/*
xdrv_45_shelly_dimmer.ino - shelly dimmer support for Tasmota
Copyright (C) 2021 James Turton
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_LIGHT
#ifdef USE_SHELLY_DIMMER
/*********************************************************************************************\
* Shelly WiFi Dimmer v1 and v2 (ESP8266 w/ separate co-processor dimmer)
*
* {"NAME":"Shelly Dimmer 1","GPIO":[0,3200,0,3232,5568,5600,0,0,192,0,193,288,0,4736],"FLAG":0,"BASE":18}
* {"NAME":"Shelly Dimmer 2","GPIO":[0,3200,0,3232,5568,5600,0,0,193,0,192,0,320,4736],"FLAG":0,"BASE":18}
*
* https://shelly.cloud/wifi-smart-home-automation-shelly-dimmer/
* https://shelly.cloud/products/shelly-dimmer-2-smart-home-light-controller/
\*********************************************************************************************/
#define XDRV_45 45
#define XNRG_31 31
// #define SHELLY_DIMMER_DEBUG
// #define SHELLY_HW_DIMMING
#define SHD_LOGNAME "SHD: "
#ifdef SHELLY_CMDS
#define D_PRFX_SHD "Shd"
#define D_CMND_LEADINGEDGE "LeadingEdge"
#define D_CMND_WARMUPBRIGHTNESS "WarmupBrightness"
#define D_CMND_WARMUPTIME "WarmupTime"
#endif // SHELLY_CMDS
#define SHD_SWITCH_CMD 0x01
#define SHD_SWITCH_FADE_CMD 0x02
#define SHD_POLL_CMD 0x10
#define SHD_VERSION_CMD 0x11
#define SHD_SETTINGS_CMD 0x20
#define SHD_WARMUP_CMD 0x21
#define SHD_CALIBRATION1_CMD 0x30
#define SHD_CALIBRATION2_CMD 0x31
#define SHD_SWITCH_SIZE 2
#define SHD_SWITCH_FADE_SIZE 6
#define SHD_SETTINGS_SIZE 10
#define SHD_WARMUP_SIZE 4
#define SHD_CALIBRATION_SIZE 200
#define SHD_START_BYTE 0x01
#define SHD_END_BYTE 0x04
#define SHD_BUFFER_SIZE 256
#define SHD_ACK_TIMEOUT 200 // 200 ms ACK timeout
#ifdef SHELLY_FW_UPGRADE
#include
#endif // SHELLY_FW_UPGRADE
#include
TasmotaSerial *ShdSerial = nullptr;
typedef struct
{
uint8_t version_major = 0;
uint8_t version_minor = 0;
uint32_t brightness = 0;
uint32_t power = 0;
uint32_t fade_rate = 0;
} SHD_DIMMER;
struct SHD
{
SHD_DIMMER dimmer;
uint8_t *buffer = nullptr; // Serial receive buffer
int byte_counter = 0; // Index in serial receive buffer
#ifdef USE_ENERGY_SENSOR
uint32_t last_power_check = 0; // Time when last power was checked
#endif // USE_ENERGY_SENSOR
uint32_t start_time = 0;
uint16_t req_brightness = 0;
uint16_t req_fade_rate = 0;
uint16_t leading_edge = 2; // Leading edge = 2 Trailing edge = 1
uint16_t warmup_brightness = 100; // 10%
uint16_t warmup_time = 20; // 20ms
uint8_t counter = 1; // Packet counter
uint8_t hw_version = 0; // Dimmer 1 = 1 Dimmer 2 = 2
bool present = false;
bool req_on = false;
} Shd;
/*********************************************************************************************\
* SHD firmware update Functions
\*********************************************************************************************/
#ifdef SHELLY_FW_UPGRADE
void ShdResetToDFUMode()
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Request co-processor reset in dfu mode"));
#endif // SHELLY_DIMMER_DEBUG
pinMode(Pin(GPIO_SHELLY_DIMMER_RST_INV), OUTPUT);
digitalWrite(Pin(GPIO_SHELLY_DIMMER_RST_INV), LOW);
pinMode(Pin(GPIO_SHELLY_DIMMER_BOOT0), OUTPUT);
digitalWrite(Pin(GPIO_SHELLY_DIMMER_BOOT0), HIGH);
delay(50);
// clear in the receive buffer
while (Serial.available())
Serial.read();
digitalWrite(Pin(GPIO_SHELLY_DIMMER_RST_INV), HIGH); // pull out of reset
delay(50); // wait 50ms fot the co-processor to come online
}
bool ShdUpdateFirmware(uint8_t* data, uint32_t size)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Update firmware"));
#endif // SHELLY_DIMMER_DEBUG
bool ret = true;
stm32_t *stm = stm32_init(&Serial, STREAM_SERIAL, 1);
if (stm)
{
off_t offset = 0;
uint8_t buffer[256];
unsigned int len;
const uint8_t *p_st = data;
uint32_t addr, start, end;
stm32_err_t s_err;
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "STM32 erase memory"));
#endif // SHELLY_DIMMER_DEBUG
stm32_erase_memory(stm, 0, STM32_MASS_ERASE);
addr = stm->dev->fl_start;
end = addr + size;
while(addr < end && offset < size)
{
uint32_t left = end - addr;
len = sizeof(buffer) > left ? left : sizeof(buffer);
len = len > size - offset ? size - offset : len;
if (len == 0)
{
break;
}
memcpy(buffer, p_st, sizeof(buffer)); // We need 4-byte bounadry flash access
p_st += sizeof(buffer);
s_err = stm32_write_memory(stm, addr, buffer, len);
if (s_err != STM32_ERR_OK)
{
ret = false;
break;
}
addr += len;
offset += len;
}
stm32_close(stm);
}
return ret;
}
bool ShdPresent(void) {
return Shd.present;
}
uint32_t ShdFlash(uint8_t* data, size_t size) {
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_INFO, PSTR(SHD_LOGNAME "Updating firmware v%u.%u with %u bytes"), Shd.dimmer.version_major, Shd.dimmer.version_minor, size);
#endif // SHELLY_DIMMER_DEBUG
Serial.end();
Serial.begin(115200, SERIAL_8E1);
ShdResetToDFUMode();
bool error = !ShdUpdateFirmware(data, size); // Allow flash access without ESP.flashRead
Serial.end();
ShdResetToAppMode();
Serial.begin(115200, SERIAL_8N1);
ShdSendVersion();
return error;
}
#endif // SHELLY_FW_UPGRADE
/*********************************************************************************************\
* Helper Functions
\*********************************************************************************************/
uint16_t checksum(uint8_t *buf, int len)
{
uint16_t chksm = 0;
for (uint8_t i = 0; i < len; i++)
chksm += buf[i];
return chksm;
}
int check_byte()
{
uint8_t index = Shd.byte_counter;
uint8_t byte = Shd.buffer[index];
if (index == 0)
return byte == SHD_START_BYTE;
if (index < 4)
return 1;
uint8_t data_length = Shd.buffer[3];
if ((4 + data_length + 3) > SHD_BUFFER_SIZE)
return 0;
if (index < 4 + data_length + 1)
return 1;
if (index == 4 + data_length + 1)
{
uint16_t chksm = (Shd.buffer[index - 1] << 8 | Shd.buffer[index]);
uint16_t chksm_calc = checksum(&Shd.buffer[1], 3 + data_length);
if (chksm != chksm_calc)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Checksum: %x calculated: %x"), chksm, chksm_calc);
#endif // SHELLY_DIMMER_DEBUG
return 0;
}
return 1;
}
if (index == 4 + data_length + 2 && byte == SHD_END_BYTE)
return index;
return 0;
}
/*********************************************************************************************\
* Internal Functions
\*********************************************************************************************/
bool ShdSerialSend(const uint8_t data[] = nullptr, uint16_t len = 0)
{
int retries = 3;
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(SHD_LOGNAME "Tx Packet %*_H"), len, (uint8_t*)data);
#endif // SHELLY_DIMMER_DEBUG
while (retries--)
{
ShdSerial->write(data, len);
ShdSerial->flush();
// wait for any response
uint32_t snd_time = millis();
while (TimePassedSince(snd_time) < SHD_ACK_TIMEOUT)
{
if (ShdSerialInput())
return true;
delay(1);
}
// timeout
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(SHD_LOGNAME "Serial send timeout"));
}
return false;
}
bool ShdSendCmd(uint8_t cmd, uint8_t *payload, uint8_t len)
{
uint8_t data[4 + 72 + 3]; // maximum payload for 0x30 packet is 72
uint16_t chksm;
uint8_t pos = 0;
data[0] = SHD_START_BYTE;
data[1] = Shd.counter++;
data[2] = cmd;
data[3] = len;
pos += 4;
if (payload)
{
memcpy(data + 4, payload, len);
pos += len;
}
// calculate checksum from id and onwards
chksm = checksum(data + 1, 3 + len);
data[pos++] = chksm >> 8;
data[pos++] = chksm & 0xff;
data[pos++] = SHD_END_BYTE;
return ShdSerialSend(data, pos);
}
void ShdSetBrightness()
{
// Payload format:
// [0-1] Brightness (%) * 10
uint8_t payload[SHD_SWITCH_SIZE];
payload[0] = Shd.req_brightness & 0xff;
payload[1] = Shd.req_brightness >> 8;
ShdSendCmd(SHD_SWITCH_CMD, payload, SHD_SWITCH_SIZE);
}
void ShdSetBrightnessFade()
{
uint16_t delta = 0;
if (Shd.req_brightness > Shd.dimmer.brightness)
delta = (Shd.req_brightness - Shd.dimmer.brightness) * 0.8;
else
delta = (Shd.dimmer.brightness - Shd.req_brightness) * 0.8;
// Payload format:
// [0-1] Brightness (%) * 10
// [2-3] Delta brightness (%) * 8
// [4-5] 0?? ToDo(jamesturton): Find out what this word is!
uint8_t payload[SHD_SWITCH_FADE_SIZE];
payload[0] = Shd.req_brightness & 0xff;
payload[1] = Shd.req_brightness >> 8;
payload[2] = delta & 0xff;
payload[3] = delta >> 8;
payload[4] = 0;
payload[5] = 0;
ShdSendCmd(SHD_SWITCH_FADE_CMD, payload, SHD_SWITCH_FADE_SIZE);
}
void ShdSendSettings()
{
// as specified in STM32 assembly
uint16_t fade_rate = Shd.req_fade_rate;
if (fade_rate > 100)
fade_rate = 100;
// Payload format:
// [0-1] Brightness (%) * 10
// [2-3] Leading / trailing edge (1=leading, 2=trailing) ToDo(jamesturton): Are there any other values this can take?
// [4-5] Fade rate (units unknown) ToDo(jamesturton): Find fade rate units
// [6-7] Warm up brightness (%) * 10
// [8-9] Warm up duration (ms)
uint8_t payload[SHD_SETTINGS_SIZE];
payload[0] = Shd.req_brightness & 0xff;
payload[1] = Shd.req_brightness >> 8;
payload[2] = Shd.leading_edge & 0xff;
payload[3] = Shd.leading_edge >> 8;
payload[4] = fade_rate & 0xff;
payload[5] = fade_rate >> 8;
payload[6] = Shd.warmup_brightness & 0xff;
payload[7] = Shd.warmup_brightness >> 8;
payload[8] = Shd.warmup_time & 0xff;
payload[9] = Shd.warmup_time >> 8;
ShdSendCmd(SHD_SETTINGS_CMD, payload, SHD_SETTINGS_SIZE);
}
void ShdSendWarmup()
{
// Payload format:
// [0-1] Warm up brightness (%) * 10
// [2-3] Warm up duration (ms)
uint8_t payload[SHD_WARMUP_SIZE];
payload[0] = Shd.warmup_brightness & 0xff;
payload[1] = Shd.warmup_brightness >> 8;
payload[2] = Shd.warmup_time & 0xff;
payload[3] = Shd.warmup_time >> 8;
ShdSendCmd(SHD_WARMUP_CMD, payload, SHD_WARMUP_SIZE);
}
void ShdSendCalibration(uint16_t brightness, uint16_t func, uint16_t fade_rate)
{
// Payload format:
// ??? ToDo(jamesturton): Find calibration payload format!
uint8_t payload[SHD_CALIBRATION_SIZE];
memset(payload, 0, sizeof(payload));
ShdSendCmd(SHD_CALIBRATION1_CMD, payload, SHD_CALIBRATION_SIZE);
ShdSendCmd(SHD_CALIBRATION2_CMD, payload, SHD_CALIBRATION_SIZE);
}
bool ShdSyncState()
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Serial %p"), ShdSerial);
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Set Brightness Want %d, Is %d"), Shd.req_brightness, Shd.dimmer.brightness);
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Set Fade Want %d, Is %d"), Settings->light_speed, Shd.dimmer.fade_rate);
#endif // SHELLY_DIMMER_DEBUG
if (!ShdSerial)
return false;
#ifdef SHELLY_HW_DIMMING
// TODO(jamesturton): HW dimming seems to conflict with SW dimming. See how
// we can disbale SW dimming when using HW dimming.
if (Settings->light_speed != Shd.dimmer.fade_rate)
{
ShdSetBrightnessFade();
ShdDebugState();
}
else
#endif // SHELLY_HW_DIMMING
if (Shd.req_brightness != Shd.dimmer.brightness)
{
ShdSetBrightness();
ShdDebugState();
}
return true;
}
void ShdDebugState()
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "MCU v%d.%d, Brightness:%d(%d%%), Power:%d, Fade:%d"),
Shd.dimmer.version_major, Shd.dimmer.version_minor,
Shd.dimmer.brightness,
changeUIntScale(Shd.dimmer.brightness, 0, 1000, 0, 100),
Shd.dimmer.power,
Shd.dimmer.fade_rate);
#endif // SHELLY_DIMMER_DEBUG
}
bool ShdPacketProcess(void)
{
uint8_t pos = 0;
uint8_t id, cmd, len;
bool ret = false;
if (Shd.buffer[pos++] != SHD_START_BYTE)
return false;
id = Shd.buffer[pos++];
cmd = Shd.buffer[pos++];
len = Shd.buffer[pos++];
switch (cmd)
{
case SHD_POLL_CMD:
{
// 1 when returning fade_rate, 0 when returning wattage, brightness?
uint8_t hw_version_raw = Shd.buffer[pos + 0];
uint16_t unknown_0 = Shd.buffer[pos + 1];
uint16_t brightness = Shd.buffer[pos + 3] << 8 |
Shd.buffer[pos + 2];
uint32_t wattage_raw = Shd.buffer[pos + 7] << 24 |
Shd.buffer[pos + 6] << 16 |
Shd.buffer[pos + 5] << 8 |
Shd.buffer[pos + 4];
uint32_t voltage_raw = Shd.buffer[pos + 11] << 24 |
Shd.buffer[pos + 10] << 16 |
Shd.buffer[pos + 9] << 8 |
Shd.buffer[pos + 8];
uint32_t current_raw = Shd.buffer[pos + 15] << 24 |
Shd.buffer[pos + 14] << 16 |
Shd.buffer[pos + 13] << 8 |
Shd.buffer[pos + 12];
uint32_t fade_rate = Shd.buffer[pos + 16];
float wattage = 0;
if (wattage_raw > 0)
wattage = 880373 / (float)wattage_raw;
float voltage = 0;
if (voltage_raw > 0)
voltage = 347800 / (float)voltage_raw;
float current = 0;
if (current_raw > 0)
current = 1448 / (float)current_raw;
if (hw_version_raw == 0)
Shd.hw_version = 1;
else if (hw_version_raw == 1)
Shd.hw_version = 2;
#ifdef USE_ENERGY_SENSOR
if (Shd.hw_version == 2)
{
Energy.current_available = true;
Energy.voltage_available = true;
}
Energy.active_power[0] = wattage;
Energy.voltage[0] = voltage;
Energy.current[0] = current;
if (Shd.last_power_check > 10 && Energy.active_power[0] > 0) {
uint32_t time_passed = abs(TimePassedSince(Shd.last_power_check)); // Time passed in milliseconds
uint32_t deca_microWh = (uint32_t)(Energy.active_power[0] * time_passed) / 36;
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "%4_f W is %u dmWh during %u ms"), &Energy.active_power[0], deca_microWh, time_passed);
#endif // SHELLY_DIMMER_DEBUG
Energy.kWhtoday_delta[0] += deca_microWh;
EnergyUpdateToday();
}
Shd.last_power_check = millis();
#endif // USE_ENERGY_SENSOR
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "ShdPacketProcess: Dimmer %d Brightness:%d Power:%lu Voltage:%lu Current:%lu Fade:%d"), Shd.hw_version, brightness, wattage_raw, voltage_raw, current_raw, fade_rate);
#endif // SHELLY_DIMMER_DEBUG
Shd.dimmer.brightness = brightness;
Shd.dimmer.power = wattage_raw;
Shd.dimmer.fade_rate = fade_rate;
}
break;
case SHD_VERSION_CMD:
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "ShdPacketProcess: Version: %u.%u"), Shd.buffer[pos + 1], Shd.buffer[pos]);
#endif // SHELLY_DIMMER_DEBUG
Shd.dimmer.version_minor = Shd.buffer[pos];
Shd.dimmer.version_major = Shd.buffer[pos + 1];
}
break;
case SHD_SWITCH_CMD:
case SHD_SWITCH_FADE_CMD:
case SHD_SETTINGS_CMD:
case SHD_WARMUP_CMD:
case SHD_CALIBRATION1_CMD:
case SHD_CALIBRATION2_CMD:
{
ret = (Shd.buffer[pos] == 0x01);
}
break;
}
return ret;
}
void ShdResetToAppMode()
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Request co-processor reset in app mode"));
#endif // SHELLY_DIMMER_DEBUG
pinMode(Pin(GPIO_SHELLY_DIMMER_RST_INV), OUTPUT);
digitalWrite(Pin(GPIO_SHELLY_DIMMER_RST_INV), LOW);
pinMode(Pin(GPIO_SHELLY_DIMMER_BOOT0), OUTPUT);
digitalWrite(Pin(GPIO_SHELLY_DIMMER_BOOT0), LOW);
delay(50);
// clear in the receive buffer
while (Serial.available())
Serial.read();
digitalWrite(Pin(GPIO_SHELLY_DIMMER_RST_INV), HIGH); // pull out of reset
delay(50); // wait 50ms fot the co-processor to come online
}
void ShdPoll(void)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Poll"));
#endif // SHELLY_DIMMER_DEBUG
if (!ShdSerial)
return;
ShdSendCmd(SHD_POLL_CMD, 0, 0);
ShdSyncState();
}
bool ShdSendVersion(void)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_INFO, PSTR(SHD_LOGNAME "Sending version command"));
#endif // SHELLY_DIMMER_DEBUG
return ShdSendCmd(SHD_VERSION_CMD, 0, 0);
}
void ShdGetSettings(void)
{
char parameters[32];
// Shd.req_brightness = 0;
Shd.leading_edge = 0;
// Shd.req_fade_rate = 0;
Shd.warmup_brightness = 0;
Shd.warmup_time = 0;
if (strstr(SettingsText(SET_SHD_PARAM), ",") != nullptr)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_INFO, PSTR(SHD_LOGNAME "Loading params: %s"), SettingsText(SET_SHD_PARAM));
#endif // SHELLY_DIMMER_DEBUG
// Shd.req_brightness = atoi(subStr(parameters, SettingsText(SET_SHD_PARAM), ",", 1));
Shd.leading_edge = atoi(subStr(parameters, SettingsText(SET_SHD_PARAM), ",", 2));
// Shd.req_fade_rate = atoi(subStr(parameters, SettingsText(SET_SHD_PARAM), ",", 3));
Shd.warmup_brightness = atoi(subStr(parameters, SettingsText(SET_SHD_PARAM), ",", 4));
Shd.warmup_time = atoi(subStr(parameters, SettingsText(SET_SHD_PARAM), ",", 5));
}
}
void ShdSaveSettings(void)
{
char parameters[32];
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
Shd.req_brightness, Shd.leading_edge, Shd.req_fade_rate, Shd.warmup_brightness, Shd.warmup_time);
SettingsUpdateText(SET_SHD_PARAM, parameters);
}
void ShdInit(void)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_INFO, PSTR(SHD_LOGNAME "Shelly Dimmer Driver Starting Tx %d Rx %d"), Pin(GPIO_TXD), Pin(GPIO_RXD));
#endif // SHELLY_DIMMER_DEBUG
Shd.buffer = (uint8_t *)malloc(SHD_BUFFER_SIZE);
if (Shd.buffer != nullptr)
{
ShdSerial = new TasmotaSerial(Pin(GPIO_RXD), Pin(GPIO_TXD), 2, 0, SHD_BUFFER_SIZE);
if (ShdSerial->begin(115200))
{
if (ShdSerial->hardwareSerial())
ClaimSerial();
ShdSerial->flush();
ShdResetToAppMode();
bool got_version = ShdSendVersion();
AddLog(LOG_LEVEL_INFO, PSTR(SHD_LOGNAME "Shelly Dimmer Co-processor Version v%u.%u"), Shd.dimmer.version_major, Shd.dimmer.version_minor);
ShdGetSettings();
ShdSaveSettings();
ShdSendSettings();
ShdSyncState();
}
}
}
bool ShdSerialInput(void)
{
while (ShdSerial->available())
{
yield();
uint8_t serial_in_byte = ShdSerial->read();
Shd.buffer[Shd.byte_counter] = serial_in_byte;
int check = check_byte();
if (check > 1)
{
// finished
#ifdef SHELLY_DIMMER_DEBUG
Shd.byte_counter++;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(SHD_LOGNAME "Rx Packet %*_H"), Shd.byte_counter, Shd.buffer);
#endif // SHELLY_DIMMER_DEBUG
Shd.byte_counter = 0;
ShdPacketProcess();
return true;
}
else if (check == 0)
{
// wrong data
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Byte %i of received data frame is invalid. Rx Packet %*_H"),
Shd.byte_counter, Shd.byte_counter +1, Shd.buffer);
#endif // SHELLY_DIMMER_DEBUG
Shd.byte_counter = 0;
}
else
{
Shd.byte_counter++;
}
}
return false;
}
/*********************************************************************************************\
* API Functions
\*********************************************************************************************/
bool ShdModuleSelected(void) {
if (PinUsed(GPIO_SHELLY_DIMMER_BOOT0) && PinUsed(GPIO_SHELLY_DIMMER_RST_INV)) {
TasmotaGlobal.devices_present++;
TasmotaGlobal.light_type = LT_SERIAL1;
Shd.present = true;
}
return Shd.present;
}
bool ShdSetChannels(void)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(SHD_LOGNAME "SetChannels %*_H"), XdrvMailbox.data_len, (uint8_t *)XdrvMailbox.data);
#endif // SHELLY_DIMMER_DEBUG
uint16_t brightness = ((uint32_t *)XdrvMailbox.data)[0];
// Use dimmer_hw_min and dimmer_hw_max to constrain our values if the light should be on
if (brightness > 0)
brightness = changeUIntScale(brightness, 0, 255, Settings->dimmer_hw_min * 10, Settings->dimmer_hw_max * 10);
Shd.req_brightness = brightness;
ShdDebugState();
return ShdSyncState();
}
bool ShdSetPower(void)
{
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_INFO, PSTR(SHD_LOGNAME "Set Power, Power 0x%02x"), XdrvMailbox.index);
#endif // SHELLY_DIMMER_DEBUG
Shd.req_on = (bool)XdrvMailbox.index;
return ShdSyncState();
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
#ifdef SHELLY_CMDS
const char kShdCommands[] PROGMEM = D_PRFX_SHD "|" // Prefix
D_CMND_LEADINGEDGE "|" D_CMND_WARMUPBRIGHTNESS "|" D_CMND_WARMUPTIME;
void (* const ShdCommand[])(void) PROGMEM = {
&CmndShdLeadingEdge, &CmndShdWarmupBrightness, &CmndShdWarmupTime };
void CmndShdLeadingEdge(void)
{
if (XdrvMailbox.payload == 0 || XdrvMailbox.payload == 1)
{
Shd.leading_edge = 2 - XdrvMailbox.payload;
Settings->shd_leading_edge = XdrvMailbox.payload;
#ifdef SHELLY_DIMMER_DEBUG
if (Shd.leading_edge == 1)
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Set to trailing edge"));
else
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Set to leading edge"));
#endif // SHELLY_DIMMER_DEBUG
ShdSendSettings();
}
ShdSaveSettings();
ResponseCmndNumber(Settings->shd_leading_edge);
}
void CmndShdWarmupBrightness(void)
{
if ((10 <= XdrvMailbox.payload) && (XdrvMailbox.payload <= 100))
{
Shd.warmup_brightness = XdrvMailbox.payload * 10;
Settings->shd_warmup_brightness = XdrvMailbox.payload;
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Set warmup brightness to %d%%"), XdrvMailbox.payload);
#endif // SHELLY_DIMMER_DEBUG
ShdSendSettings();
}
ShdSaveSettings();
ResponseCmndNumber(Settings->shd_warmup_brightness);
}
void CmndShdWarmupTime(void)
{
if ((20 <= XdrvMailbox.payload) && (XdrvMailbox.payload <= 200))
{
Shd.warmup_time = XdrvMailbox.payload;
Settings->shd_warmup_time = XdrvMailbox.payload;
#ifdef SHELLY_DIMMER_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR(SHD_LOGNAME "Set warmup time to %dms"), XdrvMailbox.payload);
#endif // SHELLY_DIMMER_DEBUG
ShdSendSettings();
}
ShdSaveSettings();
ResponseCmndNumber(Settings->shd_warmup_time);
}
#endif // SHELLY_CMDS
/*********************************************************************************************\
* Energy Interface
\*********************************************************************************************/
#ifdef USE_ENERGY_SENSOR
bool Xnrg31(uint32_t function) {
bool result = false;
if (Shd.present) {
if (FUNC_PRE_INIT == function) {
#ifndef SHELLY_VOLTAGE_MON
Energy.current_available = false;
Energy.voltage_available = false;
#endif // SHELLY_VOLTAGE_MON
Energy.use_overtemp = true; // Use global temperature for overtemp detection
TasmotaGlobal.energy_driver = XNRG_31;
}
}
return result;
}
#endif // USE_ENERGY_SENSOR
/*********************************************************************************************\
* Driver Interface
\*********************************************************************************************/
bool Xdrv45(uint32_t function) {
bool result = false;
if (FUNC_MODULE_INIT == function) {
result = ShdModuleSelected();
} else if (Shd.present) {
switch (function) {
case FUNC_EVERY_SECOND:
ShdPoll();
break;
case FUNC_INIT:
ShdInit();
break;
case FUNC_SET_DEVICE_POWER:
result = ShdSetPower();
break;
case FUNC_SET_CHANNELS:
result = ShdSetChannels();
break;
#ifdef SHELLY_CMDS
case FUNC_COMMAND:
result = DecodeCommand(kShdCommands, ShdCommand);
break;
#endif // SHELLY_CMDS
}
}
return result;
}
#endif // USE_SHELLY_DIMMER
#endif // USE_LIGHT