/* xnrg_07_ade7953.ino - ADE7953 energy sensor support for Sonoff-Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_ENERGY_SENSOR #ifdef USE_ADE7953 /*********************************************************************************************\ * ADE7953 - Energy (Shelly 2.5) * * Based on datasheet from https://www.analog.com/en/products/ade7953.html * * I2C Address: 0x38 \*********************************************************************************************/ #define XNRG_07 7 #define ADE7953_PREF 1540 #define ADE7953_UREF 26000 #define ADE7953_IREF 10000 #define ADE7953_ADDR 0x38 uint32_t ade7953_active_power = 0; uint32_t ade7953_active_power1 = 0; uint32_t ade7953_active_power2 = 0; uint32_t ade7953_current_rms = 0; uint32_t ade7953_current_rms1 = 0; uint32_t ade7953_current_rms2 = 0; uint32_t ade7953_voltage_rms = 0; uint8_t ade7953_init = 0; int Ade7953RegSize(uint16_t reg) { int size = 0; switch ((reg >> 8) & 0x0F) { case 0x03: size++; case 0x02: size++; case 0x01: size++; case 0x00: case 0x07: case 0x08: size++; } return size; } void Ade7953Write(uint16_t reg, uint32_t val) { int size = Ade7953RegSize(reg); if (size) { Wire.beginTransmission(ADE7953_ADDR); Wire.write((reg >> 8) & 0xFF); Wire.write(reg & 0xFF); while (size--) { Wire.write((val >> (8 * size)) & 0xFF); // Write data, MSB first } Wire.endTransmission(); delayMicroseconds(5); // Bus-free time minimum 4.7us } } uint32_t Ade7953Read(uint16_t reg) { uint32_t response = 0; int size = Ade7953RegSize(reg); if (size) { Wire.beginTransmission(ADE7953_ADDR); Wire.write((reg >> 8) & 0xFF); Wire.write(reg & 0xFF); Wire.endTransmission(0); Wire.requestFrom(ADE7953_ADDR, size); if (size <= Wire.available()) { for (uint32_t i = 0; i < size; i++) { response = response << 8 | Wire.read(); // receive DATA (MSB first) } } } return response; } void Ade7953Init(void) { Ade7953Write(0x102, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 Ade7953Write(0x120, 0x0030); // Configure optimum setting } void Ade7953GetData(void) { int32_t active_power; ade7953_voltage_rms = Ade7953Read(0x31C); // Both relays ade7953_current_rms1 = Ade7953Read(0x31B); // Relay 1 if (ade7953_current_rms1 < 2000) { // No load threshold (20mA) ade7953_current_rms1 = 0; ade7953_active_power1 = 0; } else { active_power = (int32_t)Ade7953Read(0x313) * -1; // Relay 1 ade7953_active_power1 = (active_power > 0) ? active_power : 0; } ade7953_current_rms2 = Ade7953Read(0x31A); // Relay 2 if (ade7953_current_rms2 < 2000) { // No load threshold (20mA) ade7953_current_rms2 = 0; ade7953_active_power2 = 0; } else { active_power = (int32_t)Ade7953Read(0x312); // Relay 2 ade7953_active_power2 = (active_power > 0) ? active_power : 0; } // First phase only supports accumulated Current and Power ade7953_current_rms = ade7953_current_rms1 + ade7953_current_rms2; ade7953_active_power = ade7953_active_power1 + ade7953_active_power2; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ADE: U %d, I %d + %d = %d, P %d + %d = %d"), ade7953_voltage_rms, ade7953_current_rms1, ade7953_current_rms2, ade7953_current_rms, ade7953_active_power1, ade7953_active_power2, ade7953_active_power); if (energy_power_on) { // Powered on energy_voltage = (float)ade7953_voltage_rms / Settings.energy_voltage_calibration; energy_active_power = (float)ade7953_active_power / (Settings.energy_power_calibration / 10); if (0 == energy_active_power) { energy_current = 0; } else { energy_current = (float)ade7953_current_rms / (Settings.energy_current_calibration * 10); } } else { // Powered off energy_voltage = 0; energy_active_power = 0; energy_current = 0; } if (ade7953_active_power) { energy_kWhtoday_delta += ((ade7953_active_power * (100000 / (Settings.energy_power_calibration / 10))) / 3600); EnergyUpdateToday(); } } void Ade7953EnergyEverySecond() { if (ade7953_init) { if (1 == ade7953_init) { Ade7953Init(); } ade7953_init--; } else { Ade7953GetData(); } } void Ade7953DrvInit(void) { if (!energy_flg) { if (i2c_flg && (pin[GPIO_ADE7953_IRQ] < 99)) { // Irq on GPIO16 is not supported... delay(100); // Need 100mS to init ADE7953 if (I2cDevice(ADE7953_ADDR)) { if (HLW_PREF_PULSE == Settings.energy_power_calibration) { Settings.energy_power_calibration = ADE7953_PREF; Settings.energy_voltage_calibration = ADE7953_UREF; Settings.energy_current_calibration = ADE7953_IREF; } AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, "ADE7953", ADE7953_ADDR); ade7953_init = 2; energy_flg = XNRG_07; } } } } bool Ade7953Command(void) { bool serviced = true; uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123 if (CMND_POWERCAL == energy_command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_PREF; } // Service in xdrv_03_energy.ino } else if (CMND_VOLTAGECAL == energy_command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_UREF; } // Service in xdrv_03_energy.ino } else if (CMND_CURRENTCAL == energy_command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_IREF; } // Service in xdrv_03_energy.ino } else if (CMND_POWERSET == energy_command_code) { if (XdrvMailbox.data_len && ade7953_active_power) { if ((value > 100) && (value < 200000)) { // Between 1W and 2000W Settings.energy_power_calibration = (ade7953_active_power * 1000) / value; // 0.00 W } } } else if (CMND_VOLTAGESET == energy_command_code) { if (XdrvMailbox.data_len && ade7953_voltage_rms) { if ((value > 10000) && (value < 26000)) { // Between 100V and 260V Settings.energy_voltage_calibration = (ade7953_voltage_rms * 100) / value; // 0.00 V } } } else if (CMND_CURRENTSET == energy_command_code) { if (XdrvMailbox.data_len && ade7953_current_rms) { if ((value > 2000) && (value < 1000000)) { // Between 20mA and 10A Settings.energy_current_calibration = ((ade7953_current_rms * 100) / value) * 100; // 0.00 mA } } } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ int Xnrg07(uint8_t function) { int result = 0; if (FUNC_PRE_INIT == function) { Ade7953DrvInit(); } else if (XNRG_07 == energy_flg) { switch (function) { case FUNC_ENERGY_EVERY_SECOND: Ade7953EnergyEverySecond(); break; case FUNC_COMMAND: result = Ade7953Command(); break; } } return result; } #endif // USE_ADE7953 #endif // USE_ENERGY_SENSOR #endif // USE_I2C