa8;
*ucp++ = 1;
*ucp++ = 1;
*ucp++ = 0;
*ucp++ = SML_PzemCrc(sbuff, 6);
slen += 6;
}
meter_ss[meter]->write(sbuff, slen);
if (dump2log) {
#ifdef SML_DUMP_OUT_ALL
Hexdump(sbuff, slen);
#else
uint8_t type = meter_desc_p[(dump2log&7) - 1].type;
if (type == 'm' || type == 'M') {
Hexdump(sbuff, slen);
}
#endif
}
}
#endif // USE_SCRIPT
uint16_t MBUS_calculateCRC(uint8_t *frame, uint8_t num) {
uint16_t crc, flag;
crc = 0xFFFF;
for (uint32_t i = 0; i < num; i++) {
crc ^= frame[i];
for (uint32_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
uint8_t SML_PzemCrc(uint8_t *data, uint8_t len) {
uint16_t crc = 0;
for (uint32_t i = 0; i < len; i++) crc += *data++;
return (uint8_t)(crc & 0xFF);
}
// for odd parity init with 1
uint8_t CalcEvenParity(uint8_t data) {
uint8_t parity=0;
while(data) {
parity^=(data &1);
data>>=1;
}
return parity;
}
// dump to log shows serial data on console
// has to be off for normal use
// in console sensor53 d1, d2, d3 ... or d0 for normal use
// set counter => sensor53 c1 xxxx
// restart driver => sensor53 r
// meter number for monitoring serial activity => sensor53 m1, m2, m3 ... or m0 for all (default)
// LED-GPIO for monitoring serial activity => sensor53 l2, l13, l15 ... or l255 for turn off (default)
bool XSNS_53_cmd(void) {
bool serviced = true;
if (XdrvMailbox.data_len > 0) {
char *cp=XdrvMailbox.data;
if (*cp=='d') {
// set dump mode
cp++;
uint8_t index=atoi(cp);
if ((index&7)>meters_used) index=1;
if (index>0 && meter_desc_p[(index&7)-1].type=='c') {
index=0;
}
dump2log=index;
ResponseTime_P(PSTR(",\"SML\":{\"CMD\":\"dump: %d\"}}"),dump2log);
} else if (*cp=='c') {
// set counter
cp++;
uint8_t index=*cp&7;
if (index<1 || index>MAX_COUNTERS) index=1;
cp++;
while (*cp==' ') cp++;
if (isdigit(*cp)) {
uint32_t cval=atoi(cp);
while (isdigit(*cp)) cp++;
RtcSettings.pulse_counter[index-1]=cval;
uint8_t cindex=0;
for (uint8_t meters=0; meterspulse_counter[i] = RtcSettings.pulse_counter[i];
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns53(byte function) {
bool result = false;
switch (function) {
case FUNC_INIT:
SML_Init();
break;
case FUNC_LOOP:
SML_Counter_Poll();
if (dump2log) Dump2log();
else {
SML_Poll();
}
break;
// case FUNC_EVERY_50_MSECOND:
// if (dump2log) Dump2log();
// else SML_Poll();
// break;
#ifdef USE_SCRIPT
case FUNC_EVERY_100_MSECOND:
if (bitRead(Settings->rule_enabled, 0)) {
SML_Check_Send();
}
break;
#endif // USE_SCRIPT
case FUNC_JSON_APPEND:
if (sml_json_enable) {
SML_Show(1);
}
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
SML_Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND_SENSOR:
if (XSNS_53 == XdrvMailbox.index) {
result = XSNS_53_cmd();
}
break;
case FUNC_SAVE_BEFORE_RESTART:
case FUNC_SAVE_AT_MIDNIGHT:
SML_CounterSaveState();
break;
}
return result;
}
#endif // USE_SML