/* xnrg_07_ade7953.ino - ADE7953 energy sensor support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if defined(ESP32) && defined(USE_SPI) #define USE_ESP32_SPI #endif #if defined(USE_I2C) || defined(USE_ESP32_SPI) #ifdef USE_ENERGY_SENSOR #ifdef USE_ADE7953 /*********************************************************************************************\ * ADE7953 - Energy used in Shelly 2.5 (model 1), Shelly EM (model 2), Shelly Plus 2PM (model 3), Shelly Pro 1PM (model 4) and Shelly Pro 2PM (model 5) * * {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18} * {"NAME":"Shelly EM","GPIO":[0,0,0,0,0,0,0,0,640,3457,608,224,8832,1],"FLAG":0,"BASE":18} * {"NAME":"Shelly Plus 2PM PCB v0.1.5","GPIO":[320,0,192,0,0,0,1,1,225,224,0,0,0,0,193,0,0,0,0,0,0,608,3840,32,0,0,0,0,0,640,0,0,3458,4736,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,32000,40000,3350"} * {"NAME":"Shelly Plus 2PM PCB v0.1.9","GPIO":[320,0,0,0,32,192,0,0,225,224,0,0,0,0,193,0,0,0,0,0,0,608,640,3458,0,0,0,0,0,9472,0,4736,0,0,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"} * {"NAME":"Shelly Pro 1PM","GPIO":[9568,1,9472,1,768,0,0,0,672,704,736,0,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,3459,0,0,32,4736,0,160,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"} * {"NAME":"Shelly Pro 2PM","GPIO":[9568,1,9472,1,768,0,0,0,672,704,736,9569,0,0,5600,6214,0,0,0,5568,0,0,0,0,0,0,0,0,3460,0,0,32,4736,4737,160,161],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350;AdcParam2 2,10000,10000,3350"} * * Based on datasheet from https://www.analog.com/en/products/ade7953.html * * Model differences: * Function Model1 Model2 Model3 Model4 Model5 Remark * ------------------------------ ------- ------- ------- ------ ------ ------------------------------------------------- * Shelly 2.5 EM Plus2PM Pro1PM Pro2PM * Processor ESP8266 ESP8266 ESP32 ESP32 ESP32 * Interface I2C I2C I2C SPI SPI Interface type used * Number of ADE9753 chips 1 1 1 1 2 Count of ADE9753 chips * ADE9753 IRQ 1 2 3 4 5 Index defines model number * Current measurement device shunt CT shunt shunt shunt CT = Current Transformer * Common voltage Yes Yes Yes No No Show common voltage in GUI/JSON * Common frequency Yes Yes Yes No No Show common frequency in GUI/JSON * Swapped channel A/B Yes No No No No Defined by hardware design - Fixed by Tasmota * Support Export Active No Yes No No No Only EM supports correct negative value detection * Show negative (reactive) power No Yes No No No Only EM supports correct negative value detection * Default phase calibration 0 200 0 0 0 CT needs different phase calibration than shunts * Default reset pin on ESP8266 - 16 - - - Legacy support. Replaced by GPIO ADE7953RST * * I2C Address: 0x38 ********************************************************************************************* * Optionally allowing users to tweak calibration registers: * - In addition to possible rules add a rule containing the calib.dat string like: * - rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon * - rule3 on file#calib.dat do {"rms":{"current_a":4194303,"current_b":4194303,"voltage":1613194},"angles":{"angle0":200,"angle1":200},"powers":{"totactive":{"a":2723574,"b":2723574},"apparent":{"a":2723574,"b":2723574},"reactive":{"a":2723574,"b":2723574}}} endon * - Restart Tasmota and obeserve that the results seem calibrated as Tasmota now uses the information from calib.dat * To restore standard calibration using commands like VoltSet remove above entry from rule3 \*********************************************************************************************/ #define XNRG_07 7 #define XI2C_07 7 // See I2CDEVICES.md #define ADE7953_ADDR 0x38 /*********************************************************************************************/ #define ADE7953_ACCU_ENERGY // Use accumulating energy instead of instant power //#define ADE7953_DUMP_REGS #define ADE7953_PREF 1540 // 4194304 / (1540 / 1000) = 2723574 (= WGAIN, VAGAIN and VARGAIN) #define ADE7953_UREF 26000 // 4194304 / (26000 / 10000) = 1613194 (= VGAIN) #define ADE7953_IREF 10000 // 4194304 / (10000 / 10000) = 4194303 (= IGAIN, needs to be different than 4194304 in order to use calib.dat) // Default calibration parameters can be overridden by a rule as documented above. #define ADE7953_GAIN_DEFAULT 4194304 // = 0x400000 range 2097152 (min) to 6291456 (max) #define ADE7953_PHCAL_DEFAULT 0 // = range -383 to 383 - Default phase calibration for Shunts #define ADE7953_PHCAL_DEFAULT_CT 200 // = range -383 to 383 - Default phase calibration for Current Transformers (Shelly EM) enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM, ADE7953_SHELLY_PLUS_2PM, ADE7953_SHELLY_PRO_1PM, ADE7953_SHELLY_PRO_2PM }; enum Ade7953_8BitRegisters { // Register Name Addres R/W Bt Ty Default Description // ---------------------------- ------ --- -- -- ---------- -------------------------------------------------------------------- ADE7953_SAGCYC = 0x000, // 0x000 R/W 8 U 0x00 Sag line cycles ADE7953_DISNOLOAD, // 0x001 R/W 8 U 0x00 No-load detection disable (see Table 16) ADE7953_RESERVED_0X002, // 0x002 ADE7953_RESERVED_0X003, // 0x003 ADE7953_LCYCMODE, // 0x004 R/W 8 U 0x40 Line cycle accumulation mode configuration (see Table 17) ADE7953_RESERVED_0X005, // 0x005 ADE7953_RESERVED_0X006, // 0x006 ADE7953_PGA_V, // 0x007 R/W 8 U 0x00 Voltage channel gain configuration (Bits[2:0]) ADE7953_PGA_IA, // 0x008 R/W 8 U 0x00 Current Channel A gain configuration (Bits[2:0]) ADE7953_PGA_IB // 0x009 R/W 8 U 0x00 Current Channel B gain configuration (Bits[2:0]) }; enum Ade7953_16BitRegisters { // Register Name Addres R/W Bt Ty Default Description // ---------------------------- ------ --- -- -- ---------- -------------------------------------------------------------------- ADE7953_ZXTOUT = 0x100, // 0x100 R/W 16 U 0xFFFF Zero-crossing timeout ADE7953_LINECYC, // 0x101 R/W 16 U 0x0000 Number of half line cycles for line cycle energy accumulation mode ADE7953_CONFIG, // 0x102 R/W 16 U 0x8004 Configuration register (see Table 18) ADE7953_CF1DEN, // 0x103 R/W 16 U 0x003F CF1 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful. ADE7953_CF2DEN, // 0x104 R/W 16 U 0x003F CF2 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful. ADE7953_RESERVED_0X105, // 0x105 ADE7953_RESERVED_0X106, // 0x106 ADE7953_CFMODE, // 0x107 R/W 16 U 0x0300 CF output selection (see Table 19) ADE7943_PHCALA, // 0x108 R/W 16 S 0x0000 Phase calibration register (Current Channel A). This register is in sign magnitude format. ADE7943_PHCALB, // 0x109 R/W 16 S 0x0000 Phase calibration register (Current Channel B). This register is in sign magnitude format. ADE7943_PFA, // 0x10A R 16 S 0x0000 Power factor (Current Channel A) ADE7943_PFB, // 0x10B R 16 S 0x0000 Power factor (Current Channel B) ADE7943_ANGLE_A, // 0x10C R 16 S 0x0000 Angle between the voltage input and the Current Channel A input ADE7943_ANGLE_B, // 0x10D R 16 S 0x0000 Angle between the voltage input and the Current Channel B input ADE7943_Period // 0x10E R 16 U 0x0000 Period register }; enum Ade7953_32BitRegisters { // Register Name Addres R/W Bt Ty Default Description // ---------------------------- ------ --- -- -- ---------- -------------------------------------------------------------------- ADE7953_ACCMODE = 0x301, // 0x301 R/W 24 U 0x000000 Accumulation mode (see Table 21) ADE7953_AVA = 0x310, // 0x310 R 24 S 0x000000 Instantaneous apparent power (Current Channel A) ADE7953_BVA, // 0x311 R 24 S 0x000000 Instantaneous apparent power (Current Channel B) ADE7953_AWATT, // 0x312 R 24 S 0x000000 Instantaneous active power (Current Channel A) ADE7953_BWATT, // 0x313 R 24 S 0x000000 Instantaneous active power (Current Channel B) ADE7953_AVAR, // 0x314 R 24 S 0x000000 Instantaneous reactive power (Current Channel A) ADE7953_BVAR, // 0x315 R 24 S 0x000000 Instantaneous reactive power (Current Channel B) ADE7953_IA, // 0x316 R 24 S 0x000000 Instantaneous current (Current Channel A) ADE7953_IB, // 0x317 R 24 S 0x000000 Instantaneous current (Current Channel B) ADE7953_V, // 0x318 R 24 S 0x000000 Instantaneous voltage (voltage channel) ADE7953_RESERVED_0X319, // 0x319 ADE7953_IRMSA, // 0x31A R 24 U 0x000000 IRMS register (Current Channel A) ADE7953_IRMSB, // 0x31B R 24 U 0x000000 IRMS register (Current Channel B) ADE7953_VRMS, // 0x31C R 24 U 0x000000 VRMS register ADE7953_RESERVED_0X31D, // 0x31D ADE7953_AENERGYA, // 0x31E R 24 S 0x000000 Active energy (Current Channel A) ADE7953_AENERGYB, // 0x31F R 24 S 0x000000 Active energy (Current Channel B) ADE7953_RENERGYA, // 0x320 R 24 S 0x000000 Reactive energy (Current Channel A) ADE7953_RENERGYB, // 0x321 R 24 S 0x000000 Reactive energy (Current Channel B) ADE7953_APENERGYA, // 0x322 R 24 S 0x000000 Apparent energy (Current Channel A) ADE7953_APENERGYB, // 0x323 R 24 S 0x000000 Apparent energy (Current Channel B) ADE7953_OVLVL, // 0x324 R/W 24 U 0xFFFFFF Overvoltage level ADE7953_OILVL, // 0x325 R/W 24 U 0xFFFFFF Overcurrent level ADE7953_VPEAK, // 0x326 R 24 U 0x000000 Voltage channel peak ADE7953_RSTVPEAK, // 0x327 R 24 U 0x000000 Read voltage peak with reset ADE7953_IAPEAK, // 0x328 R 24 U 0x000000 Current Channel A peak ADE7953_RSTIAPEAK, // 0x329 R 24 U 0x000000 Read Current Channel A peak with reset ADE7953_IBPEAK, // 0x32A R 24 U 0x000000 Current Channel B peak ADE7953_RSTIBPEAK, // 0x32B R 24 U 0x000000 Read Current Channel B peak with reset ADE7953_IRQENA, // 0x32C R/W 24 U 0x100000 Interrupt enable (Current Channel A, see Table 22) ADE7953_IRQSTATA, // 0x32D R 24 U 0x000000 Interrupt status (Current Channel A, see Table 23) ADE7953_RSTIRQSTATA, // 0x32E R 24 U 0x000000 Reset interrupt status (Current Channel A) ADE7953_IRQENB, // 0x32F R/W 24 U 0x000000 Interrupt enable (Current Channel B, see Table 24) ADE7953_IRQSTATB, // 0x330 R 24 U 0x000000 Interrupt status (Current Channel B, see Table 25) ADE7953_RSTIRQSTATB, // 0x331 R 24 U 0x000000 Reset interrupt status (Current Channel B) ADE7953_CRC = 0x37F, // 0x37F R 32 U 0xFFFFFFFF Checksum ADE7953_AIGAIN, // 0x380 R/W 24 U 0x400000 Current channel gain (Current Channel A) ADE7953_AVGAIN, // 0x381 R/W 24 U 0x400000 Voltage channel gain ADE7953_AWGAIN, // 0x382 R/W 24 U 0x400000 Active power gain (Current Channel A) ADE7953_AVARGAIN, // 0x383 R/W 24 U 0x400000 Reactive power gain (Current Channel A) ADE7953_AVAGAIN, // 0x384 R/W 24 U 0x400000 Apparent power gain (Current Channel A) ADE7953_RESERVED_0X385, // 0x385 ADE7953_AIRMSOS, // 0x386 R/W 24 S 0x000000 IRMS offset (Current Channel A) ADE7953_RESERVED_0X387, // 0x387 ADE7953_VRMSOS, // 0x388 R/W 24 S 0x000000 VRMS offset ADE7953_AWATTOS, // 0x389 R/W 24 S 0x000000 Active power offset correction (Current Channel A) ADE7953_AVAROS, // 0x38A R/W 24 S 0x000000 Reactive power offset correction (Current Channel A) ADE7953_AVAOS, // 0x38B R/W 24 S 0x000000 Apparent power offset correction (Current Channel A) ADE7953_BIGAIN, // 0x38C R/W 24 U 0x400000 Current channel gain (Current Channel B) ADE7953_BVGAIN, // 0x38D R/W 24 U 0x400000 This register should not be modified. ADE7953_BWGAIN, // 0x38E R/W 24 U 0x400000 Active power gain (Current Channel B) ADE7953_BVARGAIN, // 0x38F R/W 24 U 0x400000 Reactive power gain (Current Channel B) ADE7953_BVAGAIN, // 0x390 R/W 24 U 0x400000 Apparent power gain (Current Channel B) ADE7953_RESERVED_0X391, // 0x391 ADE7953_BIRMSOS, // 0x392 R/W 24 S 0x000000 IRMS offset (Current Channel B) ADE7953_RESERVED_0X393, // 0x393 ADE7953_RESERVED_0X394, // 0x394 ADE7953_BWATTOS, // 0x395 R/W 24 S 0x000000 Active power offset correction (Current Channel B) ADE7953_BVAROS, // 0x396 R/W 24 S 0x000000 Reactive power offset correction (Current Channel B) ADE7953_BVAOS // 0x397 R/W 24 S 0x000000 Apparent power offset correction (Current Channel B) }; enum Ade7953CalibrationRegisters { ADE7953_CAL_VGAIN, ADE7953_CAL_IGAIN, ADE7953_CAL_WGAIN, ADE7953_CAL_VAGAIN, ADE7953_CAL_VARGAIN, ADE7943_CAL_PHCAL }; const uint8_t ADE7953_CALIBREGS = 6; const uint16_t Ade7953CalibRegs[2][ADE7953_CALIBREGS] { { ADE7953_AVGAIN, ADE7953_AIGAIN, ADE7953_AWGAIN, ADE7953_AVAGAIN, ADE7953_AVARGAIN, ADE7943_PHCALA }, { ADE7953_BVGAIN, ADE7953_BIGAIN, ADE7953_BWGAIN, ADE7953_BVAGAIN, ADE7953_BVARGAIN, ADE7943_PHCALB } }; const uint8_t ADE7953_REGISTERS = 6; const uint16_t Ade7953Registers[2][ADE7953_REGISTERS] { #ifdef ADE7953_ACCU_ENERGY { ADE7953_IRMSA, ADE7953_AENERGYA, ADE7953_APENERGYA, ADE7953_RENERGYA, ADE7953_VRMS, ADE7943_Period }, { ADE7953_IRMSB, ADE7953_AENERGYB, ADE7953_APENERGYB, ADE7953_RENERGYB, ADE7953_VRMS, ADE7943_Period } #else // No ADE7953_ACCU_ENERGY { ADE7953_IRMSA, ADE7953_AWATT, ADE7953_AVA, ADE7953_AVAR, ADE7953_VRMS, ADE7943_Period }, { ADE7953_IRMSB, ADE7953_BWATT, ADE7953_BVA, ADE7953_BVAR, ADE7953_VRMS, ADE7943_Period } #endif // ADE7953_ACCU_ENERGY }; #ifdef ADE7953_ACCU_ENERGY const float ADE7953_LSB_PER_WATTSECOND = 2.5; const float ADE7953_POWER_CORRECTION = 23.41494; // See https://github.com/arendst/Tasmota/pull/16941 #else // No ADE7953_ACCU_ENERGY const float ADE7953_LSB_PER_WATTSECOND = 44; #endif // ADE7953_ACCU_ENERGY struct Ade7953 { uint32_t voltage_rms[2] = { 0, 0 }; uint32_t current_rms[2] = { 0, 0 }; uint32_t active_power[2] = { 0, 0 }; int32_t calib_data[2][ADE7953_CALIBREGS]; uint8_t init_step = 0; uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM, 3 = Shelly Pro 1PM, 4 = Shelly Pro 2PM uint8_t cs_index; #ifdef USE_ESP32_SPI SPISettings spi_settings; int8_t pin_cs[2]; #endif // USE_ESP32_SPI } Ade7953; int Ade7953RegSize(uint16_t reg) { int size = 0; switch ((reg >> 8) & 0x0F) { case 0x03: // 32-bit size++; case 0x02: // 24-bit size++; case 0x01: // 16-bit size++; case 0x00: // 8-bit case 0x07: case 0x08: size++; } return size; } void Ade7953Write(uint16_t reg, uint32_t val) { int size = Ade7953RegSize(reg); if (size) { // AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Write %08X"), val); #ifdef USE_ESP32_SPI if (Ade7953.pin_cs[0] >= 0) { digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0); delayMicroseconds(1); // CS 1uS to SCLK edge SPI.beginTransaction(Ade7953.spi_settings); SPI.transfer16(reg); SPI.transfer(0x00); // Write while (size--) { SPI.transfer((val >> (8 * size)) & 0xFF); // Write data, MSB first } SPI.endTransaction(); delayMicroseconds(2); // CS high 1.2uS after SCLK edge (when writing to COMM_LOCK bit) digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1); } else { #endif // USE_ESP32_SPI Wire.beginTransmission(ADE7953_ADDR); Wire.write((reg >> 8) & 0xFF); Wire.write(reg & 0xFF); while (size--) { Wire.write((val >> (8 * size)) & 0xFF); // Write data, MSB first } Wire.endTransmission(); delayMicroseconds(5); // Bus-free time minimum 4.7us #ifdef USE_ESP32_SPI } #endif // USE_ESP32_SPI } } int32_t Ade7953Read(uint16_t reg) { uint32_t response = 0; int size = Ade7953RegSize(reg); if (size) { #ifdef USE_ESP32_SPI if (Ade7953.pin_cs[0] >= 0) { digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 0); delayMicroseconds(1); // CS 1uS to SCLK edge SPI.beginTransaction(Ade7953.spi_settings); SPI.transfer16(reg); SPI.transfer(0x80); // Read while (size--) { response = response << 8 | SPI.transfer(0); // receive DATA (MSB first) } SPI.endTransaction(); digitalWrite(Ade7953.pin_cs[Ade7953.cs_index], 1); } else { #endif // USE_ESP32_SPI Wire.beginTransmission(ADE7953_ADDR); Wire.write((reg >> 8) & 0xFF); Wire.write(reg & 0xFF); Wire.endTransmission(0); Wire.requestFrom(ADE7953_ADDR, size); if (size <= Wire.available()) { for (uint32_t i = 0; i < size; i++) { response = response << 8 | Wire.read(); // receive DATA (MSB first) } } #ifdef USE_ESP32_SPI } #endif // USE_ESP32_SPI } return response; } #ifdef ADE7953_DUMP_REGS void Ade7953DumpRegs(void) { AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** SAGCYC DISNOLD Resrvd Resrvd LCYCMOD Resrvd Resrvd PGAV PGAIA PGAIB")); char data[200] = { 0 }; for (uint32_t i = 0; i < 10; i++) { int32_t value = Ade7953Read(ADE7953_SAGCYC + i); snprintf_P(data, sizeof(data), PSTR("%s %02X"), data, value); // 8-bit regs } AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** 0x000..009%s"), data); AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** ZXTOUT LINECYC CONFIG CF1DEN CF2DEN Resrvd Resrvd CFMODE PHCALA PHCALB PFA PFB ANGLEA ANGLEB Period")); data[0] = '\0'; for (uint32_t i = 0; i < 15; i++) { int32_t value = Ade7953Read(ADE7953_ZXTOUT + i); snprintf_P(data, sizeof(data), PSTR("%s %04X"), data, value); // 16-bit regs } AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** 0x100..10E%s"), data); AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** IGAIN VGAIN WGAIN VARGAIN VAGAIN Resrvd IRMSOS Resrvd VRMSOS WATTOS VAROS VAOS")); data[0] = '\0'; for (uint32_t i = 0; i < 12; i++) { int32_t value = Ade7953Read(ADE7953_AIGAIN + i); snprintf_P(data, sizeof(data), PSTR("%s %06X"), data, value); // 24-bit regs } AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** 0x380..38B%s"), data); data[0] = '\0'; for (uint32_t i = 0; i < 12; i++) { int32_t value = Ade7953Read(ADE7953_BIGAIN + i); snprintf_P(data, sizeof(data), PSTR("%s %06X"), data, value); // 24-bit regs } AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: *** 0x38C..397%s"), data); } #endif // ADE7953_DUMP_REGS void Ade7953SetCalibration(uint32_t regset, uint32_t calibset) { Ade7953.cs_index = calibset; for (uint32_t i = 0; i < ADE7953_CALIBREGS; i++) { int32_t value = Ade7953.calib_data[calibset][i]; if (ADE7943_CAL_PHCAL == i) { // if (ADE7953_PHCAL_DEFAULT == value) { continue; } // ADE7953 reset does NOT always reset all registers if (value < 0) { value = abs(value) + 0x200; // Add sign magnitude } } // if (ADE7953_GAIN_DEFAULT == value) { continue; } // ADE7953 reset does NOT always reset all registers Ade7953Write(Ade7953CalibRegs[regset][i], value); } } void Ade7953Init(void) { uint32_t chips = 1; #ifdef USE_ESP32_SPI chips = (Ade7953.pin_cs[1] >= 0) ? 2 : 1; #endif // USE_ESP32_SPI for (uint32_t chip = 0; chip < chips; chip++) { Ade7953.cs_index = chip; #ifdef ADE7953_DUMP_REGS Ade7953DumpRegs(); #endif // ADE7953_DUMP_REGS Ade7953Write(ADE7953_CONFIG, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 Ade7953Write(0x120, 0x0030); // Configure optimum setting #ifdef USE_ESP32_SPI // int32_t value = Ade7953Read(0x702); // Silicon version // AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Chip%d version %d"), chip +1, value); #endif // USE_ESP32_SPI } Ade7953SetCalibration(0, 0); // First ADE7953 A registers set with calibration set 0 #ifdef USE_ESP32_SPI if (Ade7953.pin_cs[1] >= 0) { // Second ADE7953 using SPI Ade7953SetCalibration(0, 1); // Second ADE7953 A registers set with calibration set 1 } else if (Ade7953.pin_cs[0] == -1) // No first ADE7953 using SPI so set register set B #endif // USE_ESP32_SPI Ade7953SetCalibration(1, 1); // First ADE7953 B register set with calibration set 1 int32_t regs[ADE7953_CALIBREGS]; for (uint32_t chip = 0; chip < chips; chip++) { Ade7953.cs_index = chip; for (uint32_t channel = 0; channel < 2; channel++) { for (uint32_t i = 0; i < ADE7953_CALIBREGS; i++) { regs[i] = Ade7953Read(Ade7953CalibRegs[channel][i]); if (ADE7943_CAL_PHCAL == i) { if (regs[i] >= 0x0200) { regs[i] &= 0x01FF; // Clear sign magnitude regs[i] *= -1; // Make negative } } } #ifdef USE_ESP32_SPI AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: Chip%d CalibRegs%c V %d, I %d, W %d, VA %d, VAr %d, Ph %d"), chip +1, 'A'+channel, regs[0], regs[1], regs[2], regs[3], regs[4], regs[5]); #else AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: CalibRegs%c V %d, I %d, W %d, VA %d, VAr %d, Ph %d"), 'A'+channel, regs[0], regs[1], regs[2], regs[3], regs[4], regs[5]); #endif // USE_ESP32_SPI } #ifdef ADE7953_DUMP_REGS Ade7953DumpRegs(); #endif // ADE7953_DUMP_REGS } } void Ade7953GetData(void) { uint32_t acc_mode = 0; int32_t reg[2][ADE7953_REGISTERS]; #ifdef USE_ESP32_SPI if (Ade7953.pin_cs[0] >= 0) { for (uint32_t chip = 0; chip < 2; chip++) { if (Ade7953.pin_cs[chip] < 0) { continue; } Ade7953.cs_index = chip; for (uint32_t i = 0; i < ADE7953_REGISTERS; i++) { reg[chip][i] = Ade7953Read(Ade7953Registers[0][i]); // IRMS, WATT, VA, VAR, VRMS, Period } } } else { #endif // USE_ESP32_SPI for (uint32_t channel = 0; channel < 2; channel++) { uint32_t channel_swap = (ADE7953_SHELLY_25 == Ade7953.model) ? !channel : channel; for (uint32_t i = 0; i < ADE7953_REGISTERS; i++) { reg[channel_swap][i] = Ade7953Read(Ade7953Registers[channel][i]); } } acc_mode = Ade7953Read(ADE7953_ACCMODE); // Accumulation mode #ifdef USE_ESP32_SPI } #endif // USE_ESP32_SPI AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, %d, Period %d, %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"), acc_mode, reg[0][4], reg[1][4], reg[0][5], reg[1][5], reg[0][0], reg[1][0], reg[0][1], reg[1][1], reg[0][2], reg[1][2], reg[0][3], reg[1][3]); // If the device is initializing, we read the energy registers to reset them, but don't report the values as the first read may be inaccurate if (Ade7953.init_step) { return; } uint32_t apparent_power[2] = { 0, 0 }; uint32_t reactive_power[2] = { 0, 0 }; for (uint32_t channel = 0; channel < 2; channel++) { Ade7953.voltage_rms[channel] = reg[channel][4]; Ade7953.current_rms[channel] = reg[channel][0]; if (Ade7953.current_rms[channel] < 2000) { // No load threshold (20mA) Ade7953.current_rms[channel] = 0; Ade7953.active_power[channel] = 0; } else { Ade7953.active_power[channel] = abs(reg[channel][1]); apparent_power[channel] = abs(reg[channel][2]); reactive_power[channel] = abs(reg[channel][3]); if ((ADE7953_SHELLY_EM == Ade7953.model) && (bitRead(acc_mode, 18 +(channel * 3)))) { // VARNLOAD reactive_power[channel] = 0; } } } if (Energy.power_on) { // Powered on float divider; for (uint32_t channel = 0; channel < 2; channel++) { Energy.data_valid[channel] = 0; float power_calibration = (float)EnergyGetCalibration(channel, ENERGY_POWER_CALIBRATION) / 10; #ifdef ADE7953_ACCU_ENERGY power_calibration /= ADE7953_POWER_CORRECTION; #endif // ADE7953_ACCU_ENERGY float voltage_calibration = (float)EnergyGetCalibration(channel, ENERGY_VOLTAGE_CALIBRATION); float current_calibration = (float)EnergyGetCalibration(channel, ENERGY_CURRENT_CALIBRATION) * 10; Energy.frequency[channel] = 223750.0f / ((float)reg[channel][5] + 1); divider = (Ade7953.calib_data[channel][ADE7953_CAL_VGAIN] != ADE7953_GAIN_DEFAULT) ? 10000 : voltage_calibration; Energy.voltage[channel] = (float)Ade7953.voltage_rms[channel] / divider; divider = (Ade7953.calib_data[channel][ADE7953_CAL_WGAIN + channel] != ADE7953_GAIN_DEFAULT) ? ADE7953_LSB_PER_WATTSECOND : power_calibration; Energy.active_power[channel] = (float)Ade7953.active_power[channel] / divider; divider = (Ade7953.calib_data[channel][ADE7953_CAL_VARGAIN + channel] != ADE7953_GAIN_DEFAULT) ? ADE7953_LSB_PER_WATTSECOND : power_calibration; Energy.reactive_power[channel] = (float)reactive_power[channel] / divider; if (ADE7953_SHELLY_EM == Ade7953.model) { if (bitRead(acc_mode, 10 +channel)) { // APSIGN Energy.active_power[channel] *= -1; } if (bitRead(acc_mode, 12 +channel)) { // VARSIGN Energy.reactive_power[channel] *= -1; } } divider = (Ade7953.calib_data[channel][ADE7953_CAL_VAGAIN + channel] != ADE7953_GAIN_DEFAULT) ? ADE7953_LSB_PER_WATTSECOND : power_calibration; Energy.apparent_power[channel] = (float)apparent_power[channel] / divider; if (0 == Energy.active_power[channel]) { Energy.current[channel] = 0; } else { divider = (Ade7953.calib_data[channel][ADE7953_CAL_IGAIN + channel] != ADE7953_GAIN_DEFAULT) ? 100000 : current_calibration; Energy.current[channel] = (float)Ade7953.current_rms[channel] / divider; Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36; } } EnergyUpdateToday(); } } void Ade7953EnergyEverySecond(void) { if (Ade7953.init_step) { if (2 == Ade7953.init_step) { Ade7953Init(); } if (1 == Ade7953.init_step) { Ade7953GetData(); } // Read registers but do not display yet Ade7953.init_step--; } else { Ade7953GetData(); } } /*********************************************************************************************/ bool Ade7953SetDefaults(const char* json) { // {"angles":{"angle0":180,"angle1":176}} // {"rms":{"current_a":4194303,"current_b":4194303,"voltage":1613194},"angles":{"angle0":0,"angle1":0},"powers":{"totactive":{"a":2723574,"b":2723574},"apparent":{"a":2723574,"b":2723574},"reactive":{"a":2723574,"b":2723574}}} // {"rms":{"current_a":21865738,"current_b":1558533,"voltage_a":1599149,"voltage_b":1597289},"angles":{"angle0":0,"angle1":0},"powers":{"totactive":{"a":106692616,"b":3540894}}} uint32_t len = strlen(json) +1; if (len < 7) { return false; } // Too short char json_buffer[len]; memcpy(json_buffer, json, len); // Keep original safe JsonParser parser(json_buffer); JsonParserObject root = parser.getRootObject(); if (!root) { AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Invalid JSON")); return false; } // All parameters are optional allowing for partial changes JsonParserToken val; JsonParserObject rms = root[PSTR("rms")].getObject(); if (rms) { val = rms[PSTR("voltage")]; if (val) { Ade7953.calib_data[0][ADE7953_CAL_VGAIN] = val.getInt(); Ade7953.calib_data[1][ADE7953_CAL_VGAIN] = Ade7953.calib_data[0][ADE7953_CAL_VGAIN]; } #ifdef USE_ESP32_SPI val = rms[PSTR("voltage_a")]; if (val) { Ade7953.calib_data[0][ADE7953_CAL_VGAIN] = val.getInt(); } val = rms[PSTR("voltage_b")]; if (val) { Ade7953.calib_data[1][ADE7953_CAL_VGAIN] = val.getInt(); } #endif // USE_ESP32_SPI val = rms[PSTR("current_a")]; if (val) { Ade7953.calib_data[0][ADE7953_CAL_IGAIN] = val.getInt(); } val = rms[PSTR("current_b")]; if (val) { Ade7953.calib_data[1][ADE7953_CAL_IGAIN] = val.getInt(); } } JsonParserObject angles = root[PSTR("angles")].getObject(); if (angles) { val = angles[PSTR("angle0")]; if (val) { Ade7953.calib_data[0][ADE7943_CAL_PHCAL] = val.getInt(); } val = angles[PSTR("angle1")]; if (val) { Ade7953.calib_data[1][ADE7943_CAL_PHCAL] = val.getInt(); } } JsonParserObject powers = root[PSTR("powers")].getObject(); if (powers) { JsonParserObject totactive = powers[PSTR("totactive")].getObject(); if (totactive) { val = totactive[PSTR("a")]; if (val) { Ade7953.calib_data[0][ADE7953_CAL_WGAIN] = val.getInt(); } val = totactive[PSTR("b")]; if (val) { Ade7953.calib_data[1][ADE7953_CAL_WGAIN] = val.getInt(); } } JsonParserObject apparent = powers[PSTR("apparent")].getObject(); if (apparent) { val = apparent[PSTR("a")]; if (val) { Ade7953.calib_data[0][ADE7953_CAL_VAGAIN] = val.getInt(); } val = apparent[PSTR("b")]; if (val) { Ade7953.calib_data[1][ADE7953_CAL_VAGAIN] = val.getInt(); } } JsonParserObject reactive = powers[PSTR("reactive")].getObject(); if (reactive) { val = reactive[PSTR("a")]; if (val) { Ade7953.calib_data[0][ADE7953_CAL_VARGAIN] = val.getInt(); } val = reactive[PSTR("b")]; if (val) { Ade7953.calib_data[1][ADE7953_CAL_VARGAIN] = val.getInt(); } } } return true; } void Ade7953Defaults(void) { for (uint32_t channel = 0; channel < 2; channel++) { for (uint32_t i = 0; i < ADE7953_CALIBREGS; i++) { if (ADE7943_CAL_PHCAL == i) { Ade7953.calib_data[channel][i] = (ADE7953_SHELLY_EM == Ade7953.model) ? ADE7953_PHCAL_DEFAULT_CT : ADE7953_PHCAL_DEFAULT; } else { Ade7953.calib_data[channel][i] = ADE7953_GAIN_DEFAULT; } } } #ifdef USE_RULES // rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon String calib = RuleLoadFile("CALIB.DAT"); if (calib.length()) { // AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: File '%s'"), calib.c_str()); Ade7953SetDefaults(calib.c_str()); } #endif // USE_RULES } void Ade7953DrvInit(void) { if (PinUsed(GPIO_ADE7953_IRQ, GPIO_ANY)) { // Irq is not supported... uint32_t pin_irq = Pin(GPIO_ADE7953_IRQ, GPIO_ANY); pinMode(pin_irq, INPUT); // Related to resetPins() - Must be set to input // 0 (1 = Shelly 2.5), 1 (2 = Shelly EM), 2 (3 = Shelly Plus 2PM), 3 (4 = Shelly Pro 1PM), 4 (5 = Shelly Pro 2PM) Ade7953.model = GetPin(pin_irq) - AGPIO(GPIO_ADE7953_IRQ); int pin_reset = Pin(GPIO_ADE7953_RST); // -1 if not defined #ifdef ESP8266 if (ADE7953_SHELLY_EM == Ade7953.model) { if (-1 == pin_reset) { pin_reset = 16; } } #endif if (pin_reset >= 0) { digitalWrite(pin_reset, 0); pinMode(pin_reset, OUTPUT); // Reset pin ADE7953 delay(1); // To initiate a hardware reset, this pin must be brought low for a minimum of 10 μs. digitalWrite(pin_reset, 1); if (Ade7953.model < ADE7953_SHELLY_PRO_1PM) { pinMode(pin_reset, INPUT); } } delay(100); // Need 100mS to init ADE7953 #ifdef USE_ESP32_SPI Ade7953.pin_cs[0] = -1; Ade7953.pin_cs[1] = -1; if (Ade7953.model >= ADE7953_SHELLY_PRO_1PM) { // SPI if (PinUsed(GPIO_ADE7953_CS)) { // ADE7953 CS1 enabled (Pro 1PM/2PM) Ade7953.pin_cs[0] = Pin(GPIO_ADE7953_CS); digitalWrite(Ade7953.pin_cs[0], 1); // ADE7953 CS1 enabled (Pro 2PM) pinMode(Ade7953.pin_cs[0], OUTPUT); Ade7953.pin_cs[1] = Pin(GPIO_ADE7953_CS, 1); if (Ade7953.pin_cs[1] > -1) { // ADE7953 CS2 enabled (Pro 2PM) digitalWrite(Ade7953.pin_cs[1], 1); pinMode(Ade7953.pin_cs[1], OUTPUT); } else { Ade7953.model = ADE7953_SHELLY_PRO_1PM; } Ade7953.cs_index = 0; SPI.begin(Pin(GPIO_SPI_CLK), Pin(GPIO_SPI_MISO), Pin(GPIO_SPI_MOSI), -1); Ade7953.spi_settings = SPISettings(1000000, MSBFIRST, SPI_MODE0); // Set up SPI at 1MHz, MSB first, Capture at rising edge AddLog(LOG_LEVEL_INFO, PSTR("SPI: ADE7953 found")); } else { return; // No CS pin defined } } else { #endif // USE_ESP32_SPI if (!I2cSetDevice(ADE7953_ADDR)) { return; } I2cSetActiveFound(ADE7953_ADDR, "ADE7953"); #ifdef USE_ESP32_SPI } #endif // USE_ESP32_SPI if (HLW_PREF_PULSE == Settings->energy_power_calibration) { Settings->energy_power_calibration = ADE7953_PREF; Settings->energy_voltage_calibration = ADE7953_UREF; Settings->energy_current_calibration = ADE7953_IREF; Settings->energy_power_calibration2 = ADE7953_PREF; Settings->energy_voltage_calibration2 = ADE7953_UREF; Settings->energy_current_calibration2 = ADE7953_IREF; } Ade7953Defaults(); Ade7953.init_step = 3; // Energy.phase_count = 1; // Energy.voltage_common = false; // Energy.frequency_common = false; // Energy.use_overtemp = false; if (ADE7953_SHELLY_PRO_1PM == Ade7953.model) { } else { Energy.phase_count = 2; // Handle two channels as two phases if (ADE7953_SHELLY_PRO_2PM == Ade7953.model) { } else { Energy.voltage_common = true; // Use common voltage Energy.frequency_common = true; // Use common frequency } } Energy.use_overtemp = true; // Use global temperature for overtemp detection if (ADE7953_SHELLY_EM == Ade7953.model) { Energy.local_energy_active_export = true; } TasmotaGlobal.energy_driver = XNRG_07; } } bool Ade7953Command(void) { bool serviced = true; uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0; uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123 if (CMND_POWERCAL == Energy.command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_PREF; } // Service in xdrv_03_energy.ino } else if (CMND_VOLTAGECAL == Energy.command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_UREF; } // Service in xdrv_03_energy.ino } else if (CMND_CURRENTCAL == Energy.command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_IREF; } // Service in xdrv_03_energy.ino } else if (CMND_POWERSET == Energy.command_code) { if (XdrvMailbox.data_len && Ade7953.active_power[channel]) { if ((value > 100) && (value < 200000)) { // Between 1W and 2000W #ifdef ADE7953_ACCU_ENERGY float power_calibration = (float)(Ade7953.active_power[channel] * 1000) / value; // 0.00 W power_calibration *= ADE7953_POWER_CORRECTION; XdrvMailbox.payload = (uint32_t)power_calibration; // 0.00 W #else // No ADE7953_ACCU_ENERGY XdrvMailbox.payload = (Ade7953.active_power[channel] * 1000) / value; // 0.00 W #endif // ADE7953_ACCU_ENERGY } } } else if (CMND_VOLTAGESET == Energy.command_code) { if (XdrvMailbox.data_len && Ade7953.voltage_rms[channel]) { if ((value > 10000) && (value < 26000)) { // Between 100V and 260V XdrvMailbox.payload = (Ade7953.voltage_rms[channel] * 100) / value; // 0.00 V } } } else if (CMND_CURRENTSET == Energy.command_code) { if (XdrvMailbox.data_len && Ade7953.current_rms[channel]) { if ((value > 2000) && (value < 1000000)) { // Between 20mA and 10A XdrvMailbox.payload = ((Ade7953.current_rms[channel] * 100) / value) * 100; // 0.00 mA } } } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg07(uint32_t function) { if (!I2cEnabled(XI2C_07) && (SPI_MOSI_MISO != TasmotaGlobal.spi_enabled)) { return false; } bool result = false; switch (function) { case FUNC_ENERGY_EVERY_SECOND: Ade7953EnergyEverySecond(); break; case FUNC_COMMAND: result = Ade7953Command(); break; case FUNC_PRE_INIT: Ade7953DrvInit(); break; } return result; } #endif // USE_ADE7953 #endif // USE_ENERGY_SENSOR #endif // USE_I2C or USE_ESP_SPI