/* xdrv_52_3_berry_webserver.ino - Berry scripting language, webserver module Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_BERRY #include #include "esp_spi_flash.h" size_t FlashWriteSubSector(uint32_t address_start, const uint8_t *data, size_t size) { uint32_t addr = address_start; size_t size_left = size; size_t current_offset = 0; esp_err_t ret; // Memory is unaligned, so we need to copy it to an aligned buffer uint8_t buffer[SPI_FLASH_SEC_SIZE] __attribute__((aligned(4))); while (size_left) { uint32_t page_addr = addr & ~(SPI_FLASH_SEC_SIZE - 1); uint32_t addr_in_page = addr & (SPI_FLASH_SEC_SIZE - 1); uint32_t size_in_page = size_left; if (addr_in_page + size_in_page > SPI_FLASH_SEC_SIZE) { size_in_page = SPI_FLASH_SEC_SIZE - addr_in_page; } // AddLog(LOG_LEVEL_DEBUG, ">>>: flash_write addr=%p size=%i -- page_addr=%p addr_in_page=%p size_in_page=%i size_left=%i", address_start, size, page_addr, addr_in_page, size_in_page, size_left); // check if whole page? if (addr_in_page == 0 && size_in_page == SPI_FLASH_SEC_SIZE) { memcpy(buffer, data + current_offset, SPI_FLASH_SEC_SIZE); } else { ret = spi_flash_read(page_addr, buffer, SPI_FLASH_SEC_SIZE); if (ret) { AddLog(LOG_LEVEL_INFO, "BRY: could not read flash %p (0x%X) ret=%i", page_addr, SPI_FLASH_SEC_SIZE, ret); return 0; } memcpy(buffer + addr_in_page, data + current_offset, size_in_page); } ret = spi_flash_erase_sector(page_addr / SPI_FLASH_SEC_SIZE); if (ret) { AddLog(LOG_LEVEL_INFO, "BRY: could not erase flash sector 0x%X ret=%i", page_addr / SPI_FLASH_SEC_SIZE, ret); return 0; } spi_flash_write(page_addr, buffer, SPI_FLASH_SEC_SIZE); if (ret) { AddLog(LOG_LEVEL_INFO, "BRY: could not write flash %p (0x%X) ret=%i", page_addr, SPI_FLASH_SEC_SIZE, ret); return 0; } addr += size_in_page; current_offset += size_in_page; size_left -= size_in_page; } return current_offset; } /*********************************************************************************************\ * Native functions mapped to Berry functions * * import flash * \*********************************************************************************************/ extern "C" { // Berry: `flash.read(address:int[, length:int]) -> bytes()` // // If length is not specified, it is full block 4KB int32_t p_flash_read(struct bvm *vm); int32_t p_flash_read(struct bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 1 && be_isint(vm, 1) && (argc < 2 || be_isint(vm, 2)) ) { // optional second argument must be int uint32_t address = be_toint(vm, 1); uint32_t length = 0x1000; if (argc >= 2) { length = be_toint(vm, 2); if (length <= 0) { length = 0x1000; } } // allocate a buffer in the heap that will be automatically freed when going out of scope auto buf = std::unique_ptr(new uint8_t[length]); esp_err_t ret = spi_flash_read(address, buf.get(), length); if (ret) { be_raisef(vm, "internal_error", "Error calling spi_flash_read(0x%X, %i)", address, length); } be_pushbytes(vm, buf.get(), length); be_return(vm); } be_raise(vm, kTypeError, nullptr); } // Berry: `flash.write(address:int, content:bytes() [, no_erase:bool]) -> nil` // if `no_erase` is true, just call spi_flash_write int32_t p_flash_write(struct bvm *vm); int32_t p_flash_write(struct bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 2 && be_isint(vm, 1) && be_isinstance(vm, 2)) { be_getglobal(vm, "bytes"); /* get the bytes class */ /* TODO eventually replace with be_getbuiltin */ if (be_isderived(vm, 2)) { bool no_erase = false; if (argc >= 3 && be_isbool(vm, 3)) { no_erase = be_tobool(vm, 3); } uint32_t address = be_toint(vm, 1); size_t length = 0; const void * bytes = be_tobytes(vm, 2, &length); if (bytes && length > 0) { if (no_erase) { esp_err_t ret = spi_flash_write(address, (const uint8_t*)bytes, length); if (ret) { be_raisef(vm, "internal_error", "Error calling spi_flash_write() ret=%i", ret); } } else { size_t ret = FlashWriteSubSector(address, (const uint8_t*)bytes, length); if (ret == 0) { be_raise(vm, "internal_error", "Error calling spi_flash_write()"); } } be_return_nil(vm); // success } } } be_raise(vm, kTypeError, nullptr); } // Berry: `flash.erase(address:int, length:int) -> nil` // // Address and length must be 4KB aligned int32_t p_flash_erase(struct bvm *vm); int32_t p_flash_erase(struct bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 2 && be_isint(vm, 1) && be_isint(vm, 2)) { int32_t address = be_toint(vm, 1); int32_t length = be_toint(vm, 2); if ((address % 0x1000) != 0 || address < 0) { be_raise(vm, "value_error", "Address must be a multiple of 0x1000"); } if ((length % 0x1000) != 0 || length < 0) { be_raise(vm, "value_error", "Length must be a multiple of 0x1000"); } esp_err_t ret = spi_flash_erase_range(address, length); be_return_nil(vm); } be_raise(vm, kTypeError, nullptr); } // Forces the next restart to use the `factory` partition if any is present void p_factory(bbool force_ota) { const esp_partition_t *otadata_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL); if (otadata_partition) { esp_partition_erase_range(otadata_partition, 0, SPI_FLASH_SEC_SIZE * 2); } if (force_ota) { #ifdef CONFIG_IDF_TARGET_ESP32C3 OtaFactoryWrite(true); #endif RtcSettings.ota_loader = 1; // force OTA at next reboot } } } #endif // USE_BERRY