/*
xdrv_02_mqtt.ino - mqtt support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define XDRV_02 2
// #define DEBUG_DUMP_TLS // allow dumping of TLS Flash keys
#ifdef USE_MQTT_TLS
#include "WiFiClientSecureLightBearSSL.h"
BearSSL::WiFiClientSecure_light *tlsClient;
#else
WiFiClient EspClient; // Wifi Client
#endif
const char kMqttCommands[] PROGMEM = "|" // No prefix
#if defined(USE_MQTT_TLS) && !defined(USE_MQTT_TLS_CA_CERT)
D_CMND_MQTTFINGERPRINT "|"
#endif
#if !defined(USE_MQTT_TLS) || !defined(USE_MQTT_AWS_IOT) // user and password are disabled with AWS IoT
D_CMND_MQTTUSER "|" D_CMND_MQTTPASSWORD "|"
#endif
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
D_CMND_TLSKEY "|"
#endif
D_CMND_MQTTHOST "|" D_CMND_MQTTPORT "|" D_CMND_MQTTRETRY "|" D_CMND_STATETEXT "|" D_CMND_MQTTCLIENT "|"
D_CMND_FULLTOPIC "|" D_CMND_PREFIX "|" D_CMND_GROUPTOPIC "|" D_CMND_TOPIC "|" D_CMND_PUBLISH "|"
D_CMND_BUTTONTOPIC "|" D_CMND_SWITCHTOPIC "|" D_CMND_BUTTONRETAIN "|" D_CMND_SWITCHRETAIN "|" D_CMND_POWERRETAIN "|" D_CMND_SENSORRETAIN ;
void (* const MqttCommand[])(void) PROGMEM = {
#if defined(USE_MQTT_TLS) && !defined(USE_MQTT_TLS_CA_CERT)
&CmndMqttFingerprint,
#endif
#if !defined(USE_MQTT_TLS) || !defined(USE_MQTT_AWS_IOT) // user and password are disabled with AWS IoT
&CmndMqttUser, &CmndMqttPassword,
#endif
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
&CmndTlsKey,
#endif
&CmndMqttHost, &CmndMqttPort, &CmndMqttRetry, &CmndStateText, &CmndMqttClient,
&CmndFullTopic, &CmndPrefix, &CmndGroupTopic, &CmndTopic, &CmndPublish,
&CmndButtonTopic, &CmndSwitchTopic, &CmndButtonRetain, &CmndSwitchRetain, &CmndPowerRetain, &CmndSensorRetain };
struct MQTT {
uint16_t connect_count = 0; // MQTT re-connect count
uint16_t retry_counter = 1; // MQTT connection retry counter
uint8_t initial_connection_state = 2; // MQTT connection messages state
bool connected = false; // MQTT virtual connection status
bool allowed = false; // MQTT enabled and parameters valid
} Mqtt;
#ifdef USE_MQTT_TLS
#ifdef USE_MQTT_AWS_IOT
#include
const br_ec_private_key *AWS_IoT_Private_Key = nullptr;
const br_x509_certificate *AWS_IoT_Client_Certificate = nullptr;
class tls_entry_t {
public:
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
uint16_t start; // start offset
uint16_t len; // len of object
}; // 8 bytes
const static uint32_t TLS_NAME_SKEY = 0x2079656B; // 'key ' little endian
const static uint32_t TLS_NAME_CRT = 0x20747263; // 'crt ' little endian
class tls_dir_t {
public:
tls_entry_t entry[4]; // 4 entries max, only 4 used today, for future use
}; // 4*8 = 64 bytes
tls_dir_t tls_dir; // memory copy of tls_dir from flash
#endif // USE_MQTT_AWS_IOT
// A typical AWS IoT endpoint is 50 characters long, it does not fit
// in MqttHost field (32 chars). We need to concatenate both MqttUser and MqttHost
char AWS_endpoint[65]; // aWS IOT endpoint, concatenation of user and host
// check whether the fingerprint is filled with a single value
// Filled with 0x00 = accept any fingerprint and learn it for next time
// Filled with 0xFF = accept any fingerpring forever
bool is_fingerprint_mono_value(uint8_t finger[20], uint8_t value) {
for (uint32_t i = 0; i<20; i++) {
if (finger[i] != value) {
return false;
}
}
return true;
}
#ifdef USE_MQTT_AWS_IOT
void setLongMqttHost(const char *mqtt_host) {
if (strlen(mqtt_host) <= sizeof(Settings.mqtt_host)) {
strlcpy(Settings.mqtt_host, mqtt_host, sizeof(Settings.mqtt_host));
Settings.mqtt_user[0] = 0;
} else {
// need to split in mqtt_user first then mqtt_host
strlcpy(Settings.mqtt_user, mqtt_host, sizeof(Settings.mqtt_user));
strlcpy(Settings.mqtt_host, &mqtt_host[sizeof(Settings.mqtt_user)-1], sizeof(Settings.mqtt_host));
}
strlcpy(AWS_endpoint, mqtt_host, sizeof(AWS_endpoint));
}
#endif // USE_MQTT_AWS_IOT
#endif // USE_MQTT_TLS
void MakeValidMqtt(uint32_t option, char* str)
{
// option 0 = replace by underscore
// option 1 = delete character
uint32_t i = 0;
while (str[i] > 0) {
// if ((str[i] == '/') || (str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if ((str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if (option) {
uint32_t j = i;
while (str[j] > 0) {
str[j] = str[j +1];
j++;
}
i--;
} else {
str[i] = '_';
}
}
i++;
}
}
#ifdef USE_DISCOVERY
#ifdef MQTT_HOST_DISCOVERY
void MqttDiscoverServer(void)
{
if (!Wifi.mdns_begun) { return; }
int n = MDNS.queryService("mqtt", "tcp"); // Search for mqtt service
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MDNS D_QUERY_DONE " %d"), n);
if (n > 0) {
uint32_t i = 0; // If the hostname isn't set, use the first record found.
#ifdef MDNS_HOSTNAME
for (i = n; i > 0; i--) { // Search from last to first and use first if not found
if (!strcmp(MDNS.hostname(i).c_str(), MDNS_HOSTNAME)) {
break; // Stop at matching record
}
}
#endif // MDNS_HOSTNAME
snprintf_P(Settings.mqtt_host, sizeof(Settings.mqtt_host), MDNS.IP(i).toString().c_str());
Settings.mqtt_port = MDNS.port(i);
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MDNS D_MQTT_SERVICE_FOUND " %s, " D_IP_ADDRESS " %s, " D_PORT " %d"), MDNS.hostname(i).c_str(), Settings.mqtt_host, Settings.mqtt_port);
}
}
#endif // MQTT_HOST_DISCOVERY
#endif // USE_DISCOVERY
/*********************************************************************************************\
* MQTT driver specific code need to provide the following functions:
*
* bool MqttIsConnected()
* void MqttDisconnect()
* void MqttSubscribeLib(char *topic)
* bool MqttPublishLib(const char* topic, bool retained)
\*********************************************************************************************/
#include
// Max message size calculated by PubSubClient is (MQTT_MAX_PACKET_SIZE < 5 + 2 + strlen(topic) + plength)
#if (MQTT_MAX_PACKET_SIZE -TOPSZ -7) < MIN_MESSZ // If the max message size is too small, throw an error at compile time. See PubSubClient.cpp line 359
#error "MQTT_MAX_PACKET_SIZE is too small in libraries/PubSubClient/src/PubSubClient.h, increase it to at least 1000"
#endif
#ifdef USE_MQTT_TLS
PubSubClient MqttClient;
#else
PubSubClient MqttClient(EspClient);
#endif
void MqttInit(void)
{
#ifdef USE_MQTT_TLS
tlsClient = new BearSSL::WiFiClientSecure_light(1024,1024);
#ifdef USE_MQTT_AWS_IOT
snprintf_P(AWS_endpoint, sizeof(AWS_endpoint), PSTR("%s%s"), Settings.mqtt_user, Settings.mqtt_host);
loadTlsDir(); // load key and certificate data from Flash
tlsClient->setClientECCert(AWS_IoT_Client_Certificate,
AWS_IoT_Private_Key,
0xFFFF /* all usages, don't care */, 0);
#endif
#ifdef USE_MQTT_TLS_CA_CERT
#ifdef USE_MQTT_AWS_IOT
tlsClient->setTrustAnchor(&AmazonRootCA1_TA);
#else
tlsClient->setTrustAnchor(&LetsEncryptX3CrossSigned_TA);
#endif // USE_MQTT_AWS_IOT
#endif // USE_MQTT_TLS_CA_CERT
MqttClient.setClient(*tlsClient);
#endif // USE_MQTT_TLS
}
bool MqttIsConnected(void)
{
return MqttClient.connected();
}
void MqttDisconnect(void)
{
MqttClient.disconnect();
}
void MqttSubscribeLib(const char *topic)
{
MqttClient.subscribe(topic);
MqttClient.loop(); // Solve LmacRxBlk:1 messages
}
void MqttUnsubscribeLib(const char *topic)
{
MqttClient.unsubscribe(topic);
MqttClient.loop(); // Solve LmacRxBlk:1 messages
}
bool MqttPublishLib(const char* topic, bool retained)
{
bool result = MqttClient.publish(topic, mqtt_data, retained);
yield(); // #3313
return result;
}
void MqttDataHandler(char* topic, uint8_t* data, unsigned int data_len)
{
#ifdef USE_DEBUG_DRIVER
ShowFreeMem(PSTR("MqttDataHandler"));
#endif
// Do not allow more data than would be feasable within stack space
if (data_len >= MQTT_MAX_PACKET_SIZE) { return; }
// Do not execute multiple times if Prefix1 equals Prefix2
if (!strcmp(Settings.mqtt_prefix[0], Settings.mqtt_prefix[1])) {
char *str = strstr(topic, Settings.mqtt_prefix[0]);
if ((str == topic) && mqtt_cmnd_publish) {
if (mqtt_cmnd_publish > 3) {
mqtt_cmnd_publish -= 3;
} else {
mqtt_cmnd_publish = 0;
}
return;
}
}
data[data_len] = 0;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_MQTT D_RECEIVED_TOPIC " %s, " D_DATA_SIZE " %d, " D_DATA " %s"), topic, data_len, data);
// if (LOG_LEVEL_DEBUG_MORE <= seriallog_level) { Serial.println(dataBuf); }
// MQTT pre-processing
if (XdrvMqttData(topic, strlen(topic), (char*)data, data_len)) { return; }
ShowSource(SRC_MQTT);
CommandHandler(topic, data, data_len);
}
/*********************************************************************************************/
void MqttRetryCounter(uint8_t value)
{
Mqtt.retry_counter = value;
}
void MqttSubscribe(const char *topic)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_MQTT D_SUBSCRIBE_TO " %s"), topic);
MqttSubscribeLib(topic);
}
void MqttUnsubscribe(const char *topic)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_MQTT D_UNSUBSCRIBE_FROM " %s"), topic);
MqttUnsubscribeLib(topic);
}
void MqttPublishDirect(const char* topic, bool retained)
{
char sretained[CMDSZ];
char slog_type[10];
#ifdef USE_DEBUG_DRIVER
ShowFreeMem(PSTR("MqttPublishDirect"));
#endif
sretained[0] = '\0';
snprintf_P(slog_type, sizeof(slog_type), PSTR(D_LOG_RESULT));
if (Settings.flag.mqtt_enabled) {
if (MqttIsConnected()) {
if (MqttPublishLib(topic, retained)) {
snprintf_P(slog_type, sizeof(slog_type), PSTR(D_LOG_MQTT));
if (retained) {
snprintf_P(sretained, sizeof(sretained), PSTR(" (" D_RETAINED ")"));
}
}
}
}
snprintf_P(log_data, sizeof(log_data), PSTR("%s%s = %s"), slog_type, (Settings.flag.mqtt_enabled) ? topic : strrchr(topic,'/')+1, mqtt_data);
if (strlen(log_data) >= (sizeof(log_data) - strlen(sretained) -1)) {
log_data[sizeof(log_data) - strlen(sretained) -5] = '\0';
snprintf_P(log_data, sizeof(log_data), PSTR("%s ..."), log_data);
}
snprintf_P(log_data, sizeof(log_data), PSTR("%s%s"), log_data, sretained);
AddLog(LOG_LEVEL_INFO);
if (Settings.ledstate &0x04) {
blinks++;
}
}
void MqttPublish(const char* topic, bool retained)
{
char *me;
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
if (retained) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_MQTT, PSTR("Retained are not supported by AWS IoT, using retained = false."));
}
retained = false; // AWS IoT does not support retained, it will disconnect if received
#endif
if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1])) {
me = strstr(topic,Settings.mqtt_prefix[0]);
if (me == topic) {
mqtt_cmnd_publish += 3;
}
}
MqttPublishDirect(topic, retained);
}
void MqttPublish(const char* topic)
{
MqttPublish(topic, false);
}
void MqttPublishPrefixTopic_P(uint32_t prefix, const char* subtopic, bool retained)
{
/* prefix 0 = cmnd using subtopic
* prefix 1 = stat using subtopic
* prefix 2 = tele using subtopic
* prefix 4 = cmnd using subtopic or RESULT
* prefix 5 = stat using subtopic or RESULT
* prefix 6 = tele using subtopic or RESULT
*/
char romram[33];
char stopic[TOPSZ];
snprintf_P(romram, sizeof(romram), ((prefix > 3) && !Settings.flag.mqtt_response) ? S_RSLT_RESULT : subtopic);
for (uint32_t i = 0; i < strlen(romram); i++) {
romram[i] = toupper(romram[i]);
}
prefix &= 3;
GetTopic_P(stopic, prefix, mqtt_topic, romram);
MqttPublish(stopic, retained);
}
void MqttPublishPrefixTopic_P(uint32_t prefix, const char* subtopic)
{
MqttPublishPrefixTopic_P(prefix, subtopic, false);
}
void MqttPublishPowerState(uint32_t device)
{
char stopic[TOPSZ];
char scommand[33];
if ((device < 1) || (device > devices_present)) { device = 1; }
#ifdef USE_SONOFF_IFAN
if (IsModuleIfan() && (device > 1)) {
if (GetFanspeed() < MaxFanspeed()) { // 4 occurs when fanspeed is 3 and RC button 2 is pressed
#ifdef USE_DOMOTICZ
DomoticzUpdateFanState(); // RC Button feedback
#endif // USE_DOMOTICZ
snprintf_P(scommand, sizeof(scommand), PSTR(D_CMND_FANSPEED));
GetTopic_P(stopic, STAT, mqtt_topic, (Settings.flag.mqtt_response) ? scommand : S_RSLT_RESULT);
Response_P(S_JSON_COMMAND_NVALUE, scommand, GetFanspeed());
MqttPublish(stopic);
}
} else {
#endif // USE_SONOFF_IFAN
GetPowerDevice(scommand, device, sizeof(scommand), Settings.flag.device_index_enable);
GetTopic_P(stopic, STAT, mqtt_topic, (Settings.flag.mqtt_response) ? scommand : S_RSLT_RESULT);
Response_P(S_JSON_COMMAND_SVALUE, scommand, GetStateText(bitRead(power, device -1)));
MqttPublish(stopic);
GetTopic_P(stopic, STAT, mqtt_topic, scommand);
Response_P(GetStateText(bitRead(power, device -1)));
MqttPublish(stopic, Settings.flag.mqtt_power_retain);
#ifdef USE_SONOFF_IFAN
}
#endif // USE_SONOFF_IFAN
}
void MqttPublishAllPowerState()
{
for (uint32_t i = 1; i <= devices_present; i++) {
MqttPublishPowerState(i);
#ifdef USE_SONOFF_IFAN
if (IsModuleIfan()) { break; } // Report status of light relay only
#endif // USE_SONOFF_IFAN
}
}
void MqttPublishPowerBlinkState(uint32_t device)
{
char scommand[33];
if ((device < 1) || (device > devices_present)) {
device = 1;
}
Response_P(PSTR("{\"%s\":\"" D_JSON_BLINK " %s\"}"),
GetPowerDevice(scommand, device, sizeof(scommand), Settings.flag.device_index_enable), GetStateText(bitRead(blink_mask, device -1)));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, S_RSLT_POWER);
}
/*********************************************************************************************/
uint16_t MqttConnectCount()
{
return Mqtt.connect_count;
}
void MqttDisconnected(int state)
{
Mqtt.connected = false;
Mqtt.retry_counter = Settings.mqtt_retry;
MqttClient.disconnect();
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT D_CONNECT_FAILED_TO " %s:%d, rc %d. " D_RETRY_IN " %d " D_UNIT_SECOND), AWS_endpoint, Settings.mqtt_port, state, Mqtt.retry_counter);
#else
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT D_CONNECT_FAILED_TO " %s:%d, rc %d. " D_RETRY_IN " %d " D_UNIT_SECOND), Settings.mqtt_host, Settings.mqtt_port, state, Mqtt.retry_counter);
#endif
rules_flag.mqtt_disconnected = 1;
}
void MqttConnected(void)
{
char stopic[TOPSZ];
if (Mqtt.allowed) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_MQTT, PSTR(D_CONNECTED));
Mqtt.connected = true;
Mqtt.retry_counter = 0;
Mqtt.connect_count++;
GetTopic_P(stopic, TELE, mqtt_topic, S_LWT);
Response_P(PSTR(D_ONLINE));
MqttPublish(stopic, true);
// Satisfy iobroker (#299)
mqtt_data[0] = '\0';
MqttPublishPrefixTopic_P(CMND, S_RSLT_POWER);
GetTopic_P(stopic, CMND, mqtt_topic, PSTR("#"));
MqttSubscribe(stopic);
if (strstr_P(Settings.mqtt_fulltopic, MQTT_TOKEN_TOPIC) != nullptr) {
GetTopic_P(stopic, CMND, Settings.mqtt_grptopic, PSTR("#"));
MqttSubscribe(stopic);
GetFallbackTopic_P(stopic, CMND, PSTR("#"));
MqttSubscribe(stopic);
}
XdrvCall(FUNC_MQTT_SUBSCRIBE);
}
if (Mqtt.initial_connection_state) {
Response_P(PSTR("{\"" D_CMND_MODULE "\":\"%s\",\"" D_JSON_VERSION "\":\"%s%s\",\"" D_JSON_FALLBACKTOPIC "\":\"%s\",\"" D_CMND_GROUPTOPIC "\":\"%s\"}"),
ModuleName().c_str(), my_version, my_image, GetFallbackTopic_P(stopic, CMND, ""), Settings.mqtt_grptopic);
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_INFO "1"));
#ifdef USE_WEBSERVER
if (Settings.webserver) {
Response_P(PSTR("{\"" D_JSON_WEBSERVER_MODE "\":\"%s\",\"" D_CMND_HOSTNAME "\":\"%s\",\"" D_CMND_IPADDRESS "\":\"%s\"}"),
(2 == Settings.webserver) ? D_ADMIN : D_USER, my_hostname, WiFi.localIP().toString().c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_INFO "2"));
}
#endif // USE_WEBSERVER
Response_P(PSTR("{\"" D_JSON_RESTARTREASON "\":\"%s\"}"), (GetResetReason() == "Exception") ? ESP.getResetInfo().c_str() : GetResetReason().c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_INFO "3"));
MqttPublishAllPowerState();
if (Settings.tele_period) { tele_period = Settings.tele_period -9; } // Enable TelePeriod in 9 seconds
rules_flag.system_boot = 1;
XdrvCall(FUNC_MQTT_INIT);
}
Mqtt.initial_connection_state = 0;
global_state.mqtt_down = 0;
if (Settings.flag.mqtt_enabled) {
rules_flag.mqtt_connected = 1;
}
}
void MqttReconnect(void)
{
char stopic[TOPSZ];
Mqtt.allowed = Settings.flag.mqtt_enabled;
if (Mqtt.allowed) {
#ifdef USE_DISCOVERY
#ifdef MQTT_HOST_DISCOVERY
MqttDiscoverServer();
#endif // MQTT_HOST_DISCOVERY
#endif // USE_DISCOVERY
if (!strlen(Settings.mqtt_host) || !Settings.mqtt_port) {
Mqtt.allowed = false;
}
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
// don't enable MQTT for AWS IoT if Private Key or Certificate are not set
if (!AWS_IoT_Private_Key || !AWS_IoT_Client_Certificate) {
Mqtt.allowed = false;
}
#endif
}
if (!Mqtt.allowed) {
MqttConnected();
return;
}
#ifdef USE_EMULATION
UdpDisconnect();
#endif // USE_EMULATION
AddLog_P(LOG_LEVEL_INFO, S_LOG_MQTT, PSTR(D_ATTEMPTING_CONNECTION));
Mqtt.connected = false;
Mqtt.retry_counter = Settings.mqtt_retry;
global_state.mqtt_down = 1;
char *mqtt_user = nullptr;
char *mqtt_pwd = nullptr;
if (strlen(Settings.mqtt_user) > 0) mqtt_user = Settings.mqtt_user;
if (strlen(Settings.mqtt_pwd) > 0) mqtt_pwd = Settings.mqtt_pwd;
GetTopic_P(stopic, TELE, mqtt_topic, S_LWT);
Response_P(S_OFFLINE);
if (MqttClient.connected()) { MqttClient.disconnect(); }
#ifdef USE_MQTT_TLS
tlsClient->stop();
#else
EspClient = WiFiClient(); // Wifi Client reconnect issue 4497 (https://github.com/esp8266/Arduino/issues/4497)
MqttClient.setClient(EspClient);
#endif
if (2 == Mqtt.initial_connection_state) { // Executed once just after power on and wifi is connected
Mqtt.initial_connection_state = 1;
}
MqttClient.setCallback(MqttDataHandler);
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
// re-assign private keys in case it was updated in between
tlsClient->setClientECCert(AWS_IoT_Client_Certificate,
AWS_IoT_Private_Key,
0xFFFF /* all usages, don't care */, 0);
MqttClient.setServer(AWS_endpoint, Settings.mqtt_port);
#else
MqttClient.setServer(Settings.mqtt_host, Settings.mqtt_port);
#endif
uint32_t mqtt_connect_time = millis();
#if defined(USE_MQTT_TLS) && !defined(USE_MQTT_TLS_CA_CERT)
bool allow_all_fingerprints = false;
bool learn_fingerprint1 = is_fingerprint_mono_value(Settings.mqtt_fingerprint[0], 0x00);
bool learn_fingerprint2 = is_fingerprint_mono_value(Settings.mqtt_fingerprint[1], 0x00);
allow_all_fingerprints |= is_fingerprint_mono_value(Settings.mqtt_fingerprint[0], 0xff);
allow_all_fingerprints |= is_fingerprint_mono_value(Settings.mqtt_fingerprint[1], 0xff);
allow_all_fingerprints |= learn_fingerprint1;
allow_all_fingerprints |= learn_fingerprint2;
tlsClient->setPubKeyFingerprint(Settings.mqtt_fingerprint[0], Settings.mqtt_fingerprint[1], allow_all_fingerprints);
#endif
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT "AWS IoT endpoint: %s"), AWS_endpoint);
//if (MqttClient.connect(mqtt_client, nullptr, nullptr, nullptr, 0, false, nullptr)) {
if (MqttClient.connect(mqtt_client, nullptr, nullptr, stopic, 1, false, mqtt_data, MQTT_CLEAN_SESSION)) {
#else
if (MqttClient.connect(mqtt_client, mqtt_user, mqtt_pwd, stopic, 1, true, mqtt_data, MQTT_CLEAN_SESSION)) {
#endif
#ifdef USE_MQTT_TLS
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT "TLS connected in %d ms, max ThunkStack used %d"),
millis() - mqtt_connect_time, tlsClient->getMaxThunkStackUse());
if (!tlsClient->getMFLNStatus()) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_MQTT, PSTR("MFLN not supported by TLS server"));
}
#ifndef USE_MQTT_TLS_CA_CERT // don't bother with fingerprints if using CA validation
// create a printable version of the fingerprint received
char buf_fingerprint[64];
ToHex_P((unsigned char *)tlsClient->getRecvPubKeyFingerprint(), 20, buf_fingerprint, sizeof(buf_fingerprint), ' ');
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_MQTT "Server fingerprint: %s"), buf_fingerprint);
if (learn_fingerprint1 || learn_fingerprint2) {
// we potentially need to learn the fingerprint just seen
bool fingerprint_matched = false;
const uint8_t *recv_fingerprint = tlsClient->getRecvPubKeyFingerprint();
if (0 == memcmp(recv_fingerprint, Settings.mqtt_fingerprint[0], 20)) {
fingerprint_matched = true;
}
if (0 == memcmp(recv_fingerprint, Settings.mqtt_fingerprint[1], 20)) {
fingerprint_matched = true;
}
if (!fingerprint_matched) {
// we had no match, so we need to change all fingerprints ready to learn
if (learn_fingerprint1) {
memcpy(Settings.mqtt_fingerprint[0], recv_fingerprint, 20);
}
if (learn_fingerprint2) {
memcpy(Settings.mqtt_fingerprint[1], recv_fingerprint, 20);
}
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT "Fingerprint learned: %s"), buf_fingerprint);
SettingsSaveAll(); // save settings
}
}
#endif // !USE_MQTT_TLS_CA_CERT
#endif // USE_MQTT_TLS
MqttConnected();
} else {
#ifdef USE_MQTT_TLS
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT "TLS connection error: %d"), tlsClient->getLastError());
#endif
MqttDisconnected(MqttClient.state()); // status codes are documented here http://pubsubclient.knolleary.net/api.html#state
}
}
void MqttCheck(void)
{
if (Settings.flag.mqtt_enabled) {
if (!MqttIsConnected()) {
global_state.mqtt_down = 1;
if (!Mqtt.retry_counter) {
#ifdef USE_DISCOVERY
#ifdef MQTT_HOST_DISCOVERY
if (!strlen(Settings.mqtt_host) && !Wifi.mdns_begun) { return; }
#endif // MQTT_HOST_DISCOVERY
#endif // USE_DISCOVERY
MqttReconnect();
} else {
Mqtt.retry_counter--;
}
} else {
global_state.mqtt_down = 0;
}
} else {
global_state.mqtt_down = 0;
if (Mqtt.initial_connection_state) MqttReconnect();
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
#if defined(USE_MQTT_TLS) && !defined(USE_MQTT_TLS_CA_CERT)
void CmndMqttFingerprint(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
char fingerprint[60];
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(fingerprint))) {
strlcpy(fingerprint, (SC_CLEAR == Shortcut()) ? "" : (SC_DEFAULT == Shortcut()) ? (1 == XdrvMailbox.index) ? MQTT_FINGERPRINT1 : MQTT_FINGERPRINT2 : XdrvMailbox.data, sizeof(fingerprint));
char *p = fingerprint;
for (uint32_t i = 0; i < 20; i++) {
Settings.mqtt_fingerprint[XdrvMailbox.index -1][i] = strtol(p, &p, 16);
}
restart_flag = 2;
}
ResponseCmndIdxChar(ToHex_P((unsigned char *)Settings.mqtt_fingerprint[XdrvMailbox.index -1], 20, fingerprint, sizeof(fingerprint), ' '));
}
}
#endif
#if !defined(USE_MQTT_TLS) || !defined(USE_MQTT_AWS_IOT) // user and password are disabled with AWS IoT
void CmndMqttUser(void)
{
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_user))) {
strlcpy(Settings.mqtt_user, (SC_CLEAR == Shortcut()) ? "" : (SC_DEFAULT == Shortcut()) ? MQTT_USER : XdrvMailbox.data, sizeof(Settings.mqtt_user));
restart_flag = 2;
}
ResponseCmndChar(Settings.mqtt_user);
}
void CmndMqttPassword(void)
{
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_pwd))) {
strlcpy(Settings.mqtt_pwd, (SC_CLEAR == Shortcut()) ? "" : (SC_DEFAULT == Shortcut()) ? MQTT_PASS : XdrvMailbox.data, sizeof(Settings.mqtt_pwd));
ResponseCmndChar(Settings.mqtt_pwd);
restart_flag = 2;
} else {
Response_P(S_JSON_COMMAND_ASTERISK, XdrvMailbox.command);
}
}
#endif // USE_MQTT_AWS_IOT
void CmndMqttHost(void)
{
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len <= sizeof(Settings.mqtt_host) + sizeof(Settings.mqtt_user) - 2)) {
setLongMqttHost((SC_CLEAR == Shortcut()) ? "" : (SC_DEFAULT == Shortcut()) ? MQTT_HOST : XdrvMailbox.data);
restart_flag = 2;
}
ResponseCmndChar(AWS_endpoint);
#else
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_host))) {
strlcpy(Settings.mqtt_host, (SC_CLEAR == Shortcut()) ? "" : (SC_DEFAULT == Shortcut()) ? MQTT_HOST : XdrvMailbox.data, sizeof(Settings.mqtt_host));
restart_flag = 2;
}
ResponseCmndChar(Settings.mqtt_host);
#endif
}
void CmndMqttPort(void)
{
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 65536)) {
Settings.mqtt_port = (1 == XdrvMailbox.payload) ? MQTT_PORT : XdrvMailbox.payload;
restart_flag = 2;
}
ResponseCmndNumber(Settings.mqtt_port);
}
void CmndMqttRetry(void)
{
if ((XdrvMailbox.payload >= MQTT_RETRY_SECS) && (XdrvMailbox.payload < 32001)) {
Settings.mqtt_retry = XdrvMailbox.payload;
Mqtt.retry_counter = Settings.mqtt_retry;
}
ResponseCmndNumber(Settings.mqtt_retry);
}
void CmndStateText(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 4)) {
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.state_text[0]))) {
for (uint32_t i = 0; i <= XdrvMailbox.data_len; i++) {
if (XdrvMailbox.data[i] == ' ') XdrvMailbox.data[i] = '_';
}
strlcpy(Settings.state_text[XdrvMailbox.index -1], XdrvMailbox.data, sizeof(Settings.state_text[0]));
}
ResponseCmndIdxChar(GetStateText(XdrvMailbox.index -1));
}
}
void CmndMqttClient(void)
{
if (!XdrvMailbox.grpflg && (XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_client))) {
strlcpy(Settings.mqtt_client, (SC_DEFAULT == Shortcut()) ? MQTT_CLIENT_ID : XdrvMailbox.data, sizeof(Settings.mqtt_client));
restart_flag = 2;
}
ResponseCmndChar(Settings.mqtt_client);
}
void CmndFullTopic(void)
{
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_fulltopic))) {
MakeValidMqtt(1, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data, mqtt_client)) { SetShortcutDefault(); }
char stemp1[TOPSZ];
strlcpy(stemp1, (SC_DEFAULT == Shortcut()) ? MQTT_FULLTOPIC : XdrvMailbox.data, sizeof(stemp1));
if (strcmp(stemp1, Settings.mqtt_fulltopic)) {
Response_P((Settings.flag.mqtt_offline) ? S_OFFLINE : "");
MqttPublishPrefixTopic_P(TELE, PSTR(D_LWT), true); // Offline or remove previous retained topic
strlcpy(Settings.mqtt_fulltopic, stemp1, sizeof(Settings.mqtt_fulltopic));
restart_flag = 2;
}
}
ResponseCmndChar(Settings.mqtt_fulltopic);
}
void CmndPrefix(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 3)) {
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_prefix[0]))) {
MakeValidMqtt(0, XdrvMailbox.data);
strlcpy(Settings.mqtt_prefix[XdrvMailbox.index -1], (SC_DEFAULT == Shortcut()) ? (1==XdrvMailbox.index)?SUB_PREFIX:(2==XdrvMailbox.index)?PUB_PREFIX:PUB_PREFIX2 : XdrvMailbox.data, sizeof(Settings.mqtt_prefix[0]));
// if (Settings.mqtt_prefix[XdrvMailbox.index -1][strlen(Settings.mqtt_prefix[XdrvMailbox.index -1])] == '/') Settings.mqtt_prefix[XdrvMailbox.index -1][strlen(Settings.mqtt_prefix[XdrvMailbox.index -1])] = 0;
restart_flag = 2;
}
ResponseCmndIdxChar(Settings.mqtt_prefix[XdrvMailbox.index -1]);
}
}
void CmndPublish(void)
{
if (XdrvMailbox.data_len > 0) {
char *mqtt_part = strtok(XdrvMailbox.data, " ");
if (mqtt_part) {
char stemp1[TOPSZ];
strlcpy(stemp1, mqtt_part, sizeof(stemp1));
mqtt_part = strtok(nullptr, " ");
if (mqtt_part) {
strlcpy(mqtt_data, mqtt_part, sizeof(mqtt_data));
} else {
mqtt_data[0] = '\0';
}
MqttPublishDirect(stemp1, (XdrvMailbox.index == 2));
// ResponseCmndDone();
mqtt_data[0] = '\0';
}
}
}
void CmndGroupTopic(void)
{
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_grptopic))) {
MakeValidMqtt(0, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data, mqtt_client)) { SetShortcutDefault(); }
strlcpy(Settings.mqtt_grptopic, (SC_DEFAULT == Shortcut()) ? MQTT_GRPTOPIC : XdrvMailbox.data, sizeof(Settings.mqtt_grptopic));
restart_flag = 2;
}
ResponseCmndChar(Settings.mqtt_grptopic);
}
void CmndTopic(void)
{
if (!XdrvMailbox.grpflg && (XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.mqtt_topic))) {
MakeValidMqtt(0, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data, mqtt_client)) { SetShortcutDefault(); }
char stemp1[TOPSZ];
strlcpy(stemp1, (SC_DEFAULT == Shortcut()) ? MQTT_TOPIC : XdrvMailbox.data, sizeof(stemp1));
if (strcmp(stemp1, Settings.mqtt_topic)) {
Response_P((Settings.flag.mqtt_offline) ? S_OFFLINE : "");
MqttPublishPrefixTopic_P(TELE, PSTR(D_LWT), true); // Offline or remove previous retained topic
strlcpy(Settings.mqtt_topic, stemp1, sizeof(Settings.mqtt_topic));
restart_flag = 2;
}
}
ResponseCmndChar(Settings.mqtt_topic);
}
void CmndButtonTopic(void)
{
if (!XdrvMailbox.grpflg && (XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.button_topic))) {
MakeValidMqtt(0, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data, mqtt_client)) { SetShortcutDefault(); }
switch (Shortcut()) {
case SC_CLEAR: strlcpy(Settings.button_topic, "", sizeof(Settings.button_topic)); break;
case SC_DEFAULT: strlcpy(Settings.button_topic, mqtt_topic, sizeof(Settings.button_topic)); break;
case SC_USER: strlcpy(Settings.button_topic, MQTT_BUTTON_TOPIC, sizeof(Settings.button_topic)); break;
default: strlcpy(Settings.button_topic, XdrvMailbox.data, sizeof(Settings.button_topic));
}
}
ResponseCmndChar(Settings.button_topic);
}
void CmndSwitchTopic(void)
{
if ((XdrvMailbox.data_len > 0) && (XdrvMailbox.data_len < sizeof(Settings.switch_topic))) {
MakeValidMqtt(0, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data, mqtt_client)) { SetShortcutDefault(); }
switch (Shortcut()) {
case SC_CLEAR: strlcpy(Settings.switch_topic, "", sizeof(Settings.switch_topic)); break;
case SC_DEFAULT: strlcpy(Settings.switch_topic, mqtt_topic, sizeof(Settings.switch_topic)); break;
case SC_USER: strlcpy(Settings.switch_topic, MQTT_SWITCH_TOPIC, sizeof(Settings.switch_topic)); break;
default: strlcpy(Settings.switch_topic, XdrvMailbox.data, sizeof(Settings.switch_topic));
}
}
ResponseCmndChar(Settings.switch_topic);
}
void CmndButtonRetain(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
if (!XdrvMailbox.payload) {
for (uint32_t i = 1; i <= MAX_KEYS; i++) {
SendKey(0, i, 9); // Clear MQTT retain in broker
}
}
Settings.flag.mqtt_button_retain = XdrvMailbox.payload;
}
ResponseCmndStateText(Settings.flag.mqtt_button_retain);
}
void CmndSwitchRetain(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
if (!XdrvMailbox.payload) {
for (uint32_t i = 1; i <= MAX_SWITCHES; i++) {
SendKey(1, i, 9); // Clear MQTT retain in broker
}
}
Settings.flag.mqtt_switch_retain = XdrvMailbox.payload;
}
ResponseCmndStateText(Settings.flag.mqtt_switch_retain);
}
void CmndPowerRetain(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
if (!XdrvMailbox.payload) {
char stemp1[TOPSZ];
char scommand[CMDSZ];
for (uint32_t i = 1; i <= devices_present; i++) { // Clear MQTT retain in broker
GetTopic_P(stemp1, STAT, mqtt_topic, GetPowerDevice(scommand, i, sizeof(scommand), Settings.flag.device_index_enable));
mqtt_data[0] = '\0';
MqttPublish(stemp1, Settings.flag.mqtt_power_retain);
}
}
Settings.flag.mqtt_power_retain = XdrvMailbox.payload;
}
ResponseCmndStateText(Settings.flag.mqtt_power_retain);
}
void CmndSensorRetain(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
if (!XdrvMailbox.payload) {
mqtt_data[0] = '\0';
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_ENERGY), Settings.flag.mqtt_sensor_retain);
}
Settings.flag.mqtt_sensor_retain = XdrvMailbox.payload;
}
ResponseCmndStateText(Settings.flag.mqtt_sensor_retain);
}
/*********************************************************************************************\
* TLS private key and certificate - store into Flash
\*********************************************************************************************/
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
const static uint16_t tls_spi_start_sector = SPIFFS_END + 4; // 0xXXFF
const static uint8_t* tls_spi_start = (uint8_t*) ((tls_spi_start_sector * SPI_FLASH_SEC_SIZE) + 0x40200000); // 0x40XFF000
const static size_t tls_spi_len = 0x1000; // 4kb blocs
const static size_t tls_block_offset = 0x0400;
const static size_t tls_block_len = 0x0400; // 1kb
const static size_t tls_obj_store_offset = tls_block_offset + sizeof(tls_dir_t);
inline void TlsEraseBuffer(uint8_t *buffer) {
memset(buffer + tls_block_offset, 0xFF, tls_block_len);
}
// static data structures for Private Key and Certificate, only the pointer
// to binary data will change to a region in SPI Flash
static br_ec_private_key EC = {
23,
nullptr, 0
};
static br_x509_certificate CHAIN[] = {
{ nullptr, 0 }
};
// load a copy of the tls_dir from flash into ram
// and calculate the appropriate data structures for AWS_IoT_Private_Key and AWS_IoT_Client_Certificate
void loadTlsDir(void) {
memcpy_P(&tls_dir, tls_spi_start + tls_block_offset, sizeof(tls_dir));
// calculate the addresses for Key and Cert in Flash
if ((TLS_NAME_SKEY == tls_dir.entry[0].name) && (tls_dir.entry[0].len > 0)) {
EC.x = (unsigned char *)(tls_spi_start + tls_obj_store_offset + tls_dir.entry[0].start);
EC.xlen = tls_dir.entry[0].len;
AWS_IoT_Private_Key = &EC;
} else {
AWS_IoT_Private_Key = nullptr;
}
if ((TLS_NAME_CRT == tls_dir.entry[1].name) && (tls_dir.entry[1].len > 0)) {
CHAIN[0].data = (unsigned char *) (tls_spi_start + tls_obj_store_offset + tls_dir.entry[1].start);
CHAIN[0].data_len = tls_dir.entry[1].len;
AWS_IoT_Client_Certificate = CHAIN;
} else {
AWS_IoT_Client_Certificate = nullptr;
}
//Serial.printf("AWS_IoT_Private_Key = %x, AWS_IoT_Client_Certificate = %x\n", AWS_IoT_Private_Key, AWS_IoT_Client_Certificate);
}
const char ALLOCATE_ERROR[] PROGMEM = "TLSKey " D_JSON_ERROR ": cannot allocate buffer.";
void CmndTlsKey(void) {
#ifdef DEBUG_DUMP_TLS
if (0 == XdrvMailbox.index){
CmndTlsDump();
}
#endif // DEBUG_DUMP_TLS
if ((XdrvMailbox.index >= 1) && (XdrvMailbox.index <= 2)) {
tls_dir_t *tls_dir_write;
if (XdrvMailbox.data_len > 0) { // write new value
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(tls_spi_len);
if (!spi_buffer) {
AddLog_P(LOG_LEVEL_ERROR, ALLOCATE_ERROR);
return;
}
memcpy_P(spi_buffer, tls_spi_start, tls_spi_len);
// allocate buffer for decoded base64
uint32_t bin_len = decode_base64_length((unsigned char*)XdrvMailbox.data);
uint8_t *bin_buf = nullptr;
if (bin_len > 0) {
bin_buf = (uint8_t*) malloc(bin_len + 4);
if (!bin_buf) {
AddLog_P(LOG_LEVEL_ERROR, ALLOCATE_ERROR);
free(spi_buffer);
return;
}
}
// decode base64
if (bin_len > 0) {
decode_base64((unsigned char*)XdrvMailbox.data, bin_buf);
}
// address of writable tls_dir in buffer
tls_dir_write = (tls_dir_t*) (spi_buffer + tls_block_offset);
if (1 == XdrvMailbox.index) {
// Try to write Private key
// Start by erasing all
TlsEraseBuffer(spi_buffer); // Erase any previously stored data
if (bin_len > 0) {
if (bin_len != 32) {
// no private key was previously stored, abort
AddLog_P2(LOG_LEVEL_INFO, PSTR("TLSKey: Certificate must be 32 bytes: %d."), bin_len);
free(spi_buffer);
free(bin_buf);
return;
}
tls_entry_t *entry = &tls_dir_write->entry[0];
entry->name = TLS_NAME_SKEY;
entry->start = 0;
entry->len = bin_len;
memcpy(spi_buffer + tls_obj_store_offset + entry->start, bin_buf, entry->len);
} else {
// if lenght is zero, simply erase this SPI flash area
}
} else if (2 == XdrvMailbox.index) {
// Try to write Certificate
if (TLS_NAME_SKEY != tls_dir.entry[0].name) {
// no private key was previously stored, abort
AddLog_P(LOG_LEVEL_INFO, PSTR("TLSKey: cannot store Cert if no Key previously stored."));
free(spi_buffer);
free(bin_buf);
return;
}
if (bin_len <= 256) {
// Certificate lenght too short
AddLog_P2(LOG_LEVEL_INFO, PSTR("TLSKey: Certificate length too short: %d."), bin_len);
free(spi_buffer);
free(bin_buf);
return;
}
tls_entry_t *entry = &tls_dir_write->entry[1];
entry->name = TLS_NAME_CRT;
entry->start = (tls_dir_write->entry[0].start + tls_dir_write->entry[0].len + 3) & ~0x03; // align to 4 bytes boundary
entry->len = bin_len;
memcpy(spi_buffer + tls_obj_store_offset + entry->start, bin_buf, entry->len);
}
TlsWriteSpiBuffer(spi_buffer);
free(spi_buffer);
free(bin_buf);
}
loadTlsDir(); // reload into memory any potential change
Response_P(PSTR("{\"%s1\":%d,\"%s2\":%d}"),
XdrvMailbox.command, AWS_IoT_Private_Key ? tls_dir.entry[0].len : -1,
XdrvMailbox.command, AWS_IoT_Client_Certificate ? tls_dir.entry[1].len : -1);
}
}
extern "C" {
#include "spi_flash.h"
}
void TlsWriteSpiBuffer(uint8_t *buf) {
bool ret = false;
SpiFlashOpResult res;
noInterrupts();
res = spi_flash_erase_sector(tls_spi_start_sector);
if (SPI_FLASH_RESULT_OK == res) {
res = spi_flash_write(tls_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) buf, SPI_FLASH_SEC_SIZE);
if (SPI_FLASH_RESULT_OK == res) {
ret = true;
}
}
interrupts();
}
#ifdef DEBUG_DUMP_TLS
// Dump TLS Flash data - don't activate in production to protect your private keys
uint32_t bswap32(uint32_t x) {
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
void CmndTlsDump(void) {
uint32_t start = (uint32_t)tls_spi_start + tls_block_offset;
uint32_t end = start + tls_block_len -1;
for (uint32_t pos = start; pos < end; pos += 0x10) {
uint32_t* values = (uint32_t*)(pos);
Serial.printf_P(PSTR("%08x: %08x %08x %08x %08x\n"), pos, bswap32(values[0]), bswap32(values[1]), bswap32(values[2]), bswap32(values[3]));
}
}
#endif // DEBUG_DUMP_TLS
#endif
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
#ifdef USE_WEBSERVER
#define WEB_HANDLE_MQTT "mq"
const char S_CONFIGURE_MQTT[] PROGMEM = D_CONFIGURE_MQTT;
const char HTTP_BTN_MENU_MQTT[] PROGMEM =
"
";
const char HTTP_FORM_MQTT1[] PROGMEM =
"