/* xdrv_27_shutter.ino - Shutter/Blind support for Tasmota Copyright (C) 2020 Stefan Bode This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_SHUTTER /*********************************************************************************************\ * Shutter or Blind support using two consecutive relays \*********************************************************************************************/ #define XDRV_27 27 #define D_SHUTTER "SHUTTER" const uint16_t MOTOR_STOP_TIME = 500; // in mS const uint8_t steps_per_second = 20; // FUNC_EVERY_50_MSECOND uint8_t calibrate_pos[6] = {0,30,50,70,90,100}; uint16_t messwerte[5] = {30,50,70,90,100}; uint16_t last_execute_step; enum ShutterModes { SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE, SHT_OFF_ON__OPEN_CLOSE_STEPPER,}; enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,}; const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|" D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|" D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|" D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME; void (* const ShutterCommand[])(void) PROGMEM = { &CmndShutterOpen, &CmndShutterClose, &CmndShutterStop, &CmndShutterPosition, &CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay, &CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime}; const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d,\"Target\":%d}"; const char JSON_SHUTTER_BUTTON[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Button%d\":%d}"; #include Ticker TickerShutter; struct SHUTTER { power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes. power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed. uint32_t time[MAX_SHUTTERS]; // operating time of the shutter in 0.05sec int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated int32_t target_position[MAX_SHUTTERS]; // position to go to int32_t start_position[MAX_SHUTTERS]; // position before a movement is started. init at start int32_t real_position[MAX_SHUTTERS]; // value between 0 and Shutter.open_max uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter. 112 = 11.2sec uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter. 112 = 11.2sec uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec. int16_t pwm_frequency[MAX_SHUTTERS]; // frequency of PWN for stepper motors uint16_t max_pwm_frequency = 1000; // maximum of PWM frequency for openig the shutter. depend on the motor and drivers uint16_t max_close_pwm_frequency[MAX_SHUTTERS];// maximum of PWM frequency for closeing the shutter. depend on the motor and drivers uint8_t skip_relay_change; // avoid overrun at endstops int32_t accelerator[MAX_SHUTTERS]; // speed of ramp-up, ramp down of shutter } Shutter; void ShutterLogPos(uint32_t i) { char stemp2[10]; dtostrfd((float)Shutter.time[i] / steps_per_second, 2, stemp2); AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d"), i+1, Shutter.real_position[i], Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2, Shutter.pwm_frequency[i]); } void ShutterRtc50mS(void) { for (uint8_t i = 0; i < shutters_present; i++) { Shutter.time[i]++; if (Shutter.accelerator[i]) { //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: accelerator i=%d -> %d"),i, Shutter.accelerator[i]); Shutter.pwm_frequency[i] += Shutter.accelerator[i]; Shutter.pwm_frequency[i] = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i],Shutter.pwm_frequency[i])); analogWriteFreq(Shutter.pwm_frequency[i]); analogWrite(pin[GPIO_PWM1+i], 50); } } } #define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B)) int32_t ShutterPercentToRealPosition(uint32_t percent, uint32_t index) { if (Settings.shutter_set50percent[index] != 50) { return (percent <= 5) ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index]; } else { uint32_t realpos; // check against DIV 0 for (uint32_t j = 0; j < 5; j++) { if (0 == Settings.shuttercoeff[j][index]) { AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0")); for (uint32_t k = 0; k < 5; k++) { Settings.shuttercoeff[k][index] = SHT_DIV_ROUND(calibrate_pos[k+1] * 1000, calibrate_pos[5]); } } } for (uint32_t i = 0; i < 5; i++) { if ((percent * 10) >= Settings.shuttercoeff[i][index]) { realpos = SHT_DIV_ROUND(Shutter.open_max[index] * calibrate_pos[i+1], 100); //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP1: %d, %% %d, coeff %d"), realpos, percent, Settings.shuttercoeff[i][index]); } else { if (0 == i) { realpos = SHT_DIV_ROUND(SHT_DIV_ROUND(percent * Shutter.open_max[index] * calibrate_pos[i+1], Settings.shuttercoeff[i][index]), 10); } else { //uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100; //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP2: %d, %% %d, coeff %d"), addon, (calibrate_pos[i+1] - calibrate_pos[i]), (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index])); realpos += SHT_DIV_ROUND(SHT_DIV_ROUND((percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter.open_max[index] * (calibrate_pos[i+1] - calibrate_pos[i]), Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]), 100); } break; } } return realpos; } } uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index) { if (Settings.shutter_set50percent[index] != 50) { return (Settings.shuttercoeff[2][index] * 5 > realpos) ? SHT_DIV_ROUND(realpos, Settings.shuttercoeff[2][index]) : SHT_DIV_ROUND(realpos-Settings.shuttercoeff[0][index], Settings.shuttercoeff[1][index]); } else { uint16_t realpercent; for (uint32_t i = 0; i < 5; i++) { if (realpos >= Shutter.open_max[index] * calibrate_pos[i+1] / 100) { realpercent = SHT_DIV_ROUND(Settings.shuttercoeff[i][index], 10); //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP1: %d, %% %d, coeff %d"), realpercent, realpos, Shutter_Open_Max[index] * calibrate_pos[i+1] / 100); } else { if (0 == i) { realpercent = SHT_DIV_ROUND(SHT_DIV_ROUND((realpos - SHT_DIV_ROUND(Shutter.open_max[index] * calibrate_pos[i], 100)) * 10 * Settings.shuttercoeff[i][index], calibrate_pos[i+1]), Shutter.open_max[index]); } else { //uint16_t addon = ( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]) / (calibrate_pos[i+1] - calibrate_pos[i])/ Shutter_Open_Max[index]; //uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100; //AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP2: %d, delta %d, %% %d, coeff %d"), addon,( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) , (calibrate_pos[i+1] - calibrate_pos[i])* Shutter_Open_Max[index]/100, (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index])); realpercent += SHT_DIV_ROUND(SHT_DIV_ROUND((realpos - SHT_DIV_ROUND(Shutter.open_max[index] * calibrate_pos[i], 100)) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]), (calibrate_pos[i+1] - calibrate_pos[i])), Shutter.open_max[index]) ; } break; } } return realpercent; } } void ShutterInit(void) { shutters_present = 0; Shutter.mask = 0; //Initialize to get relay that changed Shutter.old_power = power; bool relay_in_interlock = false; // if shutter 4 is unused if (Settings.shutter_startrelay[MAX_SHUTTERS] == 0) { Shutter.max_pwm_frequency = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : Shutter.max_pwm_frequency; } for (uint32_t i = 0; i < MAX_SHUTTERS; i++) { // set startrelay to 1 on first init, but only to shutter 1. 90% usecase Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]); if (Settings.shutter_startrelay[i] && (Settings.shutter_startrelay[i] < 9)) { shutters_present++; // Determine shutter types Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ; for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.mask, Settings.interlock[i]&Shutter.mask); if (Settings.interlock[j] && (Settings.interlock[j] & Shutter.mask)) { //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay in Interlock group")); relay_in_interlock = true; } } if (relay_in_interlock) { if (Settings.pulse_timer[i] > 0) { Shutter.mode = SHT_PULSE_OPEN__PULSE_CLOSE; } else { Shutter.mode = SHT_OFF_OPEN__OFF_CLOSE; } } else { Shutter.mode = SHT_OFF_ON__OPEN_CLOSE; if ((pin[GPIO_PWM1+i] < 99) && (pin[GPIO_CNTR1+i] < 99)) { Shutter.mode = SHT_OFF_ON__OPEN_CLOSE_STEPPER; Shutter.pwm_frequency[i] = 0; Shutter.accelerator[i] = 0; analogWriteFreq(Shutter.pwm_frequency[i]); analogWrite(pin[GPIO_PWM1+i], 50); } } TickerShutter.attach_ms(50, ShutterRtc50mS ); // default the 50 percent should not have any impact without changing it. set to 60 Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] > 0) ? Settings.shutter_set50percent[i] : 50; // use 10 sec. as default to allow everybody to play without deep initialize Shutter.open_time[i] = (Settings.shutter_opentime[i] > 0) ? Settings.shutter_opentime[i] : 100; Shutter.close_time[i] = (Settings.shutter_closetime[i] > 0) ? Settings.shutter_closetime[i] : 100; // Update Calculation 20 because time interval is 0.05 sec Shutter.open_max[i] = 200 * Shutter.open_time[i]; Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ; Shutter.max_close_pwm_frequency[i] = Shutter.max_pwm_frequency*Shutter.open_time[i] / Shutter.close_time[i]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d Closefreq: %d"),i, Shutter.max_close_pwm_frequency[i]); // calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part if (Settings.shutter_set50percent[i] != 50) { Settings.shuttercoeff[1][i] = Shutter.open_max[i] * (100 - Settings.shutter_set50percent[i] ) / 5000; Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100); Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5; } Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1); Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i); //Shutter.real_position[i] = Settings.shutter_position[i] <= 5 ? Settings.shuttercoeff[2][i] * Settings.shutter_position[i] : Settings.shuttercoeff[1][i] * Settings.shutter_position[i] + Settings.shuttercoeff[0,i]; Shutter.start_position[i] = Shutter.target_position[i] = Shutter.real_position[i]; Shutter.motordelay[i] = Settings.shutter_motordelay[i]; char shutter_open_chr[10]; dtostrfd((float)Shutter.open_time[i] / 10 , 1, shutter_open_chr); char shutter_close_chr[10]; dtostrfd((float)Shutter.close_time[i] / 10, 1, shutter_close_chr); AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d (Relay:%d): Init. Pos: %d [%d %%], Open Vel.: 100, Close Vel.: %d , Max Way: %d, Opentime %s [s], Closetime %s [s], CoeffCalc: c0: %d, c1 %d, c2: %d, c3: %d, c4: %d, binmask %d, is inverted %d, is locked %d, end stop time enabled %d, shuttermode %d, motordelay %d"), i+1, Settings.shutter_startrelay[i], Shutter.real_position[i], Settings.shutter_position[i], Shutter.close_velocity[i], Shutter.open_max[i], shutter_open_chr, shutter_close_chr, Settings.shuttercoeff[0][i], Settings.shuttercoeff[1][i], Settings.shuttercoeff[2][i], Settings.shuttercoeff[3][i], Settings.shuttercoeff[4][i], Shutter.mask, (Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, Shutter.mode, Shutter.motordelay[i]); } else { // terminate loop at first INVALID shutter. break; } ShutterLimitRealAndTargetPositions(i); Settings.shutter_accuracy = 1; } } void ShutterReportPosition(bool always) { Response_P(PSTR("{")); rules_flag.shutter_moving = 0; for (uint32_t i = 0; i < shutters_present; i++) { //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d"), i+1,Shutter.real_position[i]); uint32_t position = ShutterRealToPercentPosition(Shutter.real_position[i], i); if (Shutter.direction[i] != 0) { rules_flag.shutter_moving = 1; ShutterLogPos(i); } if (i) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(JSON_SHUTTER_POS, i+1, (Settings.shutter_options[i] & 1) ? 100-position : position, Shutter.direction[i], ShutterRealToPercentPosition(Shutter.target_position[i], i)); } ResponseJsonEnd(); if (always || (rules_flag.shutter_moving)) { MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER)); } //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved); } void ShutterLimitRealAndTargetPositions(uint32_t i) { if (Shutter.real_position[i]<0) Shutter.real_position[i] = 0; if (Shutter.real_position[i]>Shutter.open_max[i]) Shutter.real_position[i] = Shutter.open_max[i]; if (Shutter.target_position[i]<0) Shutter.target_position[i] = 0; if (Shutter.target_position[i]>Shutter.open_max[i]) Shutter.target_position[i] = Shutter.open_max[i]; } void ShutterUpdatePosition(void) { char scommand[CMDSZ]; char stopic[TOPSZ]; for (uint32_t i = 0; i < shutters_present; i++) { if (Shutter.direction[i] != 0) { int32_t stop_position_delta = 20; if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) { // Calculate position with counter. Much more accurate and no need for motordelay workaround // adding some steps to stop early Shutter.real_position[i] = ShutterCounterBasedPosition(i); int32_t max_frequency = Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i]; int32_t max_freq_change_per_sec = Shutter.max_pwm_frequency*steps_per_second / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1); int32_t min_runtime_ms = Shutter.pwm_frequency[i]*1000 / max_freq_change_per_sec; int32_t velocity = Shutter.direction[i] == 1 ? 100 : Shutter.close_velocity[i]; int32_t minstopway = min_runtime_ms * velocity / 100 * Shutter.pwm_frequency[i] / max_frequency * Shutter.direction[i] ; int32_t next_possible_stop = Shutter.real_position[i] + minstopway ; stop_position_delta =200 * Shutter.pwm_frequency[i]/max_frequency + Shutter.direction[i] * (next_possible_stop - Shutter.target_position[i]); if (Shutter.time[i] == 1) { ShutterReportPosition(true); rules_flag.shutter_moving = 1; XdrvRulesProcess(); } //Shutter.accelerator[i] = tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200); //int32_t act_freq_change = max_freq_change_per_sec/20; AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, velocity %d, minstopway %d,cur_freq %d, max_frequency %d, act_freq_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d"),Shutter.time[i],velocity,minstopway, Shutter.pwm_frequency[i],max_frequency, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i]); if (Shutter.accelerator[i] < 0 || next_possible_stop * Shutter.direction[i] > (Shutter.target_position[i]- (100 * Shutter.direction[i])) * Shutter.direction[i] ) { Shutter.accelerator[i] = - tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp down: acc: %d"), Shutter.accelerator[i]); } else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_frequency[i] == max_frequency) { Shutter.accelerator[i] = 0; } } else { Shutter.real_position[i] = Shutter.start_position[i] + ( (Shutter.time[i] - Shutter.motordelay[i]) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i])); } if ( Shutter.real_position[i] * Shutter.direction[i] + stop_position_delta >= Shutter.target_position[i] * Shutter.direction[i] ) { // calculate relay number responsible for current movement. //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Condition detected: real: %d, Target: %d, direction: %d"),Shutter.real_position[i], Shutter.target_position[i],Shutter.direction[i]); uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : 1) ; int16_t missing_steps; switch (Shutter.mode) { case SHT_PULSE_OPEN__PULSE_CLOSE: // we have a momentary switch here. Needs additional pulse on same relay after the end if (SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source) { ExecuteCommandPower(cur_relay, 1, SRC_SHUTTER); } else { last_source = SRC_SHUTTER; } break; case SHT_OFF_ON__OPEN_CLOSE_STEPPER: missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) - RtcSettings.pulse_counter[i]; //prepare for stop PWM AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_frequency[i]); Shutter.accelerator[i] = 0; Shutter.pwm_frequency[i] = Shutter.pwm_frequency[i] > 250 ? 250 : Shutter.pwm_frequency[i]; analogWriteFreq(Shutter.pwm_frequency[i]); analogWrite(pin[GPIO_PWM1+i], 50); Shutter.pwm_frequency[i] = 0; analogWriteFreq(Shutter.pwm_frequency[i]); while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) { delay(1); } analogWrite(pin[GPIO_PWM1+i], 0); Shutter.real_position[i] = ShutterCounterBasedPosition(i); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Real %d, pulsecount %d, start %d"), Shutter.real_position[i],RtcSettings.pulse_counter[i], Shutter.start_position[i]); if ((1 << (Settings.shutter_startrelay[i]-1)) & power) { ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER); ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER); } break; case SHT_OFF_ON__OPEN_CLOSE: if ((1 << (Settings.shutter_startrelay[i]-1)) & power) { ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER); ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER); } break; case SHT_OFF_OPEN__OFF_CLOSE: // avoid switching OFF a relay already OFF if ((1 << (cur_relay-1)) & power) { // Relay is on and need to be switched off. ExecuteCommandPower(cur_relay, 0, SRC_SHUTTER); } break; } ShutterLimitRealAndTargetPositions(i); Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i); ShutterLogPos(i); Shutter.start_position[i] = Shutter.real_position[i]; // sending MQTT result to broker snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1); GetTopic_P(stopic, STAT, mqtt_topic, scommand); Response_P("%d", (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]); MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN Shutter.direction[i] = 0; ShutterReportPosition(true); rules_flag.shutter_moved = 1; XdrvRulesProcess(); } } } } bool ShutterState(uint32_t device) { device--; device &= 3; return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support (Shutter.mask & (1 << (Settings.shutter_startrelay[device]-1))) ); } void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos) { //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: dir %d, delta1 %d, delta2 %d, grant %d"),direction, (Shutter.open_max[i] - Shutter.real_position[i]) / Shutter.close_velocity[i], Shutter.real_position[i] / Shutter.close_velocity[i], 2+Shutter.motordelay[i]); if ( ( (1 == direction) && ((Shutter.open_max[i] - Shutter.real_position[i]) / 100 <= 2) ) || ( (-1 == direction) && (Shutter.real_position[i] / Shutter.close_velocity[i] <= 2)) ) { Shutter.skip_relay_change = 1; } else { if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) { Shutter.pwm_frequency[i] = 0; analogWriteFreq(Shutter.pwm_frequency[i]); analogWrite(pin[GPIO_PWM1+i], 0); // can be operated without counter, but then not that acurate. if (pin[GPIO_CNTR1+i] < 99) { RtcSettings.pulse_counter[i] = 0; } Shutter.accelerator[i] = Shutter.max_pwm_frequency / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Ramp up: %d"), Shutter.accelerator[i]); } Shutter.target_position[i] = target_pos; Shutter.start_position[i] = Shutter.real_position[i]; Shutter.time[i] = 0; Shutter.skip_relay_change = 0; Shutter.direction[i] = direction; rules_flag.shutter_moving = 1; rules_flag.shutter_moved = 0; //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: real %d, start %d, counter %d, max_freq %d, dir %d, freq %d"),Shutter.real_position[i], Shutter.start_position[i] ,RtcSettings.pulse_counter[i],Shutter.max_pwm_frequency , Shutter.direction[i] ,Shutter.max_pwm_frequency ); } //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), i, Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i]); } void ShutterWaitForMotorStop(uint32_t i) { AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Wait for Motorstop..")); if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) { if (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode) { //AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Frequency change %d"), Shutter.pwm_frequency); while (Shutter.pwm_frequency[i] > 0) { //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Frequency: %ld, delta: %d"), Shutter.pwm_frequency[i], (int32_t)((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) ); Shutter.pwm_frequency[i] = tmax(Shutter.pwm_frequency[i]-((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) , 0); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Frequency: %ld"), Shutter.pwm_frequency[i]); analogWriteFreq(Shutter.pwm_frequency[i]); analogWrite(pin[GPIO_PWM1+i], 50); delay(50); } analogWrite(pin[GPIO_PWM1+i], 0); Shutter.real_position[i] = ShutterCounterBasedPosition(i); } else { ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER); delay(MOTOR_STOP_TIME); } } else { delay(MOTOR_STOP_TIME); } } int32_t ShutterCounterBasedPosition(uint32_t i) { return ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency)+Shutter.start_position[i]; } void ShutterRelayChanged(void) { // Shutter.switched_relay = binary relay that was recently changed and cause an Action // powerstate_local = binary powermatrix and relays from shutter: 0..3 // relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer char stemp1[10]; for (uint32_t i = 0; i < shutters_present; i++) { power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3; //uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ; //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); if (manual_relays_changed) { //Shutter.skip_relay_change = true; ShutterLimitRealAndTargetPositions(i); if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE || Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) { ShutterWaitForMotorStop(i); switch (powerstate_local) { case 1: ShutterStartInit(i, 1, Shutter.open_max[i]); break; case 3: ShutterStartInit(i, -1, 0); break; default: //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor."),i); Shutter.target_position[i] = Shutter.real_position[i]; } } else { if (Shutter.direction[i] != 0 && (!powerstate_local || (powerstate_local && Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE))) { Shutter.target_position[i] = Shutter.real_position[i]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed); } else { last_source = SRC_SHUTTER; // avoid switch off in the next loop if (powerstate_local == 2) { // testing on CLOSE relay, if ON // close with relay two ShutterWaitForMotorStop(i); ShutterStartInit(i, -1, 0); } else { // opens with relay one ShutterWaitForMotorStop(i); ShutterStartInit(i, 1, Shutter.open_max[i]); } } AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i+1, Shutter.target_position[i], powerstate_local); } } } } bool ShutterButtonIsSimultaneousHold(uint32_t button_index, uint32_t shutter_index) { // check for simultaneous shutter button hold uint32 min_shutterbutton_hold_timer = -1; for (uint32_t i = 0; i < MAX_KEYS; i++) { if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (Button.hold_timer[i] < min_shutterbutton_hold_timer)) min_shutterbutton_hold_timer = Button.hold_timer[i]; } return (min_shutterbutton_hold_timer > (Button.hold_timer[button_index]>>1)); } void ShutterButtonHandler(void) { uint8_t buttonState = SHT_NOT_PRESSED; uint8_t button = XdrvMailbox.payload; uint8_t press_index; uint32_t button_index = XdrvMailbox.index; uint8_t shutter_index = Settings.shutter_button[button_index] & 0x03; uint16_t loops_per_second = 1000 / Settings.button_debounce; // ButtonDebounce (50) if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) { if (Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action buttonState = SHT_PRESSED_MULTI; press_index = 1; } else { if ((Shutter.direction[shutter_index]) && (Button.press_counter[button_index]==0)) { buttonState = SHT_PRESSED_IMMEDIATE; press_index = 1; Button.press_counter[button_index] = 99; // Remember to discard further action for press & hold within button timings } else { Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1; Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window } } blinks = 201; } if (NOT_PRESSED == button) { Button.hold_timer[button_index] = 0; } else { Button.hold_timer[button_index]++; if (!Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action if (Settings.param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold if (Button.hold_timer[button_index] > loops_per_second * Settings.param[P_HOLD_IGNORE] / 10) { Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger Button.press_counter[button_index] = 0; // Discard button press to disable functionality } } if ((Button.press_counter[button_index]<99) && (Button.hold_timer[button_index] == loops_per_second * Settings.param[P_HOLD_TIME] / 10)) { // press still valid && SetOption32 (40) - Button hold // check for simultaneous shutter button hold if (ShutterButtonIsSimultaneousHold(button_index, shutter_index)) { // simultaneous shutter button hold detected for (uint32_t i = 0; i < MAX_KEYS; i++) if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index)) Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings press_index = 0; buttonState = SHT_PRESSED_HOLD_SIMULTANEOUS; } if (Button.press_counter[button_index]<99) { press_index = 0; buttonState = SHT_PRESSED_HOLD; } Button.press_counter[button_index] = 0; } if ((Button.press_counter[button_index]==0) && (Button.hold_timer[button_index] == loops_per_second * IMMINENT_RESET_FACTOR * Settings.param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer // check for simultaneous shutter button extend hold if (ShutterButtonIsSimultaneousHold(button_index, shutter_index)) { // simultaneous shutter button extend hold detected press_index = 0; buttonState = SHT_PRESSED_EXT_HOLD_SIMULTANEOUS; } } } } if (!Settings.flag.button_single) { // SetOption13 (0) - Allow multi-press if (Button.window_timer[button_index]) { Button.window_timer[button_index]--; } else { if (!restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0)) { if (Button.press_counter[button_index]<99) { // check for simultaneous shutter button press uint32 min_shutterbutton_press_counter = -1; for (uint32_t i = 0; i < MAX_KEYS; i++) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Settings.shutter_button[i] %ld, shutter_index %d, Button.press_counter[i] %d, min_shutterbutton_press_counter %d, i %d"), Settings.shutter_button[i], shutter_index, Button.press_counter[i] , min_shutterbutton_press_counter, i); if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (i != button_index) && (Button.press_counter[i] < min_shutterbutton_press_counter)) { min_shutterbutton_press_counter = Button.press_counter[i]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: min_shutterbutton_press_counter %d"), min_shutterbutton_press_counter); } } if (min_shutterbutton_press_counter == Button.press_counter[button_index]) { // simultaneous shutter button press detected AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: simultanous presss deteced")); press_index = Button.press_counter[button_index]; for (uint32_t i = 0; i < MAX_KEYS; i++) if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) != shutter_index)) Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings buttonState = SHT_PRESSED_MULTI_SIMULTANEOUS; } if ((buttonState != SHT_PRESSED_MULTI_SIMULTANEOUS) && (Button.press_counter[button_index]<99)) { // no simultaneous shutter button press >3 detected press_index = Button.press_counter[button_index]; buttonState = SHT_PRESSED_MULTI; } } Button.press_counter[button_index] = 0; } } } if (buttonState != SHT_NOT_PRESSED) { if (buttonState == SHT_PRESSED_MULTI_SIMULTANEOUS) { if ((press_index>=5) && (press_index<=7) && (!Settings.flag.button_restrict)) { // 5x..7x && no SetOption1 (0) // simultaneous shutter button press 5x, 6x, 7x detected char scmnd[20]; GetTextIndexed(scmnd, sizeof(scmnd), press_index -3, kCommands); ExecuteCommand(scmnd, SRC_BUTTON); return; } } else if (buttonState == SHT_PRESSED_EXT_HOLD_SIMULTANEOUS) { if (!Settings.flag.button_restrict) { // no SetOption1 (0) char scmnd[20]; snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1")); ExecuteCommand(scmnd, SRC_BUTTON); return; } } else if (buttonState <= SHT_PRESSED_IMMEDIATE) { if (Settings.shutter_startrelay[shutter_index] && Settings.shutter_startrelay[shutter_index] <9) { uint8_t pos_press_index = (buttonState == SHT_PRESSED_HOLD) ? 3 : (press_index-1); if (pos_press_index>3) pos_press_index=3; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: shutter %d, button %d = %d (single=1, double=2, tripple=3, hold=4)"), shutter_index+1, button_index+1, pos_press_index+1); XdrvMailbox.index = shutter_index +1; last_source = SRC_BUTTON; XdrvMailbox.data_len = 0; char databuf[1] = ""; XdrvMailbox.data = databuf; XdrvMailbox.command = NULL; if (buttonState == SHT_PRESSED_IMMEDIATE) { XdrvMailbox.payload = XdrvMailbox.index; CmndShutterStop(); } else { uint8_t position = (Settings.shutter_button[button_index]>>(6*pos_press_index + 2)) & 0x03f; if (position) { if (Shutter.direction[shutter_index]) { XdrvMailbox.payload = XdrvMailbox.index; CmndShutterStop(); } else { XdrvMailbox.payload = position = (position-1)<<1; CmndShutterPosition(); if (Settings.shutter_button[button_index] & ((0x01<<26)< 0) && (XdrvMailbox.index <= shutters_present)) { if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) { if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) { XdrvMailbox.index = XdrvMailbox.payload; } uint32_t i = XdrvMailbox.index -1; if (Shutter.direction[i] != 0) { AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Stop moving %d: dir: %d"), XdrvMailbox.index, Shutter.direction[i]); // set stop position 10 steps ahead (0.5sec to allow normal stop) int32_t temp_realpos = Shutter.start_position[i] + ( (Shutter.time[i]+10) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i])); XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, i); //XdrvMailbox.payload = Settings.shuttercoeff[2][i] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][i] : (temp_realpos-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i]; last_source = SRC_WEBGUI; CmndShutterPosition(); } else { if (XdrvMailbox.command) ResponseCmndDone(); } } else { if (XdrvMailbox.command) ResponseCmndIdxChar("Locked"); } } } void CmndShutterPosition(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) { uint32_t index = XdrvMailbox.index-1; //limit the payload AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Pos. in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, last_source ); // value 0 with data_len > 0 can mean Open // special handling fo UP,DOWN,TOGGLE,STOP command comming with payload -99 if ((XdrvMailbox.data_len > 1) && (XdrvMailbox.payload <= 0)) { //UpperCase(XdrvMailbox.data, XdrvMailbox.data); if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_UP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_OPEN) || ((Shutter.direction[index]==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEUP))) { CmndShutterOpen(); return; } if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_DOWN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_CLOSE) || ((Shutter.direction[index]==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDOWN))) { CmndShutterClose(); return; } if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOP) || ((Shutter.direction[index]) && (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEUP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDOWN)))) { XdrvMailbox.payload = -99; CmndShutterStop(); return; } } int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? (XdrvMailbox.payload == -99 ? ShutterRealToPercentPosition(Shutter.real_position[index], index) : 0) : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload); // webgui still send also on inverted shutter the native position. target_pos_percent = ((Settings.shutter_options[index] & 1) && (SRC_WEBGUI != last_source)) ? 100 - target_pos_percent : target_pos_percent; if (XdrvMailbox.payload != -99) { //target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent; Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index); //Shutter.accelerator[index] = Shutter.max_pwm_frequency / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1); //Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent); } if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter.target_position[index] - Shutter.real_position[index] ) / Shutter.close_velocity[index] > 2) { if (Settings.shutter_options[index] & 4) { if (0 == target_pos_percent) Shutter.target_position[index] -= 1 * 2000; if (100 == target_pos_percent) Shutter.target_position[index] += 1 * 2000; } int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1; if (Shutter.direction[index] == -new_shutterdirection) { // direction need to be changed. on momentary switches first stop the Shutter if (SHT_PULSE_OPEN__PULSE_CLOSE == Shutter.mode) { // code for momentary shutters only small switch on to stop Shutter ExecuteCommandPower(Settings.shutter_startrelay[index] + ((new_shutterdirection == 1) ? 0 : 1), 1, SRC_SHUTTER); delay(100); } else { if (SHT_OFF_OPEN__OFF_CLOSE == Shutter.mode) { ExecuteCommandPower(Settings.shutter_startrelay[index] + ((new_shutterdirection == 1) ? 1 : 0), 0, SRC_SHUTTER); ShutterWaitForMotorStop(index); } } } if (Shutter.direction[index] != new_shutterdirection) { if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) { //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay5 5s, xdrv %d"), XdrvMailbox.payload); ShutterWaitForMotorStop(index); ExecuteCommandPower(Settings.shutter_startrelay[index], 0, SRC_SHUTTER); ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]); if (Shutter.skip_relay_change == 0) { // Code for shutters with circuit safe configuration, switch the direction Relay ExecuteCommandPower(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER); // power on ExecuteCommandPower(Settings.shutter_startrelay[index], 1, SRC_SHUTTER); } } else { // now start the motor for the right direction, work for momentary and normal shutters. AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start in dir %d"), Shutter.direction[index]); ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]); if (Shutter.skip_relay_change == 0) { ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER); } //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay6 5s, xdrv %d"), XdrvMailbox.payload); } Shutter.switched_relay = 0; } } else { target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index); ShutterReportPosition(true); } XdrvMailbox.index = index +1; // Fix random index for ShutterClose if (XdrvMailbox.command) ResponseCmndIdxNumber((Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent); } else { ShutterReportPosition(true); if (XdrvMailbox.command) ResponseCmndIdxChar("Locked"); } } } void CmndShutterOpenTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterCloseTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterMotorDelay(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.data_len > 0) { Settings.shutter_motordelay[XdrvMailbox.index -1] = (uint16_t)(steps_per_second * CharToFloat(XdrvMailbox.data)); ShutterInit(); } char time_chr[10]; dtostrfd((float)(Settings.shutter_motordelay[XdrvMailbox.index -1]) / steps_per_second, 2, time_chr); ResponseCmndIdxChar(time_chr); } } void CmndShutterRelay(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) { Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; if (XdrvMailbox.payload > 0) { Shutter.mask |= 3 << (XdrvMailbox.payload - 1); } else { Shutter.mask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1); } Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload; ShutterInit(); // if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work } ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]); } } void CmndShutterButton(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) { uint32_t setting = 0; // (setting>>31)&(0x01) : enabled // (setting>>30)&(0x01) : mqtt broadcast to all index // (setting>>29)&(0x01) : mqtt broadcast hold // (setting>>28)&(0x01) : mqtt broadcast tripple press // (setting>>27)&(0x01) : mqtt broadcast double press // (setting>>26)&(0x01) : mqtt broadcast single press // (setting>>20)&(0x3f) : shutter_position hold; 0 disabled, 1..101 == 0..100% // (setting>>14)&(0x3f) : shutter_position tripple press 0 disabled, 1..101 == 0..100% // (setting>> 8)&(0x3f) : shutter_position double press 0 disabled, 1..101 == 0..100% // (setting>> 2)&(0x3f) : shutter_position single press 0 disabled, 1..101 == 0..100% // (setting>> 0)&(0x03) : shutter_index if (XdrvMailbox.data_len > 0) { uint32_t i = 0; uint32_t button_index = 0; bool done = false; bool isShortCommand = false; char *str_ptr; char data_copy[strlen(XdrvMailbox.data) +1]; strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it. // Loop through the data string, splitting on ' ' seperators. for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < (1+4+4+1); str = strtok_r(nullptr, " ", &str_ptr), i++) { int field; if (str[0] == '-') { field = -1; } else { field = atoi(str); } switch (i) { case 0: if ((field >= -1) && (field<=4)) { button_index = (field<=0)?(-1):field; done = (button_index==-1); } else done = true; break; case 1: if (!strcmp_P(str, PSTR("up"))) { setting |= (((100>>1)+1)<<2) | (((50>>1)+1)<<8) | (((75>>1)+1)<<14) | (((100>>1)+1)<<20); isShortCommand = true; break; } else if (!strcmp_P(str, PSTR("down"))) { setting |= (((0>>1)+1)<<2) | (((50>>1)+1)<<8) | (((25>>1)+1)<<14) | (((0>>1)+1)<<20); isShortCommand = true; break; } else if (!strcmp_P(str, PSTR("updown"))) { setting |= (((100>>1)+1)<<2) | (((0>>1)+1)<<8) | (((50>>1)+1)<<14); isShortCommand = true; break; } case 2: if (isShortCommand) { if ((field==1) && (setting & (0x3F<<(2+6*3)))) // if short command up or down then also enable MQTT broadcast setting |= (0x3<<29); done = true; break; } case 3: case 4: if ((field >= -1) && (field<=100)) setting |= (((field>>1)+1)<<(i*6 + (2-6))); break; case 5: case 6: case 7: case 8: case 9: if (field==1) setting |= (1<<(i + (26-5))); break; } if (done) break; } if (button_index) { if (button_index==-1) { // remove all buttons for this shutter for (uint32_t i=0 ; i < MAX_KEYS ; i++) if ((Settings.shutter_button[i]&0x3) == (XdrvMailbox.index-1)) Settings.shutter_button[i] = 0; } else { if (setting) { // anything was set setting |= (1<<31); setting |= (XdrvMailbox.index-1) & 0x3; } Settings.shutter_button[button_index-1] = setting; } } } char setting_chr[30*MAX_KEYS] = "-", *setting_chr_ptr = setting_chr; for (uint32_t i=0 ; i < MAX_KEYS ; i++) { setting = Settings.shutter_button[i]; if ((setting&(1<<31)) && ((setting&0x3) == (XdrvMailbox.index-1))) { if (*setting_chr_ptr == 0) setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("|")); setting_chr_ptr += snprintf_P(setting_chr_ptr, 2, PSTR("%d"), i+1); for (uint32_t j=0 ; j < 4 ; j++) { int8_t pos = (((setting>> (2+6*j))&(0x3f))-1)<<1; if (pos>=0) setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR(" %d"), pos); else setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -")); } for (uint32_t j=0 ; j < 5 ; j++) { bool mqtt = ((setting>>(26+j))&(0x01)!=0); if (mqtt) setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" 1")); else setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -")); } } } ResponseCmndIdxChar(setting_chr); } } void CmndShutterSetHalfway(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { Settings.shutter_set50percent[XdrvMailbox.index -1] = (Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - XdrvMailbox.payload : XdrvMailbox.payload; ShutterInit(); } ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - Settings.shutter_set50percent[XdrvMailbox.index -1] : Settings.shutter_set50percent[XdrvMailbox.index -1]); } } void CmndShutterFrequency(void) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) { Shutter.max_pwm_frequency = XdrvMailbox.payload; if (shutters_present < 4) { Settings.shuttercoeff[4][3] = Shutter.max_pwm_frequency; } ShutterInit(); ResponseCmndNumber(XdrvMailbox.payload); // ???? } else { ResponseCmndNumber(Shutter.max_pwm_frequency); } } void CmndShutterSetClose(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { Shutter.real_position[XdrvMailbox.index -1] = 0; ShutterStartInit(XdrvMailbox.index -1, 0, 0); Settings.shutter_position[XdrvMailbox.index -1] = 0; ResponseCmndIdxChar(D_CONFIGURATION_RESET); } } void CmndShutterInvert(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.payload == 0) { Settings.shutter_options[XdrvMailbox.index -1] &= ~(1); } else if (XdrvMailbox.payload == 1) { Settings.shutter_options[XdrvMailbox.index -1] |= (1); } ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 1 : 0); } } void CmndShutterCalibration(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.data_len > 0) { uint32_t i = 0; char *str_ptr; char data_copy[strlen(XdrvMailbox.data) +1]; strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it. // Loop through the data string, splitting on ' ' seperators. for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) { int field = atoi(str); // The fields in a data string can only range from 1-30000. // and following value must be higher than previous one if ((field <= 0) || (field > 30000) || ( (i>0) && (field <= messwerte[i-1]) ) ) { break; } messwerte[i] = field; } for (i = 0; i < 5; i++) { Settings.shuttercoeff[i][XdrvMailbox.index -1] = SHT_DIV_ROUND((uint32_t)messwerte[i] * 1000, messwerte[4]); AddLog_P2(LOG_LEVEL_INFO, PSTR("Settings.shuttercoeff: %d, i: %d, value: %d, messwert %d"), i,XdrvMailbox.index -1,Settings.shuttercoeff[i][XdrvMailbox.index -1], messwerte[i]); } ShutterInit(); ResponseCmndIdxChar(XdrvMailbox.data); } else { char setting_chr[30] = "0"; snprintf_P(setting_chr, sizeof(setting_chr), PSTR("%d %d %d %d %d"), Settings.shuttercoeff[0][XdrvMailbox.index -1], Settings.shuttercoeff[1][XdrvMailbox.index -1], Settings.shuttercoeff[2][XdrvMailbox.index -1], Settings.shuttercoeff[3][XdrvMailbox.index -1], Settings.shuttercoeff[4][XdrvMailbox.index -1]); ResponseCmndIdxChar(setting_chr); } } } void CmndShutterLock(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.payload == 0) { Settings.shutter_options[XdrvMailbox.index -1] &= ~(2); } else if (XdrvMailbox.payload == 1) { Settings.shutter_options[XdrvMailbox.index -1] |= (2); } ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 2) ? 1 : 0); } } void CmndShutterEnableEndStopTime(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) { if (XdrvMailbox.payload == 0) { Settings.shutter_options[XdrvMailbox.index -1] &= ~(4); } else if (XdrvMailbox.payload == 1) { Settings.shutter_options[XdrvMailbox.index -1] |= (4); } ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 4) ? 1 : 0); } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv27(uint8_t function) { bool result = false; if (Settings.flag3.shutter_mode) { // SetOption80 - Enable shutter support switch (function) { case FUNC_PRE_INIT: ShutterInit(); break; case FUNC_EVERY_50_MSECOND: ShutterUpdatePosition(); break; case FUNC_EVERY_SECOND: //case FUNC_EVERY_250_MSECOND: ShutterReportPosition(false); break; case FUNC_COMMAND: result = DecodeCommand(kShutterCommands, ShutterCommand); break; case FUNC_JSON_APPEND: for (uint8_t i = 0; i < shutters_present; i++) { uint8_t position = (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]; ResponseAppend_P(","); ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter.direction[i]); #ifdef USE_DOMOTICZ if ((0 == tele_period) && (0 == i)) { DomoticzSensor(DZ_SHUTTER, position); } #endif // USE_DOMOTICZ } break; case FUNC_SET_POWER: char stemp1[10]; // extract the number of the relay that was switched and save for later in Update Position. Shutter.switched_relay = XdrvMailbox.index ^ Shutter.old_power; AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.switched_relay,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource)); ShutterRelayChanged(); Shutter.old_power = XdrvMailbox.index; break; case FUNC_SET_DEVICE_POWER: if (Shutter.skip_relay_change ) { uint8_t i; for (i = 0; i < devices_present; i++) { if (Shutter.switched_relay &1) { break; } Shutter.switched_relay >>= 1; } //AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: skip relay change: %d"),i+1); result = true; Shutter.skip_relay_change = 0; AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"),i); ExecuteCommandPower(i+1, 0, SRC_SHUTTER); } break; case FUNC_BUTTON_PRESSED: if (Settings.shutter_button[XdrvMailbox.index] & (1<<31)) { ShutterButtonHandler(); result = true; } break; } } return result; } #endif //USE_SHUTTER