/* tasmota.ino - Tasmota firmware for iTead Sonoff, Wemos, NodeMCU, ESP8266 and ESP32 hardwares Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Location specific includes #ifndef ESP32_STAGE // ESP32 Stage has no core_version.h file. Disable include via PlatformIO Option #include // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_7_1) #endif // ESP32_STAGE #include "include/tasmota_compat.h" #include "include/tasmota_version.h" // Tasmota version information #include "include/tasmota.h" // Enumeration used in my_user_config.h #include "my_user_config.h" // Fixed user configurable options #ifdef USE_TLS #include // We need to include before "tasmota_globals.h" to take precedence over the BearSSL version in Arduino #endif // USE_TLS #include "include/tasmota_globals.h" // Function prototypes and global configuration #include "include/i18n.h" // Language support configured by my_user_config.h #include "include/tasmota_template.h" // Hardware configuration // ------------------------------------------------------------------------------------------ // If IPv6 is not support by the underlying esp-idf, disable it // ------------------------------------------------------------------------------------------ #if !LWIP_IPV6 #undef USE_IPV6 #endif // Libraries #include #include // Ota #include // Ota #ifdef ESP32 #ifdef USE_TLS #include "HTTPUpdateLight.h" // Ota over HTTPS for ESP32 #endif // USE_TLS #endif // ESP32 #include // Webserver, Updater #include #include #include #include #include #ifdef ESP8266 #ifdef USE_ARDUINO_OTA #include // Arduino OTA #ifndef USE_DISCOVERY #define USE_DISCOVERY #endif // USE_DISCOVERY #endif // USE_ARDUINO_OTA #endif // ESP8266 #ifdef USE_DISCOVERY #include // MQTT, Webserver, Arduino OTA #endif // USE_DISCOVERY #include // I2C support library #ifdef USE_SPI #include // SPI support, TFT, SDcard #endif // USE_SPI #ifdef USE_UFILESYS #ifdef ESP8266 #include #include #ifdef USE_SDCARD #include #include #endif // USE_SDCARD #endif // ESP8266 #ifdef ESP32 #include #ifdef USE_SDCARD #include #ifdef SOC_SDMMC_HOST_SUPPORTED #include #endif // SOC_SDMMC_HOST_SUPPORTED #endif // USE_SDCARD #include "FFat.h" #include "FS.h" #endif // ESP32 #endif // USE_UFILESYS #ifdef ESP32 #include "include/tasconsole.h" #if SOC_USB_SERIAL_JTAG_SUPPORTED #include "hal/usb_serial_jtag_ll.h" #include "esp_private/rtc_clk.h" #endif // SOC_USB_SERIAL_JTAG_SUPPORTED #ifdef CONFIG_IDF_TARGET_ESP32 #include "driver/gpio.h" #include "soc/efuse_reg.h" #include "bootloader_common.h" #endif #endif // ESP32 // Structs #include "include/tasmota_types.h" /*********************************************************************************************\ * Global variables \*********************************************************************************************/ const uint32_t VERSION_MARKER[] PROGMEM = { 0x5AA55AA5, 0xFFFFFFFF, 0xA55AA55A }; struct WIFI { int last_tx_pwr; uint32_t last_event = 0; // Last wifi connection event uint32_t downtime = 0; // Wifi down duration uint16_t link_count = 0; // Number of wifi re-connect uint8_t counter; uint8_t retry_init; uint8_t retry; uint8_t max_retry; uint8_t status; uint8_t config_type = 0; uint8_t config_counter = 0; uint8_t scan_state; uint8_t bssid[6]; int8_t best_network_db; uint8_t wifiTest = WIFI_NOT_TESTING; uint8_t wifi_test_counter = 0; uint16_t save_data_counter = 0; uint8_t old_wificonfig = MAX_WIFI_OPTION; // means "nothing yet saved here" uint8_t phy_mode = 0; bool wifi_test_AP_TIMEOUT = false; bool wifi_Test_Restart = false; bool wifi_Test_Save_SSID2 = false; } Wifi; typedef struct { uint16_t valid; // 280 (RTC memory offset 100 - sizeof(RTCRBT)) uint8_t fast_reboot_count; // 282 uint8_t free_003[1]; // 283 } TRtcReboot; TRtcReboot RtcReboot; #ifdef ESP32 static RTC_NOINIT_ATTR TRtcReboot RtcDataReboot; #endif // ESP32 typedef struct { uint16_t valid; // 290 (RTC memory offset 100) uint8_t oswatch_blocked_loop; // 292 uint8_t ota_loader; // 293 uint32_t ex_energy_kWhtoday; // 294 uint32_t ex_energy_kWhtotal; // 298 volatile uint32_t pulse_counter[MAX_COUNTERS]; // 29C - See #9521 why volatile power_t power; // 2AC EnergyUsage energy_usage; // 2B0 uint32_t nextwakeup; // 2C8 uint32_t baudrate; // 2CC uint32_t ultradeepsleep; // 2D0 uint16_t deepsleep_slip; // 2D4 uint8_t improv_state; // 2D6 uint8_t free_2d7[1]; // 2D7 int32_t energy_kWhtoday_ph[3]; // 2D8 int32_t energy_kWhtotal_ph[3]; // 2E4 int32_t energy_kWhexport_ph[3]; // 2F0 uint32_t utc_time; // 2FC } TRtcSettings; TRtcSettings RtcSettings; #ifdef ESP32 static RTC_NOINIT_ATTR TRtcSettings RtcDataSettings; #endif // ESP32 struct TIME_T { uint32_t nanos; uint8_t second; uint8_t minute; uint8_t hour; uint8_t day_of_week; // sunday is day 1 uint8_t day_of_month; uint8_t month; char name_of_month[4]; uint16_t day_of_year; uint16_t year; uint32_t days; uint32_t valid; } RtcTime; struct XDRVMAILBOX { bool grpflg; bool usridx; uint16_t command_code; uint32_t index; uint32_t data_len; int32_t payload; char *topic; char *data; char *command; } XdrvMailbox; WiFiUDP PortUdp; // UDP Syslog and Alexa #ifdef ESP32 /* #if CONFIG_IDF_TARGET_ESP32C3 || // support USB via HWCDC using JTAG interface CONFIG_IDF_TARGET_ESP32C6 || // support USB via HWCDC using JTAG interface CONFIG_IDF_TARGET_ESP32S2 || // support USB via USBCDC CONFIG_IDF_TARGET_ESP32S3 // support USB via HWCDC using JTAG interface or USBCDC */ #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 //#if CONFIG_TINYUSB_CDC_ENABLED // This define is not recognized here so use USE_USB_CDC_CONSOLE #ifdef USE_USB_CDC_CONSOLE //#warning **** TasConsole use USB **** bool tasconsole_serial = false; #if ARDUINO_USB_MODE //#warning **** TasConsole ARDUINO_USB_MODE **** #if !ARDUINO_USB_CDC_ON_BOOT HWCDC HWCDCSerial; #endif // ARDUINO_USB_CDC_ON_BOOT TASCONSOLE TasConsole{HWCDCSerial}; // ESP32C3/C6/S3 embedded USB using JTAG interface //#warning **** TasConsole uses HWCDC **** #else // No ARDUINO_USB_MODE #include "USB.h" #include "USBCDC.h" #if !ARDUINO_USB_CDC_ON_BOOT USBCDC USBSerial; // Already defined in USBCDC.cpp #endif // ARDUINO_USB_CDC_ON_BOOT TASCONSOLE TasConsole{USBSerial}; // ESP32Sx embedded USB interface //#warning **** TasConsole uses USBCDC **** #endif // ARDUINO_USB_MODE #else // No USE_USB_CDC_CONSOLE TASCONSOLE TasConsole{Serial}; bool tasconsole_serial = true; //#warning **** TasConsole uses Serial **** #endif // USE_USB_CDC_CONSOLE #else // No ESP32C3, S2 or S3 TASCONSOLE TasConsole{Serial}; bool tasconsole_serial = true; //#warning **** TasConsole uses Serial **** #endif // ESP32C3, S2 or S3 #else // No ESP32 HardwareSerial TasConsole = Serial; // Only serial interface #endif // ESP32 char EmptyStr[1] = { 0 }; // Provide a pointer destination to an empty char string struct TasmotaGlobal_t { uint32_t global_update; // Timestamp of last global temperature and humidity update uint32_t baudrate; // Current Serial baudrate uint32_t pulse_timer[MAX_PULSETIMERS]; // Power off timer uint32_t blink_timer; // Power cycle timer uint32_t backlog_timer; // Timer for next command in backlog uint32_t loop_load_avg; // Indicative loop load average uint32_t log_buffer_pointer; // Index in log buffer uint32_t uptime; // Counting every second until 4294967295 = 130 year uint32_t zc_time; // Zero-cross moment (microseconds) uint32_t zc_offset; // Zero cross moment offset due to monitoring chip processing (microseconds) uint32_t zc_code_offset; // Zero cross moment offset due to executing power code (microseconds) uint32_t zc_interval; // Zero cross interval around 8333 (60Hz) or 10000 (50Hz) (microseconds) GpioOptionABits gpio_optiona; // GPIO Option_A flags void *log_buffer_mutex; // Control access to log buffer power_t power; // Current copy of Settings->power power_t power_latching; // Current state of single pin latching power power_t rel_inverted; // Relay inverted flag (1 = (0 = On, 1 = Off)) power_t rel_bistable; // Relay bistable bitmap power_t last_power; // Last power set state power_t blink_power; // Blink power state power_t blink_powersave; // Blink start power save state power_t blink_mask; // Blink relay active mask power_t power_on_delay_state; int serial_in_byte_counter; // Index in receive buffer float temperature_celsius; // Provide a global temperature to be used by some sensors float humidity; // Provide a global humidity to be used by some sensors float pressure_hpa; // Provide a global pressure to be used by some sensors uint16_t gpio_pin[MAX_GPIO_PIN]; // GPIO functions indexed by pin number myio my_module; // Active copy of Module GPIOs (17 x 16 bits) uint16_t blink_counter; // Number of blink cycles uint16_t seriallog_timer; // Timer to disable Seriallog uint16_t syslog_timer; // Timer to re-enable syslog_level uint16_t tele_period; // Tele period timer int16_t save_data_counter; // Counter and flag for config save to Flash RulesBitfield rules_flag; // Rule state flags (16 bits) StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits) uint16_t pwm_inverted; // PWM inverted flag (1 = inverted) - extended to 16 bits for ESP32 #ifdef ESP32 int16_t pwm_cur_value[MAX_PWMS]; // Current effective values of PWMs as applied to GPIOs int16_t pwm_cur_phase[MAX_PWMS]; // Current phase values of PWMs as applied to GPIOs int16_t pwm_value[MAX_PWMS]; // Wanted values of PWMs after update - -1 means no change int16_t pwm_phase[MAX_PWMS]; // Wanted phase of PWMs after update - -1 means no change #endif // ESP32 bool serial_local; // Handle serial locally bool fallback_topic_flag; // Use Topic or FallbackTopic bool no_mqtt_response; // Respond with rule processing only bool backlog_nodelay; // Execute all backlog commands with no delay bool backlog_mutex; // Command backlog pending bool backlog_no_mqtt_response; // Set respond with rule processing only bool stop_flash_rotate; // Allow flash configuration rotation bool blinkstate; // LED state bool pwm_present; // Any PWM channel configured with SetOption15 0 bool i2c_enabled[2]; // I2C configured for all possible buses (1 or 2) #ifdef ESP32 bool ota_factory; // Select safeboot binary #endif bool ntp_force_sync; // Force NTP sync bool skip_light_fade; // Temporarily skip light fading bool restart_halt; // Do not restart but stay in wait loop bool restart_deepsleep; // Do not restart but do deepsleep bool module_changed; // Indicate module changed since last restart bool wifi_stay_asleep; // Allow sleep only incase of ESP32 BLE bool no_autoexec; // Disable autoexec uint8_t user_globals[3]; // User set global temp/hum/press uint8_t busy_time; // Time in ms to allow executing of time critical functions uint8_t init_state; // Tasmota init state uint8_t heartbeat_inverted; // Heartbeat pulse inverted flag uint8_t spi_enabled; // SPI configured (bus1) uint8_t spi_enabled2; // SPI configured (bus2) uint8_t soft_spi_enabled; // Software SPI configured uint8_t blinks; // Number of LED blinks uint8_t restart_flag; // Tasmota restart flag uint8_t ota_state_flag; // OTA state flag uint8_t wifi_state_flag; // Wifi state flag uint8_t mqtt_cmnd_blocked; // Ignore flag for publish command uint8_t mqtt_cmnd_blocked_reset; // Count down to reset if needed uint8_t state_250mS; // State 250msecond per second flag uint8_t latching_relay_pulse; // Latching relay pulse timer uint8_t active_device; // Active device in ExecuteCommandPower uint8_t sleep; // Current copy of Settings->sleep uint8_t leds_present; // Max number of LED supported uint8_t led_inverted; // LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t led_power; // LED power state uint8_t ledlnk_inverted; // Link LED inverted flag (1 = (0 = On, 1 = Off)) // uint8_t pwm_inverted; // PWM inverted flag (1 = inverted) -- TODO uint8_t energy_driver; // Energy monitor configured uint8_t light_driver; // Light module configured uint8_t light_type; // Light types uint8_t serial_in_byte; // Received byte uint8_t serial_skip; // Skip number of received messages uint8_t devices_present; // Max number of devices supported uint8_t maxlog_level; // Max allowed log level uint8_t masterlog_level; // Master log level used to override set log level uint8_t seriallog_level; // Current copy of Settings->seriallog_level uint8_t syslog_level; // Current copy of Settings->syslog_level uint8_t templog_level; // Temporary log level to be used by HTTP cm and Telegram uint8_t module_type; // Current copy of Settings->module or user template type uint8_t emulated_module_type; // Emulated module type as requested by ESP32 uint8_t last_source; // Last command source uint8_t shutters_present; // Number of actual define shutters uint8_t discovery_counter; // Delayed discovery counter uint8_t power_on_delay; // Delay relay power on to reduce power surge (SetOption47) #ifdef USE_PWM_DIMMER uint8_t restore_powered_off_led_counter; // Seconds before powered-off LED (LEDLink) is restored uint8_t pwm_dimmer_led_bri; // Adjusted brightness LED level #endif // USE_PWM_DIMMER String mqtt_data; // Buffer filled by Response functions char version[16]; // Composed version string like 255.255.255.255 char image_name[33]; // Code image and/or commit char hostname[33]; // Composed Wifi hostname char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer char mqtt_client[99]; // Composed MQTT Clientname char mqtt_topic[TOPSZ]; // Composed MQTT topic #ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED char* log_buffer = nullptr; // Log buffer in IRAM #else char log_buffer[LOG_BUFFER_SIZE]; // Log buffer in DRAM #endif // PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED #ifdef USE_BERRY bool berry_fast_loop_enabled = false; // is Berry fast loop enabled, i.e. control is passed at each loop iteration #endif // USE_BERRY } TasmotaGlobal = { 0 }; TSettings* Settings = nullptr; LList backlog; // Command backlog implemented with TasmotaLList #define BACKLOG_EMPTY (backlog.isEmpty()) /*********************************************************************************************\ * Main \*********************************************************************************************/ #ifdef ESP32 // IDF5.3 fix esp_gpio_reserve used in init PSRAM. Needed by Tasmota.ino esp_gpio_revoke #include "esp_private/esp_gpio_reserve.h" #endif // ESP32 void setup(void) { #ifdef ESP32 #ifdef CONFIG_IDF_TARGET_ESP32 #ifdef DISABLE_ESP32_BROWNOUT DisableBrownout(); // Workaround possible weak LDO resulting in brownout detection during Wifi connection #endif // DISABLE_ESP32_BROWNOUT #ifndef FIRMWARE_SAFEBOOT #ifndef CORE32SOLO1 // restore GPIO5/18 or 16/17 if no PSRAM is found which may be used by Ethernet among others if (!FoundPSRAM()) { // test if the CPU is not pico uint32_t pkg_version = bootloader_common_get_chip_ver_pkg(); if (pkg_version <= 3) { // D0WD, S0WD, D2WD gpio_reset_pin((gpio_num_t)CONFIG_D0WD_PSRAM_CS_IO); gpio_reset_pin((gpio_num_t)CONFIG_D0WD_PSRAM_CLK_IO); // IDF5.3 fix esp_gpio_reserve used in init PSRAM esp_gpio_revoke(BIT64(CONFIG_D0WD_PSRAM_CS_IO) | BIT64(CONFIG_D0WD_PSRAM_CLK_IO)); } } #endif // CORE32SOLO1 #endif // FIRMWARE_SAFEBOOT #endif // CONFIG_IDF_TARGET_ESP32 #endif // ESP32 #ifdef USE_ESP32_WDT enableLoopWDT(); // enabled WDT Watchdog on Arduino `loop()` - must return before 5s or called `feedLoopWDT();` - included in `yield()` #endif // USE_ESP32_WDT RtcPreInit(); SettingsInit(); #ifdef USE_EMERGENCY_RESET EmergencyReset(); #endif // USE_EMERGENCY_RESET TasmotaGlobal.baudrate = APP_BAUDRATE; TasmotaGlobal.seriallog_timer = SERIALLOG_TIMER; TasmotaGlobal.temperature_celsius = NAN; TasmotaGlobal.blinks = 201; TasmotaGlobal.wifi_state_flag = WIFI_RESTART; TasmotaGlobal.tele_period = 9999; TasmotaGlobal.active_device = 1; TasmotaGlobal.global_state.data = 0xF; // Init global state (wifi_down, mqtt_down) to solve possible network issues TasmotaGlobal.maxlog_level = LOG_LEVEL_DEBUG_MORE; TasmotaGlobal.seriallog_level = (SERIAL_LOG_LEVEL > LOG_LEVEL_INFO) ? SERIAL_LOG_LEVEL : LOG_LEVEL_INFO; // Allow specific serial messages until config loaded and allow more logging than INFO TasmotaGlobal.power_latching = 0x80000000; RtcRebootLoad(); if (!RtcRebootValid()) { RtcReboot.fast_reboot_count = 0; } #ifdef FIRMWARE_MINIMAL RtcReboot.fast_reboot_count = 0; // Disable fast reboot and quick power cycle detection #else // No FIRMWARE_MINIMAL if (ResetReason() == REASON_DEEP_SLEEP_AWAKE) { RtcReboot.fast_reboot_count = 0; // Disable fast reboot and quick power cycle detection } else { RtcReboot.fast_reboot_count++; } #endif // FIRMWARE_MINIMAL RtcRebootSave(); if (RtcSettingsLoad(0)) { uint32_t baudrate = (RtcSettings.baudrate / 300) * 300; // Make it a valid baudrate if (baudrate) { TasmotaGlobal.baudrate = baudrate; } } // Init settings and logging preparing for AddLog use #ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED ESP.setIramHeap(); Settings = (TSettings*)calloc(1, sizeof(TSettings)); // Allocate in "new" 16k heap space TasmotaGlobal.log_buffer = (char*)malloc(LOG_BUFFER_SIZE); // Allocate in "new" 16k heap space ESP.resetHeap(); if (TasmotaGlobal.log_buffer == nullptr) { TasmotaGlobal.log_buffer = (char*)malloc(LOG_BUFFER_SIZE); // Allocate in "old" heap space as fallback } if (TasmotaGlobal.log_buffer != nullptr) { TasmotaGlobal.log_buffer[0] = '\0'; } #endif // PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED if (Settings == nullptr) { Settings = (TSettings*)calloc(1, sizeof(TSettings)); } #ifdef ESP32 #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 #ifdef USE_USB_CDC_CONSOLE bool is_connected_to_USB = false; TasConsole.setRxBufferSize(INPUT_BUFFER_SIZE); TasConsole.begin(115200); // always start CDC to test plugged cable #if SOC_USB_SERIAL_JTAG_SUPPORTED // Not S2 for (uint32_t i = 0; i < 5; i++) { // wait up to 250 ms - maybe a shorter time is enough is_connected_to_USB = HWCDCSerial.isPlugged(); if (is_connected_to_USB) { break; } delay(50); } #else is_connected_to_USB = true; // S2 #endif // SOC_USB_SERIAL_JTAG_SUPPORTED if (is_connected_to_USB) { // TasConsole is already running #if !ARDUINO_USB_MODE USB.begin(); // This needs a serial console with DTR/DSR support #endif // No ARDUINO_USB_MODE TasConsole.println(); AddLog(LOG_LEVEL_INFO, PSTR("CMD: Using USB CDC")); } else { #if SOC_USB_SERIAL_JTAG_SUPPORTED // Not S2 HWCDCSerial.~HWCDC(); // not needed, deinit CDC #endif // SOC_USB_SERIAL_JTAG_SUPPORTED // Init command serial console preparing for AddLog use Serial.begin(TasmotaGlobal.baudrate); Serial.println(); TasConsole = Serial; // Fallback tasconsole_serial = true; AddLog(LOG_LEVEL_INFO, PSTR("CMD: Fall back to serial port, no SOF packet detected on USB port")); } #else // No USE_USB_CDC_CONSOLE // Init command serial console preparing for AddLog use Serial.begin(TasmotaGlobal.baudrate); Serial.println(); // Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars TasConsole = Serial; #endif // USE_USB_CDC_CONSOLE #else // No ESP32C3, S2 or S3 // Init command serial console preparing for AddLog use Serial.begin(TasmotaGlobal.baudrate); Serial.println(); // Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars TasConsole = Serial; #endif // ESP32C3, S2 or S3 #else // No ESP32 // Init command serial console preparing for AddLog use Serial.begin(TasmotaGlobal.baudrate); Serial.println(); // Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars TasConsole = Serial; #endif // ESP32 // Ready for AddLog use // AddLog(LOG_LEVEL_INFO, PSTR("ADR: Settings %p, Log %p"), Settings, TasmotaGlobal.log_buffer); #ifdef ESP32 AddLog(LOG_LEVEL_INFO, PSTR("HDW: %s %s"), GetDeviceHardwareRevision().c_str(), FoundPSRAM() ? (CanUsePSRAM() ? "(PSRAM)" : "(PSRAM disabled)") : "" ); // AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: FoundPSRAM=%i CanUsePSRAM=%i"), FoundPSRAM(), CanUsePSRAM()); #if !defined(HAS_PSRAM_FIX) if (FoundPSRAM() && !CanUsePSRAM()) { AddLog(LOG_LEVEL_INFO, PSTR("HDW: PSRAM is disabled, requires specific compilation on this hardware (see doc)")); } #endif // HAS_PSRAM_FIX #else // ESP8266 AddLog(LOG_LEVEL_INFO, PSTR("HDW: %s"), GetDeviceHardware().c_str()); #endif // ESP32 #ifdef USE_UFILESYS UfsInit(); // xdrv_50_filesystem.ino #endif // USE_UFILESYS SettingsLoad(); SettingsDelta(); OsWatchInit(); TasmotaGlobal.seriallog_level = Settings->seriallog_level; TasmotaGlobal.syslog_level = Settings->syslog_level; TasmotaGlobal.module_changed = (Settings->module != Settings->last_module); if (TasmotaGlobal.module_changed) { Settings->baudrate = APP_BAUDRATE / 300; Settings->serial_config = TS_SERIAL_8N1; } SetSerialInitBegin(); // Reset serial interface if current baudrate and/or config is different from requested settings if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well UpdateQuickPowerCycle(true); } if (ResetReason() != REASON_DEEP_SLEEP_AWAKE) { #ifdef ESP8266 Settings->flag4.network_wifi = 1; // Make sure we're in control #endif // ESP8266 #ifdef ESP32 if (!Settings->flag4.network_ethernet) { Settings->flag4.network_wifi = 1; // Make sure we're in control } #endif // ESP32 } TasmotaGlobal.stop_flash_rotate = Settings->flag.stop_flash_rotate; // SetOption12 - Switch between dynamic or fixed slot flash save location TasmotaGlobal.save_data_counter = Settings->save_data; TasmotaGlobal.sleep = Settings->sleep; #ifndef USE_EMULATION Settings->flag2.emulation = 0; #else // No USE_EMULATION #ifndef USE_EMULATION_WEMO if (EMUL_WEMO == Settings->flag2.emulation) { Settings->flag2.emulation = 0; } #endif // USE_EMULATION_WEMO #ifndef USE_EMULATION_HUE if (EMUL_HUE == Settings->flag2.emulation) { Settings->flag2.emulation = 0; } #endif // USE_EMULATION_HUE #endif // USE_EMULATION // AddLog(LOG_LEVEL_INFO, PSTR("DBG: TasmotaGlobal size %d, data %100_H"), sizeof(TasmotaGlobal), (uint8_t*)&TasmotaGlobal); if (Settings->param[P_BOOT_LOOP_OFFSET]) { // SetOption36 // Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts) if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET]) { // Restart twice Settings->flag3.user_esp8285_enable = 0; // SetOption51 - Enable ESP8285 user GPIO's - Disable ESP8285 Generic GPIOs interfering with flash SPI if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times for (uint32_t i = 0; i < MAX_RULE_SETS; i++) { if (bitRead(Settings->rule_stop, i)) { bitWrite(Settings->rule_enabled, i, 0); // Disable rules causing boot loop } } Settings->flag4.network_wifi = 1; // Enable wifi if disabled } if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times Settings->rule_enabled = 0; // Disable all rules Settings->flag3.shutter_mode = 0; // disable shutter support TasmotaGlobal.no_autoexec = true; } if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times for (uint32_t i = 0; i < nitems(Settings->my_gp.io); i++) { Settings->my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors } } if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times Settings->module = Settings->fallback_module; // Reset module to fallback module // Settings->last_module = Settings->fallback_module; } AddLog(LOG_LEVEL_INFO, PSTR("FRC: " D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count); } } memcpy_P(TasmotaGlobal.version, VERSION_MARKER, 1); // Dummy for compiler saving VERSION_MARKER snprintf_P(TasmotaGlobal.version, sizeof(TasmotaGlobal.version), PSTR("%d.%d.%d"), TASMOTA_VERSION >> 24 & 0xff, TASMOTA_VERSION >> 16 & 0xff, TASMOTA_VERSION >> 8 & 0xff); // Release version 6.3.0 if (TASMOTA_VERSION & 0xff) { // Development or patched version 6.3.0.10 snprintf_P(TasmotaGlobal.version, sizeof(TasmotaGlobal.version), PSTR("%s.%d"), TasmotaGlobal.version, TASMOTA_VERSION & 0xff); } // Thehackbox inserts "release" or "commit number" before compiling using sed -i -e 's/PSTR("(%s)")/PSTR("(85cff52-%s)")/g' tasmota.ino // Github inserts "release" or "commit number" before compiling using sed -i -e 's/TASMOTA_SHA_SHORT/TASMOTA_SHA_SHORT 85cff52-/g' tasmota_version.h snprintf_P(TasmotaGlobal.image_name, sizeof(TasmotaGlobal.image_name), PSTR("(" STR(TASMOTA_SHA_SHORT) "%s)"), PSTR(CODE_IMAGE_STR)); // Results in (85cff52-tasmota) or (release-tasmota) Format(TasmotaGlobal.mqtt_client, SettingsText(SET_MQTT_CLIENT), sizeof(TasmotaGlobal.mqtt_client)); Format(TasmotaGlobal.mqtt_topic, SettingsText(SET_MQTT_TOPIC), sizeof(TasmotaGlobal.mqtt_topic)); if (strchr(SettingsText(SET_HOSTNAME), '%') != nullptr) { SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME); snprintf_P(TasmotaGlobal.hostname, sizeof(TasmotaGlobal.hostname)-1, SettingsText(SET_HOSTNAME), TasmotaGlobal.mqtt_topic, ESP_getChipId() & 0x1FFF); } else { snprintf_P(TasmotaGlobal.hostname, sizeof(TasmotaGlobal.hostname)-1, SettingsText(SET_HOSTNAME)); } char *s = TasmotaGlobal.hostname; while (*s) { if (!(isalnum(*s) || ('.' == *s))) { *s = '-'; } // Valid hostname chars are A..Z, a..z, 0..9, . and - if ((s == TasmotaGlobal.hostname) && ('-' == *s)) { *s = 'x'; } // First char cannot be a dash so replace by an x s++; } snprintf_P(TasmotaGlobal.mqtt_topic, sizeof(TasmotaGlobal.mqtt_topic), ResolveToken(TasmotaGlobal.mqtt_topic).c_str()); RtcInit(); GpioInit(); // FUNC_SETUP_RING1 -> FUNC_SETUP_RING2 -> FUNC_MODULE_INIT -> FUNC_LED_LINK ButtonInit(); // FUNC_ADD_BUTTON SwitchInit(); // FUNC_ADD_SWITCH #ifdef ROTARY_V1 RotaryInit(); #endif // ROTARY_V1 #ifdef USE_BERRY if (!TasmotaGlobal.no_autoexec) { BerryInit(); // Load preinit.be } #endif // USE_BERRY XdrvXsnsCall(FUNC_PRE_INIT); // FUNC_PRE_INIT TasmotaGlobal.init_state = INIT_GPIOS; SetPowerOnState(); // FUNC_SET_POWER -> FUNC_SET_DEVICE_POWER WifiConnect(); AddLog(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s - %s " D_VERSION " %s%s-" ARDUINO_CORE_RELEASE "(%s)"), PSTR(PROJECT), SettingsText(SET_DEVICENAME), TasmotaGlobal.version, TasmotaGlobal.image_name, GetBuildDateAndTime().c_str()); #ifdef FIRMWARE_MINIMAL AddLog(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION)); #endif // FIRMWARE_MINIMAL #ifdef ESP8266 #ifdef USE_ARDUINO_OTA ArduinoOTAInit(); #endif // USE_ARDUINO_OTA #endif // ESP8266 XdrvXsnsCall(FUNC_INIT); // FUNC_INIT #ifdef USE_SCRIPT if (bitRead(Settings->rule_enabled, 0)) Run_Scripter(">BS",3,0); #endif // USE_SCRIPT TasmotaGlobal.rules_flag.system_init = 1; } void BacklogLoop(void) { if (TimeReached(TasmotaGlobal.backlog_timer)) { if (!BACKLOG_EMPTY && !TasmotaGlobal.backlog_mutex) { TasmotaGlobal.backlog_mutex = true; bool nodelay = false; do { char* cmd = *backlog.head(); backlog.removeHead(); /* // This adds 32 bytes char* cmd = *backlog.removeHead(); */ if (!strncasecmp_P(cmd, PSTR(D_CMND_NODELAY), strlen(D_CMND_NODELAY))) { free(cmd); nodelay = true; } else { TasmotaGlobal.no_mqtt_response = TasmotaGlobal.backlog_no_mqtt_response; ExecuteCommand(cmd, SRC_BACKLOG); free(cmd); if (nodelay || TasmotaGlobal.backlog_nodelay) { TasmotaGlobal.backlog_timer = millis(); // Reset backlog_timer which has been set by ExecuteCommand (CommandHandler) } break; } } while (!BACKLOG_EMPTY); TasmotaGlobal.backlog_mutex = false; } if (BACKLOG_EMPTY) { TasmotaGlobal.backlog_nodelay = false; } } } void SleepDelay(uint32_t mseconds) { if (!TasmotaGlobal.backlog_nodelay && mseconds) { uint32_t wait = millis() + mseconds; while (!TimeReached(wait) && !Serial.available()) { // We need to service serial buffer ASAP as otherwise we get uart buffer overrun XdrvXsnsCall(FUNC_SLEEP_LOOP); // Main purpose is reacting ASAP on serial data availability or interrupt handling (ADE7880) delay(1); } } else { delay(0); } } void Scheduler(void) { XdrvXsnsCall(FUNC_LOOP); // check LEAmDNS.h // MDNS.update() needs to be called in main loop #ifdef ESP8266 // Not needed with esp32 mdns #ifdef USE_DISCOVERY #ifdef USE_WEBSERVER #ifdef WEBSERVER_ADVERTISE MdnsUpdate(); #endif // WEBSERVER_ADVERTISE #endif // USE_WEBSERVER #endif // USE_DISCOVERY #endif // ESP8266 OsWatchLoop(); ButtonLoop(); SwitchLoop(); #ifdef USE_DEVICE_GROUPS DeviceGroupsLoop(); #endif // USE_DEVICE_GROUPS BacklogLoop(); static uint32_t state_50msecond = 0; // State 50msecond timer if (TimeReached(state_50msecond)) { SetNextTimeInterval(state_50msecond, 50); LoopTimedCmnd(); #ifdef ROTARY_V1 RotaryHandler(); #endif // ROTARY_V1 XdrvXsnsCall(FUNC_EVERY_50_MSECOND); } static uint32_t state_100msecond = 0; // State 100msecond timer if (TimeReached(state_100msecond)) { SetNextTimeInterval(state_100msecond, 100); Every100mSeconds(); XdrvXsnsCall(FUNC_EVERY_100_MSECOND); } static uint32_t state_250msecond = 0; // State 250msecond timer if (TimeReached(state_250msecond)) { SetNextTimeInterval(state_250msecond, 250); Every250mSeconds(); XdrvXsnsCall(FUNC_EVERY_250_MSECOND); } static uint32_t state_second = 0; // State second timer if (TimeReached(state_second)) { SetNextTimeInterval(state_second, 1000); PerformEverySecond(); XdrvCall(FUNC_ACTIVE); XdrvXsnsCall(FUNC_EVERY_SECOND); } if (!TasmotaGlobal.serial_local) { SerialInput(); } #ifdef ESP32 if (!tasconsole_serial) { TasConsoleInput(); } #endif // ESP32 #ifdef ESP8266 #ifdef USE_ARDUINO_OTA ArduinoOtaLoop(); #endif // USE_ARDUINO_OTA #endif // ESP8266 #ifndef SYSLOG_UPDATE_SECOND SyslogAsync(false); #endif // SYSLOG_UPDATE_SECOND } void loop(void) { uint32_t my_sleep = millis(); Scheduler(); uint32_t my_activity = millis() - my_sleep; if (Settings->flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep // yield(); // yield == delay(0), delay contains yield, auto yield in loop SleepDelay(TasmotaGlobal.sleep); // https://github.com/esp8266/Arduino/issues/2021 } else { if (my_activity < (uint32_t)TasmotaGlobal.sleep) { SleepDelay((uint32_t)TasmotaGlobal.sleep - my_activity); // Provide time for background tasks like wifi } else { if (TasmotaGlobal.global_state.network_down) { SleepDelay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/2 of my_activity period } } } if (!my_activity) { my_activity++; } // We cannot divide by 0 uint32_t loop_delay = TasmotaGlobal.sleep; if (!loop_delay) { loop_delay++; } // We cannot divide by 0 uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second uint32_t this_cycle_ratio = 100 * my_activity / loop_delay; TasmotaGlobal.loop_load_avg = TasmotaGlobal.loop_load_avg - (TasmotaGlobal.loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one }