/* xnrg_12_solaxX1.ino - Solax X1 inverter RS485 support for Tasmota Copyright (C) 2019 Pablo Zerón This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_SOLAX_X1 /*********************************************************************************************\ * Solax X1 Inverter \*********************************************************************************************/ #define XNRG_12 12 #ifndef SOLAXX1_SPEED #define SOLAXX1_SPEED 9600 // default solax rs485 speed #endif #define INVERTER_ADDRESS 0x0A #define D_SOLAX_X1 "SolaxX1" #include enum solaxX1_Error { solaxX1_ERR_NO_ERROR, solaxX1_ERR_CRC_ERROR }; union { uint32_t ErrMessage; struct { //BYTE0 uint8_t TzProtectFault:1;//0 uint8_t MainsLostFault:1;//1 uint8_t GridVoltFault:1;//2 uint8_t GridFreqFault:1;//3 uint8_t PLLLostFault:1;//4 uint8_t BusVoltFault:1;//5 uint8_t ErrBit06:1;//6 uint8_t OciFault:1;//7 //BYTE1 uint8_t Dci_OCP_Fault:1;//8 uint8_t ResidualCurrentFault:1;//9 uint8_t PvVoltFault:1;//10 uint8_t Ac10Mins_Voltage_Fault:1;//11 uint8_t IsolationFault:1;//12 uint8_t TemperatureOverFault:1;//13 uint8_t FanFault:1;//14 uint8_t ErrBit15:1;//15 //BYTE2 uint8_t SpiCommsFault:1;//16 uint8_t SciCommsFault:1;//17 uint8_t ErrBit18:1;//18 uint8_t InputConfigFault:1;//19 uint8_t EepromFault:1;//20 uint8_t RelayFault:1;//21 uint8_t SampleConsistenceFault:1;//22 uint8_t ResidualCurrent_DeviceFault:1;//23 //BYTE3 uint8_t ErrBit24:1;//24 uint8_t ErrBit25:1;//25 uint8_t ErrBit26:1;//26 uint8_t ErrBit27:1;//27 uint8_t ErrBit28:1;//28 uint8_t DCI_DeviceFault:1;//29 uint8_t OtherDeviceFault:1;//30 uint8_t ErrBit31:1;//31 }; } ErrCode; const char kSolaxMode[] PROGMEM = D_WAITING "|" D_CHECKING "|" D_WORKING "|" D_FAILURE; const char kSolaxError[] PROGMEM = D_SOLAX_ERROR_0 "|" D_SOLAX_ERROR_1 "|" D_SOLAX_ERROR_2 "|" D_SOLAX_ERROR_3 "|" D_SOLAX_ERROR_4 "|" D_SOLAX_ERROR_5 "|" D_SOLAX_ERROR_6 "|" D_SOLAX_ERROR_7 "|" D_SOLAX_ERROR_8; /*********************************************************************************************/ TasmotaSerial *solaxX1Serial; uint8_t solaxX1_Init = 1; struct SOLAXX1 { float temperature = 0; float energy_today = 0; float dc1_voltage = 0; float dc2_voltage = 0; float dc1_current = 0; float dc2_current = 0; float energy_total = 0; float runtime_total = 0; float dc1_power = 0; float dc2_power = 0; uint8_t status = 0; uint32_t errorCode = 0; } solaxX1; union { uint8_t status; struct { uint8_t freeBit7:1; // Bit7 uint8_t freeBit6:1; // Bit6 uint8_t freeBit5:1; // Bit5 uint8_t queryOffline:1; // Bit4 uint8_t queryOfflineSend:1; // Bit3 uint8_t hasAddress:1; // Bit2 uint8_t inverterAddressSend:1; // Bit1 uint8_t inverterSnReceived:1; // Bit0 }; } protocolStatus; uint8_t header[2] = {0xAA, 0x55}; uint8_t source[2] = {0x00, 0x00}; uint8_t destination[2] = {0x00, 0x00}; uint8_t controlCode[1] = {0x00}; uint8_t functionCode[1] = {0x00}; uint8_t dataLength[1] = {0x00}; uint8_t data[16] = {0}; uint8_t message[30]; /*********************************************************************************************/ bool solaxX1_RS485ReceiveReady(void) { return (solaxX1Serial->available() > 1); } void solaxX1_RS485Send(uint16_t msgLen) { memcpy(message, header, 2); memcpy(message + 2, source, 2); memcpy(message + 4, destination, 2); memcpy(message + 6, controlCode, 1); memcpy(message + 7, functionCode, 1); memcpy(message + 8, dataLength, 1); memcpy(message + 9, data, sizeof(data)); uint16_t crc = solaxX1_calculateCRC(message, msgLen); // calculate out crc bytes while (solaxX1Serial->available() > 0) { // read serial if any old data is available solaxX1Serial->read(); } solaxX1Serial->flush(); solaxX1Serial->write(message, msgLen); solaxX1Serial->write(highByte(crc)); solaxX1Serial->write(lowByte(crc)); AddLogBuffer(LOG_LEVEL_DEBUG_MORE, message, msgLen); } uint8_t solaxX1_RS485Receive(uint8_t *value) { uint8_t len = 0; while (solaxX1Serial->available() > 0) { value[len++] = (uint8_t)solaxX1Serial->read(); } AddLogBuffer(LOG_LEVEL_DEBUG_MORE, value, len); uint16_t crc = solaxX1_calculateCRC(value, len - 2); // calculate out crc bytes if (value[len - 1] == lowByte(crc) && value[len - 2] == highByte(crc)) { // check calc crc with received crc return solaxX1_ERR_NO_ERROR; } else { return solaxX1_ERR_CRC_ERROR; } } uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen) { uint8_t i; uint16_t wChkSum; wChkSum = 0; for (i = 0; i < bLen; i++) { wChkSum = wChkSum + bExternTxPackage[i]; } return wChkSum; } void solaxX1_SendInverterAddress() { source[0] = 0x00; destination[0] = 0x00; destination[1] = 0x00; controlCode[0] = 0x10; functionCode[0] = 0x01; dataLength[0] = 0x0F; data[14] = INVERTER_ADDRESS; // Inverter Address, It must be unique in case of more inverters in the same rs485 net. solaxX1_RS485Send(24); } void solaxX1_QueryLiveData() { source[0] = 0x01; destination[0] = 0x00; destination[1] = INVERTER_ADDRESS; controlCode[0] = 0x11; functionCode[0] = 0x02; dataLength[0] = 0x00; solaxX1_RS485Send(9); } uint8_t solaxX1_ParseErrorCode(uint32_t code){ ErrCode.ErrMessage = code; if (code == 0) return 0; if (ErrCode.MainsLostFault) return 1; if (ErrCode.GridVoltFault) return 2; if (ErrCode.GridFreqFault) return 3; if (ErrCode.PvVoltFault) return 4; if (ErrCode.IsolationFault) return 5; if (ErrCode.TemperatureOverFault) return 6; if (ErrCode.FanFault) return 7; if (ErrCode.OtherDeviceFault) return 8; } /*********************************************************************************************/ uint8_t solaxX1_send_retry = 0; uint8_t solaxX1_nodata_count = 0; void solaxX1250MSecond(void) // Every Second { uint8_t value[61] = {0}; bool data_ready = solaxX1_RS485ReceiveReady(); if (protocolStatus.hasAddress && (data_ready || solaxX1_send_retry == 0)) { if (data_ready) { uint8_t error = solaxX1_RS485Receive(value); if (error) { DEBUG_SENSOR_LOG(PSTR("SX1: Data response CRC error")); } else { solaxX1_nodata_count = 0; solaxX1_send_retry = 12; Energy.data_valid[0] = 0; solaxX1.temperature = (float)((value[9] << 8) | value[10]); // Temperature solaxX1.energy_today = (float)((value[11] << 8) | value[12]) * 0.1f; // Energy Today solaxX1.dc1_voltage = (float)((value[13] << 8) | value[14]) * 0.1f; // PV1 Voltage solaxX1.dc2_voltage = (float)((value[15] << 8) | value[16]) * 0.1f; // PV2 Voltage solaxX1.dc1_current = (float)((value[17] << 8) | value[18]) * 0.1f; // PV1 Current solaxX1.dc2_current = (float)((value[19] << 8) | value[20]) * 0.1f; // PV2 Current Energy.current[0] = (float)((value[21] << 8) | value[22]) * 0.1f; // AC Current Energy.voltage[0] = (float)((value[23] << 8) | value[24]) * 0.1f; // AC Voltage Energy.frequency[0] = (float)((value[25] << 8) | value[26]) * 0.01f; // AC Frequency Energy.active_power[0] = (float)((value[27] << 8) | value[28]); // AC Power //temporal = (float)((value[29] << 8) | value[30]) * 0.1f; // Not Used solaxX1.energy_total = (float)((value[31] << 8) | (value[32] << 8) | (value[33] << 8) | value[34]) * 0.1f; // Energy Total solaxX1.runtime_total = (float)((value[35] << 8) | (value[36] << 8) | (value[37] << 8) | value[38]); // Work Time Total solaxX1.status = (uint8_t)((value[39] << 8) | value[40]); // Work mode //temporal = (float)((value[41] << 8) | value[42]); // Grid voltage fault value 0.1V //temporal = (float)((value[43] << 8) | value[44]); // Gird frequency fault value 0.01Hz //temporal = (float)((value[45] << 8) | value[46]); // Dc injection fault value 1mA //temporal = (float)((value[47] << 8) | value[48]); // Temperature fault value //temporal = (float)((value[49] << 8) | value[50]); // Pv1 voltage fault value 0.1V //temporal = (float)((value[51] << 8) | value[52]); // Pv2 voltage fault value 0.1V //temporal = (float)((value[53] << 8) | value[54]); // GFC fault value solaxX1.errorCode = (uint32_t)((value[58] << 8) | (value[57] << 8) | (value[56] << 8) | value[55]); // Error Code solaxX1.dc1_power = solaxX1.dc1_voltage * solaxX1.dc1_current; solaxX1.dc2_power = solaxX1.dc2_voltage * solaxX1.dc2_current; solaxX1_QueryLiveData(); EnergyUpdateTotal(solaxX1.energy_total, true); // 484.708 kWh } } // End data Ready if (0 == solaxX1_send_retry && 255 != solaxX1_nodata_count) { solaxX1_send_retry = 12; solaxX1_QueryLiveData(); } // While the inverter has not stable ambient light, will send an address adquired but go offline again, // so no data will be received when the query is send, then we start the countdown to set the inverter as offline again. if (255 == solaxX1_nodata_count) { solaxX1_nodata_count = 0; solaxX1_send_retry = 12; } } // end hasAddress && (data_ready || solaxX1_send_retry == 0) else { if ((solaxX1_nodata_count % 4) == 0) { DEBUG_SENSOR_LOG(PSTR("SX1: No Data count: %d"), solaxX1_nodata_count); } if (solaxX1_nodata_count < 10 * 4) // max. seconds without data { solaxX1_nodata_count++; } else if (255 != solaxX1_nodata_count) { // no data from RS485, reset values to 0 and set inverter as offline solaxX1_nodata_count = 255; solaxX1_send_retry = 12; protocolStatus.status = 0b00001000; // queryOffline Energy.data_valid[0] = ENERGY_WATCHDOG; solaxX1.temperature = solaxX1.dc1_voltage = solaxX1.dc2_voltage = solaxX1.dc1_current = solaxX1.dc2_current = solaxX1.dc1_power = 0; solaxX1.dc2_power = solaxX1.status = Energy.current[0] = Energy.voltage[0] = Energy.frequency[0] = Energy.active_power[0] = 0; //solaxX1.energy_today = solaxX1.energy_total = solaxX1.runtime_total = 0; } } if (!protocolStatus.hasAddress && (data_ready || solaxX1_send_retry == 0)) { if (data_ready) { // check address confirmation from inverter if (protocolStatus.inverterAddressSend) { uint8_t error = solaxX1_RS485Receive(value); if (error) { DEBUG_SENSOR_LOG(PSTR("SX1: Address confirmation response CRC error")); } else { if (value[6] == 0x10 && value[7] == 0x81 && value[9] == 0x06) { DEBUG_SENSOR_LOG(PSTR("SX1: Set hasAddress")); protocolStatus.status = 0b00100000; // hasAddress } } } // Check inverter serial number and send the set address request if (protocolStatus.queryOfflineSend) { uint8_t error = solaxX1_RS485Receive(value); if (error) { DEBUG_SENSOR_LOG(PSTR("SX1: Query Offline response CRC error")); } else { // Serial number from query response if (value[6] == 0x10 && value[7] == 0x80 && protocolStatus.inverterSnReceived == false) { for (uint8_t i = 9; i <= 22; i++) { data[i - 9] = value[i]; } solaxX1_SendInverterAddress(); protocolStatus.status = 0b1100000; // inverterSnReceived and inverterAddressSend DEBUG_SENSOR_LOG(PSTR("SX1: Set inverterSnReceived and inverterAddressSend")); } } } } // End data ready if (solaxX1_send_retry == 0) { if (protocolStatus.queryOfflineSend) { protocolStatus.status = 0b00001000; // queryOffline DEBUG_SENSOR_LOG(PSTR("SX1: Set Query Offline")); } solaxX1_send_retry = 12; } // request to the inverter the serial number if offline if (protocolStatus.queryOffline) { // We sent the message to query inverters in offline status source[0] = 0x01; destination[1] = 0x00; controlCode[0] = 0x10; functionCode[0] = 0x00; dataLength[0] = 0x00; solaxX1_RS485Send(9); protocolStatus.status = 0b00010000; // queryOfflineSend DEBUG_SENSOR_LOG(PSTR("SX1: Query Offline Send")); } } // end !hasAddress && (data_ready || solaxX1_send_retry == 0) if (!data_ready) solaxX1_send_retry--; } void solaxX1SnsInit(void) { AddLog_P(LOG_LEVEL_DEBUG, PSTR("SX1: Solax X1 Inverter Init")); DEBUG_SENSOR_LOG(PSTR("SX1: RX pin: %d, TX pin: %d"), pin[GPIO_SOLAXX1_RX], pin[GPIO_SOLAXX1_TX]); protocolStatus.status = 0b00100000; // hasAddress solaxX1Serial = new TasmotaSerial(pin[GPIO_SOLAXX1_RX], pin[GPIO_SOLAXX1_TX], 1); if (solaxX1Serial->begin(SOLAXX1_SPEED)) { if (solaxX1Serial->hardwareSerial()) { ClaimSerial(); } } else { energy_flg = ENERGY_NONE; } } void solaxX1DrvInit(void) { if ((pin[GPIO_SOLAXX1_RX] < 99) && (pin[GPIO_SOLAXX1_TX] < 99)) { energy_flg = XNRG_12; } } #ifdef USE_WEBSERVER const char HTTP_SNS_solaxX1_DATA1[] PROGMEM = "{s}" D_SOLAX_X1 " " D_SOLAR_POWER "{m}%s " D_UNIT_WATT "{e}" "{s}" D_SOLAX_X1 " " D_PV1_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}" D_SOLAX_X1 " " D_PV1_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}" D_SOLAX_X1 " " D_PV1_POWER "{m}%s " D_UNIT_WATT "{e}"; #ifdef SOLAXX1_PV2 const char HTTP_SNS_solaxX1_DATA2[] PROGMEM = "{s}" D_SOLAX_X1 " " D_PV2_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}" D_SOLAX_X1 " " D_PV2_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}" D_SOLAX_X1 " " D_PV2_POWER "{m}%s " D_UNIT_WATT "{e}"; #endif const char HTTP_SNS_solaxX1_DATA3[] PROGMEM = "{s}" D_SOLAX_X1 " " D_UPTIME "{m}%s " D_UNIT_HOUR "{e}" "{s}" D_SOLAX_X1 " " D_STATUS "{m}%s" "{s}" D_SOLAX_X1 " " D_ERROR "{m}%s"; #endif // USE_WEBSERVER void solaxX1Show(bool json) { char solar_power[33]; dtostrfd(solaxX1.dc1_power + solaxX1.dc2_power, Settings.flag2.wattage_resolution, solar_power); char pv1_voltage[33]; dtostrfd(solaxX1.dc1_voltage, Settings.flag2.voltage_resolution, pv1_voltage); char pv1_current[33]; dtostrfd(solaxX1.dc1_current, Settings.flag2.current_resolution, pv1_current); char pv1_power[33]; dtostrfd(solaxX1.dc1_power, Settings.flag2.wattage_resolution, pv1_power); #ifdef SOLAXX1_PV2 char pv2_voltage[33]; dtostrfd(solaxX1.dc2_voltage, Settings.flag2.voltage_resolution, pv2_voltage); char pv2_current[33]; dtostrfd(solaxX1.dc2_current, Settings.flag2.current_resolution, pv2_current); char pv2_power[33]; dtostrfd(solaxX1.dc2_power, Settings.flag2.wattage_resolution, pv2_power); #endif char temperature[33]; dtostrfd(solaxX1.temperature, Settings.flag2.temperature_resolution, temperature); char runtime[33]; dtostrfd(solaxX1.runtime_total, 0, runtime); char status[33]; GetTextIndexed(status, sizeof(status), solaxX1.status, kSolaxMode); if (json) { ResponseAppend_P(PSTR(",\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s"), solar_power, pv1_voltage, pv1_current, pv1_power); #ifdef SOLAXX1_PV2 ResponseAppend_P(PSTR(",\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s"), pv2_voltage, pv2_current, pv2_power); #endif ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%d"), temperature, runtime, status, solaxX1.errorCode); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_solaxX1_DATA1, solar_power, pv1_voltage, pv1_current, pv1_power); #ifdef SOLAXX1_PV2 WSContentSend_PD(HTTP_SNS_solaxX1_DATA2, pv2_voltage, pv2_current, pv2_power); #endif WSContentSend_PD(HTTP_SNS_TEMP, D_SOLAX_X1, temperature, TempUnit()); char errorCodeString[33]; WSContentSend_PD(HTTP_SNS_solaxX1_DATA3, runtime, status, GetTextIndexed(errorCodeString, sizeof(errorCodeString), solaxX1_ParseErrorCode(solaxX1.errorCode), kSolaxError)); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg12(uint8_t function) { bool result = false; switch (function) { case FUNC_EVERY_250_MSECOND: if (uptime > 4) { solaxX1250MSecond(); } break; case FUNC_JSON_APPEND: solaxX1Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: solaxX1Show(0); break; #endif // USE_WEBSERVER case FUNC_INIT: solaxX1SnsInit(); break; case FUNC_PRE_INIT: solaxX1DrvInit(); break; } return result; } #endif // USE_SOLAX_X1_NRG #endif // USE_ENERGY_SENSOR