/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE // Ensure persistence of devices into Flash // // Structure: // (from file info): // uint16 - start address in Flash (offset) // uint16 - length in bytes (makes sure parsing stops) // // File structure: // uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased) // // [Array of devices] // [Offset = 2] // uint8 - length of device record // uint16 - short address // uint64 - long IEEE address // uint8 - number of endpoints // [Array of endpoints] // uint8 - endpoint number // uint16 - profileID of the endpoint // Array of uint8 - clusters In codes, 0xFF end marker // Array of uint8 - clusters Out codes, 0xFF end marker // // str - ModelID (null terminated C string, 32 chars max) // str - Manuf (null terminated C string, 32 chars max) // str - FriendlyName (null terminated C string, 32 chars max) // reserved for extensions // Memory footprint const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000 const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB const static size_t z_spi_len = 0x1000; // 4kb blocs const static size_t z_block_offset = 0x0800; const static size_t z_block_len = 0x0800; // 2kb class z_flashdata_t { public: uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2' uint16_t len; // len of object uint16_t reserved; // align on 4 bytes boundary }; const static uint32_t ZIGB_NAME = 0x3167697A; // 'zig1' little endian const static size_t Z_MAX_FLASH = z_block_len - sizeof(z_flashdata_t); // 2040 // encoding for the most commonly 32 clusters, used for binary encoding const uint16_t Z_ClusterNumber[] PROGMEM = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F, 0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018, 0x0019, 0x001A, 0x001B, 0x001C, 0x001D, 0x001E, 0x001F, 0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027, 0x0100, 0x0101, 0x0102, 0x0201, 0x0202, 0x0203, 0x0204, 0x0300, 0x0301, 0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0406, 0x0500, 0x0501, 0x0502, 0x0700, 0x0701, 0x0702, 0x0B00, 0x0B01, 0x0B02, 0x0B03, 0x0B04, 0x0B05, 0x1000, 0xFC0F, }; // convert a 1 byte cluster code to the actual cluster number uint16_t fromClusterCode(uint8_t c) { if (c >= sizeof(Z_ClusterNumber)/sizeof(Z_ClusterNumber[0])) { return 0xFFFF; // invalid } return pgm_read_word(&Z_ClusterNumber[c]); } // convert a cluster number to 1 byte, or 0xFF if not in table uint8_t toClusterCode(uint16_t c) { for (uint32_t i = 0; i < sizeof(Z_ClusterNumber)/sizeof(Z_ClusterNumber[0]); i++) { if (c == pgm_read_word(&Z_ClusterNumber[i])) { return i; } } return 0xFF; // not found } class SBuffer hibernateDevice(const struct Z_Device &device) { SBuffer buf(128); buf.add8(0x00); // overall length, will be updated later buf.add16(device.shortaddr); buf.add64(device.longaddr); uint32_t endpoints = device.endpoints.size(); if (endpoints > 254) { endpoints = 254; } buf.add8(endpoints); // iterate on endpoints for (std::vector::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) { uint32_t ep_profile = *ite; uint8_t endpoint = (ep_profile >> 16) & 0xFF; uint16_t profileId = ep_profile & 0xFFFF; buf.add8(endpoint); buf.add16(profileId); for (std::vector::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t c_endpoint = (*itc >> 16) & 0xFF; if (endpoint == c_endpoint) { uint8_t clusterCode = toClusterCode(cluster); if (0xFF != clusterCode) { buf.add8(clusterCode); } } } buf.add8(0xFF); // end of endpoint marker for (std::vector::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t c_endpoint = (*itc >> 16) & 0xFF; if (endpoint == c_endpoint) { uint8_t clusterCode = toClusterCode(cluster); if (0xFF != clusterCode) { buf.add8(clusterCode); } } } buf.add8(0xFF); // end of endpoint marker } // ModelID size_t model_len = device.modelId.length(); if (model_len > 32) { model_len = 32; } // max 32 chars buf.addBuffer(device.modelId.c_str(), model_len); buf.add8(0x00); // end of string marker // ManufID size_t manuf_len = device.manufacturerId.length(); if (manuf_len > 32) {manuf_len = 32; } // max 32 chars buf.addBuffer(device.manufacturerId.c_str(), manuf_len); buf.add8(0x00); // end of string marker // FriendlyName size_t frname_len = device.friendlyName.length(); if (frname_len > 32) {frname_len = 32; } // max 32 chars buf.addBuffer(device.friendlyName.c_str(), frname_len); buf.add8(0x00); // end of string marker // update overall length buf.set8(0, buf.len()); return buf; } class SBuffer hibernateDevices(void) { SBuffer buf(2048); size_t devices_size = zigbee_devices.devicesSize(); if (devices_size > 32) { devices_size = 32; } // arbitrarily limit to 32 devices, for now buf.add8(devices_size); // number of devices for (uint32_t i = 0; i < devices_size; i++) { const Z_Device & device = zigbee_devices.devicesAt(i); const SBuffer buf_device = hibernateDevice(device); buf.addBuffer(buf_device); } size_t buf_len = buf.len(); if (buf_len > 2040) { AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Devices list too big to fit in Flash (%d)"), buf_len); } // Log char *hex_char = (char*) malloc((buf_len * 2) + 2); if (hex_char) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "ZbFlashStore %s"), ToHex_P(buf.getBuffer(), buf_len, hex_char, (buf_len * 2) + 2)); free(hex_char); } return buf; } void hidrateDevices(const SBuffer &buf) { uint32_t buf_len = buf.len(); if (buf_len <= 10) { return; } uint32_t k = 0; uint32_t num_devices = buf.get8(k++); for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) { uint32_t dev_record_len = buf.get8(k); SBuffer buf_d = buf.subBuffer(k, dev_record_len); uint32_t d = 1; // index in device buffer uint16_t shortaddr = buf_d.get16(d); d += 2; uint64_t longaddr = buf_d.get64(d); d += 8; zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses uint32_t endpoints = buf_d.get8(d++); for (uint32_t j = 0; j < endpoints; j++) { uint8_t ep = buf_d.get8(d++); uint16_t ep_profile = buf_d.get16(d); d += 2; zigbee_devices.addEndointProfile(shortaddr, ep, ep_profile); // in clusters while (d < dev_record_len) { // safe guard against overflow uint8_t ep_cluster = buf_d.get8(d++); if (0xFF == ep_cluster) { break; } // end of block zigbee_devices.addCluster(shortaddr, ep, fromClusterCode(ep_cluster), false); } // out clusters while (d < dev_record_len) { // safe guard against overflow uint8_t ep_cluster = buf_d.get8(d++); if (0xFF == ep_cluster) { break; } // end of block zigbee_devices.addCluster(shortaddr, ep, fromClusterCode(ep_cluster), true); } } // parse 3 strings char empty[] = ""; // ManufID uint32_t s_len = buf_d.strlen_s(d); char *ptr = s_len ? buf_d.charptr(d) : empty; zigbee_devices.setModelId(shortaddr, ptr); d += s_len + 1; // ManufID s_len = buf_d.strlen_s(d); ptr = s_len ? buf_d.charptr(d) : empty; zigbee_devices.setManufId(shortaddr, ptr); d += s_len + 1; // FriendlyName s_len = buf_d.strlen_s(d); ptr = s_len ? buf_d.charptr(d) : empty; zigbee_devices.setFriendlyName(shortaddr, ptr); d += s_len + 1; // next iteration k += dev_record_len; } } void loadZigbeeDevices(void) { z_flashdata_t flashdata; memcpy_P(&flashdata, z_dev_start, sizeof(z_flashdata_t)); AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len); // Check the signature if ((flashdata.name == ZIGB_NAME) && (flashdata.len > 0)) { uint16_t buf_len = flashdata.len; // parse what seems to be a valid entry SBuffer buf(buf_len); buf.addBuffer(z_dev_start + sizeof(z_flashdata_t), buf_len); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee devices data in Flash (%d bytes)"), buf_len); hidrateDevices(buf); zigbee_devices.clean(); // don't write back to Flash what we just loaded } else { AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No zigbee devices data in Flash")); } } void saveZigbeeDevices(void) { SBuffer buf = hibernateDevices(); size_t buf_len = buf.len(); if (buf_len > Z_MAX_FLASH) { AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Buffer too big to fit in Flash (%d bytes)"), buf_len); return; } // first copy SPI buffer into ram uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len); if (!spi_buffer) { AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer")); return; } // copy the flash into RAM to make local change, and write back the whole buffer ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE); z_flashdata_t *flashdata = (z_flashdata_t*)(spi_buffer + z_block_offset); flashdata->name = ZIGB_NAME; flashdata->len = buf_len; flashdata->reserved = 0; memcpy(spi_buffer + z_block_offset + sizeof(z_flashdata_t), buf.getBuffer(), buf_len); // buffer is now ready, write it back if (ESP.flashEraseSector(z_spi_start_sector)) { ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE); } free(spi_buffer); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len); } // Erase the flash area containing the ZigbeeData void eraseZigbeeDevices(void) { zigbee_devices.clean(); // avoid writing data to flash after erase // first copy SPI buffer into ram uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len); if (!spi_buffer) { AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer")); return; } // copy the flash into RAM to make local change, and write back the whole buffer ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE); // Fill the Zigbee area with 0xFF memset(spi_buffer + z_block_offset, 0xFF, z_block_len); // buffer is now ready, write it back if (ESP.flashEraseSector(z_spi_start_sector)) { ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE); } free(spi_buffer); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (0x%08X - %d bytes)"), z_dev_start, z_block_len); } #endif // USE_ZIGBEE