/* xdrv_03_esp32_energy.ino - Energy sensor support for Tasmota Copyright (C) 2023 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef ESP32 #ifdef USE_ENERGY_SENSOR /*********************************************************************************************\ * Energy for ESP32 with max eight phases/channels using more RAM and Settings from filesystem \*********************************************************************************************/ #define XDRV_03 3 #define XSNS_03 3 #define ENERGY_NONE 0 #define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present #undef ENERGY_MAX_PHASES #define ENERGY_MAX_PHASES 8 // Support max eight phases/channels #define ENERGY_GUI_MAX_COLS 4 // [EnergyCols] Number of GUI data columns - Preffered 4 #define ENERGY_GUI_DISPLAY_MODE 3 // [EnergyDisplay] 1 = Rotate if over EnergyCols, 2 = Rotate only powered on if over EnergyCols, 3 = Use tabs if over EnergyCols #include #define D_CMND_POWERCAL "PowerCal" #define D_CMND_VOLTAGECAL "VoltageCal" #define D_CMND_CURRENTCAL "CurrentCal" #define D_CMND_FREQUENCYCAL "FrequencyCal" #define D_CMND_TARIFF "Tariff" #define D_CMND_MODULEADDRESS "ModuleAddress" enum EnergyDisplayModes { ENERGY_DISPLAY_MIN_OPTION, ENERGY_DISPLAY_ROTATE, ENERGY_DISPLAY_ROTATE_POWERED_ON, ENERGY_DISPLAY_TABS, ENERGY_DISPLAY_MAX_OPTION }; enum EnergyCalibration { ENERGY_POWER_CALIBRATION, ENERGY_VOLTAGE_CALIBRATION, ENERGY_CURRENT_CALIBRATION, ENERGY_FREQUENCY_CALIBRATION }; enum EnergyCommands { CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL, CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG }; const char kEnergyCommands[] PROGMEM = "|" // No prefix D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|" D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|" D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|" D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|" D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|" D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYEXPORTACTIVE "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|" D_CMND_TARIFF "|" D_CMND_ENERGYDISPLAY "|" D_CMND_ENERGYCOLS ; void (* const EnergyCommand[])(void) PROGMEM = { &CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal, &CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig, &CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh, &CmndMaxEnergy, &CmndMaxEnergyStart, &CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow, &CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyExportActive, &CmndEnergyUsage, &CmndEnergyExport, &CmndTariff, &CmndEnergyDisplay, &CmndEnergyCols }; /********************************************************************************************/ typedef struct { float usage_total_kWh[4]; float return_total_kWh[4]; float last_return_total_kWh; float last_usage_total_kWh; } tEnergyUsage; typedef union { uint16_t data; struct { uint16_t spare00 : 1; // bit 0 uint16_t spare01 : 1; // bit 1 uint16_t spare02 : 1; // bit 2 uint16_t spare03 : 1; // bit 3 uint16_t spare04 : 1; // bit 4 uint16_t spare05 : 1; // bit 5 uint16_t spare06 : 1; // bit 6 uint16_t spare07 : 1; // bit 7 uint16_t spare08 : 1; // bit 8 uint16_t spare09 : 1; // bit 9 uint16_t spare10 : 1; // bit 10 uint16_t spare11 : 1; // bit 11 uint16_t spare12 : 1; // bit 12 uint16_t spare13 : 1; // bit 13 uint16_t spare14 : 1; // bit 14 uint16_t spare15 : 1; // bit 15 }; } tEnergyBitfield; typedef struct { uint16_t min_voltage; // VoltageLow uint16_t max_voltage; // VoltageHigh uint16_t min_current; // CurrentLow uint16_t max_current; // CurrentHigh uint16_t min_power; // PowerLow uint16_t max_power; // PowerHigh uint16_t max_power_limit; // MaxPower uint16_t max_power_limit_hold; // MaxPowerHold uint16_t max_power_limit_window; // MaxPowerWindow uint16_t max_energy; // MaxEnergy uint16_t max_energy_start; // MaxEnergyStart } tPhase; typedef struct { uint32_t crc32; // To detect file changes uint16_t version; // To detect driver function changes uint16_t energy_kWhdoy; uint32_t energy_kWhtotal_time; tEnergyBitfield flag; uint8_t gui_display; // EnergyDisplay - GUI display all relays (0), only powered on relays (1) or user selected relays (2) uint8_t gui_cols; // EnergyCols uint32_t spare32_1; uint32_t spare32_2; uint32_t spare32_3; uint32_t spare32_4; uint32_t power_calibration[ENERGY_MAX_PHASES]; uint32_t voltage_calibration[ENERGY_MAX_PHASES]; uint32_t current_calibration[ENERGY_MAX_PHASES]; uint32_t frequency_calibration[ENERGY_MAX_PHASES]; float energy_today_kWh[ENERGY_MAX_PHASES]; // Energy today in kWh - float allows up to 262143.99 kWh float energy_yesterday_kWh[ENERGY_MAX_PHASES]; // Energy yesterday in kWh - float allows up to 262143.99 kWh float energy_total_kWh[ENERGY_MAX_PHASES]; // Total energy in kWh - float allows up to 262143.99 kWh float energy_export_kWh[ENERGY_MAX_PHASES]; // Export energy in kWh - float allows up to 262143.99 kWh uint16_t power_delta[ENERGY_MAX_PHASES]; // PowerDelta uint16_t tariff[4][2]; tEnergyUsage energy_usage; tPhase phase[ENERGY_MAX_PHASES]; } tEnergySettings; typedef struct { tEnergySettings Settings; // Global updated / accessed float voltage[ENERGY_MAX_PHASES]; // 123.1 V float current[ENERGY_MAX_PHASES]; // 123.123 A float active_power[ENERGY_MAX_PHASES]; // 123.1 W float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr float power_factor[ENERGY_MAX_PHASES]; // 0.12 float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh float start_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous float start_export_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous float total[ENERGY_MAX_PHASES]; // 12345.12345 kWh total energy float daily_sum; // 123.123 kWh float total_sum; // 12345.12345 kWh total energy float yesterday_sum; // 123.123 kWh int32_t kWhtoday_delta[ENERGY_MAX_PHASES]; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy->kWhtoday (HLW and CSE only) int32_t kWhtoday[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily // Local only char* value; float daily_kWh[ENERGY_MAX_PHASES]; // 123.123 kWh float energy_today_offset_kWh[ENERGY_MAX_PHASES]; // 123.12312 kWh = Energy->daily float period_kWh[ENERGY_MAX_PHASES]; // 123.12312 kWh = Energy->daily float daily_sum_import_balanced; // 123.123 kWh float daily_sum_export_balanced; // 123.123 kWh uint16_t power_history[3][ENERGY_MAX_PHASES]; uint16_t mpl_hold_counter[ENERGY_MAX_PHASES]; uint16_t mpl_window_counter[ENERGY_MAX_PHASES]; uint8_t data_valid[ENERGY_MAX_PHASES]; uint8_t phase_count; // Number of phases active uint8_t fifth_second; uint8_t command_code; uint8_t power_steady_counter; // Allow for power on stabilization uint8_t margin_stable; uint8_t mpl_retry_counter[ENERGY_MAX_PHASES]; uint8_t max_energy_state[ENERGY_MAX_PHASES]; uint8_t hour; uint8_t gui_indirect[ENERGY_MAX_PHASES]; uint8_t gui_rotate; uint8_t gui_count; uint8_t gui_offset; bool voltage_common; // Use common voltage bool frequency_common; // Use common frequency bool use_overtemp; // Use global temperature as overtemp trigger on internal energy monitor hardware bool kWhtoday_offset_init; bool voltage_available; // Enable if voltage is measured bool current_available; // Enable if current is measured bool local_energy_active_export; // Enable if support for storing energy_active bool type_dc; bool power_on; bool min_power_flag[ENERGY_MAX_PHASES]; bool max_power_flag[ENERGY_MAX_PHASES]; bool min_voltage_flag[ENERGY_MAX_PHASES]; bool max_voltage_flag[ENERGY_MAX_PHASES]; bool min_current_flag[ENERGY_MAX_PHASES]; bool max_current_flag[ENERGY_MAX_PHASES]; } tEnergy; tEnergy *Energy = nullptr; Ticker ticker_energy; /*********************************************************************************************\ * RTC Energy memory \*********************************************************************************************/ const uint16_t RTC_ENERGY_MEM_VALID = 0xA55A; typedef struct { uint16_t valid; tEnergyUsage energy_usage; float energy_today_kWh[ENERGY_MAX_PHASES]; float energy_total_kWh[ENERGY_MAX_PHASES]; float energy_export_kWh[ENERGY_MAX_PHASES]; } tRtcEnergySettings; tRtcEnergySettings RtcEnergySettings; static RTC_NOINIT_ATTR tRtcEnergySettings RtcDataEnergySettings; uint32_t energy_rtc_settings_crc = 0; uint32_t EnergyGetRtcSettingsCrc(void) { uint32_t crc = 0; uint8_t *bytes = (uint8_t*)&RtcEnergySettings; for (uint32_t i = 0; i < sizeof(RtcEnergySettings); i++) { crc += bytes[i]*(i+1); } return crc; } void EnergyRtcSettingsSave(void) { if (EnergyGetRtcSettingsCrc() != energy_rtc_settings_crc) { if (RTC_ENERGY_MEM_VALID != RtcEnergySettings.valid) { memset(&RtcEnergySettings, 0, sizeof(RtcEnergySettings)); RtcEnergySettings.valid = RTC_ENERGY_MEM_VALID; RtcEnergySettings.energy_usage = Energy->Settings.energy_usage; for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) { RtcEnergySettings.energy_today_kWh[i] = Energy->Settings.energy_today_kWh[i]; RtcEnergySettings.energy_total_kWh[i] = Energy->Settings.energy_total_kWh[i]; RtcEnergySettings.energy_export_kWh[i] = Energy->Settings.energy_export_kWh[i]; } } // AddLog(LOG_LEVEL_INFO, PSTR("DBG: energy_today_kWh[0] %3_f/%3_f"), RtcEnergySettings.energy_today_kWh[0], Energy->Settings.energy_today_kWh[0]); RtcDataEnergySettings = RtcEnergySettings; energy_rtc_settings_crc = EnergyGetRtcSettingsCrc(); } } bool EnergyRtcSettingsLoad(void) { RtcEnergySettings = RtcDataEnergySettings; bool read_valid = (RTC_ENERGY_MEM_VALID == RtcEnergySettings.valid); if (!read_valid) { EnergyRtcSettingsSave(); } return read_valid; } bool EnergyRtcSettingsValid(void) { return (RTC_ENERGY_MEM_VALID == RtcEnergySettings.valid); } /*********************************************************************************************\ * Driver Settings load and save using filesystem \*********************************************************************************************/ const uint16_t XDRV_03_VERSION = 0x0102; // Latest driver version (See settings deltas below) void EnergySettingsLoad(bool erase) { // *** Start init default values in case file is not found *** memset(&Energy->Settings, 0x00, sizeof(tEnergySettings)); Energy->Settings.version = XDRV_03_VERSION; // Init any other parameter in struct for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) { Energy->Settings.power_calibration[i] = Settings->energy_power_calibration; Energy->Settings.voltage_calibration[i] = Settings->energy_voltage_calibration;; Energy->Settings.current_calibration[i] = Settings->energy_current_calibration;; Energy->Settings.frequency_calibration[i] = Settings->energy_frequency_calibration; Energy->Settings.phase[i].min_voltage = Settings->energy_min_voltage; Energy->Settings.phase[i].max_voltage = Settings->energy_max_voltage; Energy->Settings.phase[i].min_current = Settings->energy_min_current; Energy->Settings.phase[i].max_current = Settings->energy_max_current; Energy->Settings.phase[i].min_power = Settings->energy_min_power; Energy->Settings.phase[i].max_power = Settings->energy_max_power; Energy->Settings.phase[i].max_power_limit_hold = Settings->energy_max_power_limit_hold; Energy->Settings.phase[i].max_power_limit_window = Settings->energy_max_power_limit_window; Energy->Settings.phase[i].max_energy_start = Settings->energy_max_energy_start; } Energy->Settings.power_calibration[1] = Settings->energy_power_calibration2; Energy->Settings.voltage_calibration[1] = Settings->energy_voltage_calibration2; Energy->Settings.current_calibration[1] = Settings->energy_current_calibration2; // Only restore phase 1 for backward compatibility (all power off) Energy->Settings.phase[0].max_power_limit = Settings->energy_max_power_limit; Energy->Settings.phase[0].max_energy = Settings->energy_max_energy; /* RtcEnergySettings.energy_total_kWh[0] = 0; RtcEnergySettings.energy_total_kWh[1] = 0; RtcEnergySettings.energy_total_kWh[2] = 0; memset((char*)&RtcEnergySettings.energy_usage, 0x00, sizeof(RtcEnergySettings.energy_usage)); */ Energy->Settings.energy_kWhdoy = Settings->energy_kWhdoy; for (uint32_t i = 0; i < 3; i++) { Energy->Settings.energy_today_kWh[i] = (float)Settings->energy_kWhtoday_ph[i] / 100000; Energy->Settings.energy_yesterday_kWh[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000; Energy->Settings.energy_total_kWh[i] = (float)Settings->energy_kWhtotal_ph[i] / 1000; Energy->Settings.energy_export_kWh[i] = (float)Settings->energy_kWhexport_ph[i] / 1000; Energy->Settings.power_delta[i] = (float)Settings->energy_power_delta[i]; // AddLog(LOG_LEVEL_INFO, PSTR("DBG: kWhtoday %d = %4_f, kWhyesterday %d = %4_f"), // Settings->energy_kWhtoday_ph[i], &Energy->Settings.energy_today_kWh[i], // Settings->energy_kWhyesterday_ph[i], &Energy->Settings.energy_yesterday_kWh[i]); } Energy->Settings.energy_kWhtotal_time = Settings->energy_kWhtotal_time; // v0102 additions Energy->Settings.gui_display = ENERGY_GUI_DISPLAY_MODE; Energy->Settings.gui_cols = ENERGY_GUI_MAX_COLS; // *** End Init default values *** #ifndef USE_UFILESYS AddLog(LOG_LEVEL_INFO, PSTR("CFG: Energy use defaults as file system not enabled")); #else // Try to load file /.drvset003 char filename[20]; // Use for drivers: snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_DRIVER), XDRV_03); if (erase) { TfsDeleteFile(filename); // Use defaults } else if (TfsLoadFile(filename, (uint8_t*)&Energy->Settings, sizeof(tEnergySettings))) { if (Energy->Settings.version != XDRV_03_VERSION) { // Fix version dependent changes // *** Start fix possible setting deltas *** if (Energy->Settings.version < 0x0102) { Energy->Settings.gui_display = ENERGY_GUI_DISPLAY_MODE; Energy->Settings.gui_cols = ENERGY_GUI_MAX_COLS; } // *** End setting deltas *** // Set current version and save settings Energy->Settings.version = XDRV_03_VERSION; EnergySettingsSave(); } AddLog(LOG_LEVEL_INFO, PSTR("CFG: Energy loaded from file")); } else { // File system not ready: No flash space reserved for file system AddLog(LOG_LEVEL_DEBUG, PSTR("CFG: Energy use defaults as file system not ready or file not found")); } #endif // USE_UFILESYS } void EnergySettingsSave(void) { #ifdef USE_UFILESYS // Called from FUNC_SAVE_SETTINGS every SaveData second and at restart uint32_t crc32 = GetCfgCrc32((uint8_t*)&Energy->Settings +4, sizeof(tEnergySettings) -4); // Skip crc32 if (crc32 != Energy->Settings.crc32) { // Try to save file /.drvset003 Energy->Settings.crc32 = crc32; char filename[20]; // Use for drivers: snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_DRIVER), XDRV_03); if (TfsSaveFile(filename, (const uint8_t*)&Energy->Settings, sizeof(tEnergySettings))) { AddLog(LOG_LEVEL_DEBUG, PSTR("CFG: Energy saved to file")); } else { // File system not ready: No flash space reserved for file system AddLog(LOG_LEVEL_DEBUG, PSTR("CFG: ERROR Energy file system not ready or unable to save file")); } } #endif // USE_UFILESYS } bool EnergySettingsRestore(void) { XdrvMailbox.data = (char*)&Energy->Settings; XdrvMailbox.index = sizeof(tEnergySettings); return true; } /********************************************************************************************/ const uint16_t GUISZ = 600; // Max number of characters in WebEnergyFmt string bool EnergyFmtMalloc(void) { if (Energy->value == nullptr) { Energy->value = (char*)malloc(GUISZ); if (!Energy->value) { return false; } } return true; } void EnergyFmtFree(void) { // free(Energy->value); // Let's keep it for future use reducing heap fragmentation // Energy->value = nullptr; } char* EnergyFmt(float* input, uint32_t resolution, uint32_t single = 0); char* EnergyFmt(float* input, uint32_t resolution, uint32_t single) { // single = 0 - Energy->phase_count - xx or [xx,xx] or [xx,xx,xx] // single = 1 - Energy->voltage_common or Energy->frequency_common - xx // single = 2 - Sum of Energy->phase_count if SO129 0 - xx or if SO129 1 - [xx,xx,xx] // single = 5 - single &0x03 = 1 - xx // single = 6 - single &0x03 = 2 - [xx,xx] - used by tarriff // single = 7 - single &0x03 = 3 - [xx,xx,xx] if (!EnergyFmtMalloc()) { return EmptyStr; } uint32_t index = (single > 3) ? single &0x03 : (0 == single) ? Energy->phase_count : 1; // 1,2,3 if (single > 2) { single = 0; } // 0,1,2 float input_sum = 0.0f; if (single > 1) { if (!Settings->flag5.energy_phase) { // SetOption129 - (Energy) Show phase information for (uint32_t i = 0; i < Energy->phase_count; i++) { if (!isnan(input[i])) { input_sum += input[i]; } } input = &input_sum; } else { index = Energy->phase_count; } } Energy->value[0] = '\0'; for (uint32_t i = 0; i < index; i++) { ext_snprintf_P(Energy->value, GUISZ, PSTR("%s%s%*_f%s"), Energy->value, (0==i)?(1==index)?"":"[":",", resolution, &input[i], (index-1==i)?(1==index)?"":"]":""); } return Energy->value; } #ifdef USE_WEBSERVER char* WebEnergyFmt(float* input, uint32_t resolution, uint32_t single = 0); char* WebEnergyFmt(float* input, uint32_t resolution, uint32_t single) { // single = 0 - Energy->phase_count - xx / xx / xx or multi column // single = 1 - Energy->voltage_common or Energy->frequency_common - xx or single column using colspan (if needed) // single = 2 - Sum of Energy->phase_count if SO129 0 - xx or single column using colspan (if needed) or if SO129 1 - xx / xx / xx or multi column // single = 3 - Sum of Energy->phase_count xx or single column using colspan (if needed) if (!EnergyFmtMalloc()) { return EmptyStr; } float input_sum = 0.0f; if (single > 1) { // Sum and/or Single column if ((3 == single) || !Settings->flag5.energy_phase) { // SetOption129 - (Energy) Show phase information for (uint32_t i = 0; i < Energy->phase_count; i++) { if (!isnan(input[i])) { input_sum += input[i]; } } input = &input_sum; } else { single = 0; } } ext_snprintf_P(Energy->value, GUISZ, PSTR("")); // Skip first column if ((Energy->gui_count > 1) && single) { // Need to set colspan so need new columns // 1.23  // 1.23  // 1.23  ext_snprintf_P(Energy->value, GUISZ, PSTR("%s%*_f "), Energy->value, (Energy->gui_count *2) -1, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("center"), resolution, &input[Energy->gui_indirect[0]]); } else { // 1.23  // 1.23 1.23  // 1.23 1.23 1.23  // 1.23 1.23 1.23 1.23  for (uint32_t i = 0; i < Energy->gui_count; i++) { ext_snprintf_P(Energy->value, GUISZ, PSTR("%s%*_f "), Energy->value, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("left"), resolution, &input[Energy->gui_indirect[Energy->gui_offset +i]]); } } ext_snprintf_P(Energy->value, GUISZ, PSTR("%s"), Energy->value); return Energy->value; } #endif // USE_WEBSERVER /********************************************************************************************/ bool EnergyTariff1Active() { // Off-Peak hours if (Settings->mbflag2.tariff_forced) { return 1 == Settings->mbflag2.tariff_forced; } uint8_t dst = 0; if (IsDst() && (Energy->Settings.tariff[0][1] != Energy->Settings.tariff[1][1])) { dst = 1; } if (Energy->Settings.tariff[0][dst] != Energy->Settings.tariff[1][dst]) { if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF (RtcTime.day_of_week == 7))) { return true; } uint32_t minutes = MinutesPastMidnight(); if (Energy->Settings.tariff[0][dst] > Energy->Settings.tariff[1][dst]) { // {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}} return ((minutes >= Energy->Settings.tariff[0][dst]) || (minutes < Energy->Settings.tariff[1][dst])); } else { // {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}} return ((minutes >= Energy->Settings.tariff[0][dst]) && (minutes < Energy->Settings.tariff[1][dst])); } } else { return false; } } void EnergyUpdateToday(void) { // Energy->kWhtoday_delta[]: int32_t x = 0.0000x kWh change // Energy->kWhtoday[] : int32_t y = 0.0000y kWh Energy->total_sum = 0.0f; Energy->yesterday_sum = 0.0f; Energy->daily_sum = 0.0f; int32_t delta_sum_balanced = 0; for (uint32_t i = 0; i < Energy->phase_count; i++) { if (abs(Energy->kWhtoday_delta[i]) > 1000) { int32_t delta = Energy->kWhtoday_delta[i] / 1000; delta_sum_balanced += delta; Energy->kWhtoday_delta[i] -= (delta * 1000); Energy->kWhtoday[i] += delta; if (delta < 0) { // Export energy RtcEnergySettings.energy_export_kWh[i] += ((float)(delta / 100) *-1) / 1000; } } RtcEnergySettings.energy_today_kWh[i] = Energy->energy_today_offset_kWh[i] + ((float)Energy->kWhtoday[i] / 100000); Energy->daily_kWh[i] = RtcEnergySettings.energy_today_kWh[i]; Energy->total[i] = RtcEnergySettings.energy_total_kWh[i] + RtcEnergySettings.energy_today_kWh[i]; if (Energy->local_energy_active_export) { Energy->export_active[i] = RtcEnergySettings.energy_export_kWh[i]; } Energy->total_sum += Energy->total[i]; Energy->yesterday_sum += Energy->Settings.energy_yesterday_kWh[i]; Energy->daily_sum += Energy->daily_kWh[i]; } if (delta_sum_balanced > 0) { Energy->daily_sum_import_balanced += (float)delta_sum_balanced / 100000; } else { Energy->daily_sum_export_balanced += (float)abs(delta_sum_balanced) / 100000; } if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time. float energy_diff = Energy->total_sum - RtcEnergySettings.energy_usage.last_usage_total_kWh; RtcEnergySettings.energy_usage.last_usage_total_kWh = Energy->total_sum; float return_diff = 0; if (!isnan(Energy->export_active[0])) { // return_diff = Energy->export_active - RtcEnergySettings.energy_usage.last_return_total_kWh; // RtcEnergySettings.energy_usage.last_return_total_kWh = Energy->export_active; float export_active = 0.0f; for (uint32_t i = 0; i < Energy->phase_count; i++) { if (!isnan(Energy->export_active[i])) { export_active += Energy->export_active[i]; } } return_diff = export_active - RtcEnergySettings.energy_usage.last_return_total_kWh; RtcEnergySettings.energy_usage.last_return_total_kWh = export_active; } uint32_t index = (EnergyTariff1Active()) ? 0 : 1; // Tarrif1 = Off-Peak RtcEnergySettings.energy_usage.usage_total_kWh[index] += energy_diff; RtcEnergySettings.energy_usage.return_total_kWh[index] += return_diff; } } void EnergyUpdateTotal(void) { // Provide total import active energy as float Energy->import_active[phase] in kWh: 98Wh = 0.098kWh for (uint32_t i = 0; i < Energy->phase_count; i++) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy->import_active[i]); // Try to fix instable input by verifying allowed bandwidth (#17659) if ((Energy->start_energy[i] != 0) && (Settings->param[P_CSE7766_INVALID_POWER] > 0) && (Settings->param[P_CSE7766_INVALID_POWER] < 128)) { // SetOption39 1..127 kWh int total = abs((int)Energy->total[i]); // We only use kWh int import_active = abs((int)Energy->import_active[i]); if ((import_active < (total - Settings->param[P_CSE7766_INVALID_POWER])) || (import_active > (total + Settings->param[P_CSE7766_INVALID_POWER]))) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Outside bandwidth")); continue; // No valid energy value received } } if (0 == Energy->start_energy[i] || (Energy->import_active[i] < Energy->start_energy[i])) { Energy->start_energy[i] = Energy->import_active[i]; // Init after restart and handle roll-over if any Energy->start_export_energy[i] = RtcEnergySettings.energy_export_kWh[i]; // Init after restart } else if (Energy->import_active[i] != Energy->start_energy[i]) { if (Energy->local_energy_active_export && (Energy->active_power[i] < 0)) { RtcEnergySettings.energy_export_kWh[i] = Energy->start_export_energy[i] + Energy->import_active[i] - Energy->start_energy[i]; } else { Energy->kWhtoday[i] = (int32_t)((Energy->import_active[i] - Energy->start_energy[i]) * 100000); } } if ((Energy->total[i] < (Energy->import_active[i] - 0.01f)) && // We subtract a little offset of 10Wh to avoid continuous updates Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561) // The following calculation allows total usage (Energy->import_active[i]) up to +/-2147483.647 kWh RtcEnergySettings.energy_total_kWh[i] = Energy->import_active[i] - (Energy->energy_today_offset_kWh[i] + ((float)Energy->kWhtoday[i] / 100000)); Energy->Settings.energy_total_kWh[i] = RtcEnergySettings.energy_total_kWh[i]; Energy->total[i] = Energy->import_active[i]; Energy->Settings.energy_kWhtotal_time = (!Energy->energy_today_offset_kWh[i]) ? LocalTime() : Midnight(); // AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value")); } } EnergyUpdateToday(); } /*********************************************************************************************/ void Energy200ms(void) { Energy->power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check; // SetOption21 - Show voltage even if powered off Energy->fifth_second++; if (5 == Energy->fifth_second) { Energy->fifth_second = 0; XnrgCall(FUNC_ENERGY_EVERY_SECOND); if (RtcTime.valid) { if (!Energy->Settings.energy_kWhtotal_time) { Energy->Settings.energy_kWhtotal_time = LocalTime(); } if (!Energy->kWhtoday_offset_init && (RtcTime.day_of_year == Energy->Settings.energy_kWhdoy)) { Energy->kWhtoday_offset_init = true; for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) { Energy->energy_today_offset_kWh[i] = Energy->Settings.energy_today_kWh[i]; // RtcEnergySettings.energy_today_kWh[i] = 0; } } bool midnight = (LocalTime() == Midnight()); if (midnight || (RtcTime.day_of_year > Energy->Settings.energy_kWhdoy)) { Energy->kWhtoday_offset_init = true; Energy->Settings.energy_kWhdoy = RtcTime.day_of_year; for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) { Energy->Settings.energy_yesterday_kWh[i] = RtcEnergySettings.energy_today_kWh[i]; RtcEnergySettings.energy_total_kWh[i] += RtcEnergySettings.energy_today_kWh[i]; Energy->Settings.energy_total_kWh[i] = RtcEnergySettings.energy_total_kWh[i]; Energy->Settings.energy_export_kWh[i] = RtcEnergySettings.energy_export_kWh[i]; Energy->period_kWh[i] -= RtcEnergySettings.energy_today_kWh[i]; // this becomes a large unsigned, effectively a negative for EnergyShow calculation Energy->kWhtoday[i] = 0; Energy->energy_today_offset_kWh[i] = 0; RtcEnergySettings.energy_today_kWh[i] = 0; Energy->Settings.energy_today_kWh[i] = 0; Energy->start_energy[i] = 0; // Energy->kWhtoday_delta = 0; // dont zero this, we need to carry the remainder over to tomorrow Energy->daily_sum_import_balanced = 0.0; Energy->daily_sum_export_balanced = 0.0; } EnergyUpdateToday(); } if (midnight) { for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { Energy->max_energy_state[phase] = 3; } } if (RtcTime.hour != Energy->hour) { Energy->hour = RtcTime.hour; for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { if ((RtcTime.hour == Energy->Settings.phase[phase].max_energy_start) && (3 == Energy->max_energy_state[phase] )) { Energy->max_energy_state[phase] = 0; } } } } } XnrgCall(FUNC_EVERY_200_MSECOND); } void EnergySaveState(void) { Energy->Settings.energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0; for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) { Energy->Settings.energy_today_kWh[i] = RtcEnergySettings.energy_today_kWh[i]; Energy->Settings.energy_total_kWh[i] = RtcEnergySettings.energy_total_kWh[i]; Energy->Settings.energy_export_kWh[i] = RtcEnergySettings.energy_export_kWh[i]; } Energy->Settings.energy_usage = RtcEnergySettings.energy_usage; } bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag) { if (!margin) { return false; } bool change = save_flag; if (type) { flag = (value > margin); } else { flag = (value < margin); } save_flag = flag; return (change != save_flag); } void EnergyMarginCheck(void) { if (!Energy->phase_count || (TasmotaGlobal.uptime < 8)) { return; } if (Energy->power_steady_counter) { Energy->power_steady_counter--; return; } bool jsonflg = false; Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{")); // PowerDelta int16_t power_diff[ENERGY_MAX_PHASES] = { 0 }; for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { uint16_t active_power = (uint16_t)(Energy->active_power[phase]); // AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy->power_history[0][phase], Energy->power_history[1][phase], Energy->power_history[2][phase]); if (Energy->Settings.power_delta[phase]) { power_diff[phase] = active_power - Energy->power_history[0][phase]; uint16_t delta = abs(power_diff[phase]); bool threshold_met = false; if (delta > 0) { if (Energy->Settings.power_delta[phase] < 101) { // 1..100 = Percentage uint16_t min_power = (Energy->power_history[0][phase] > active_power) ? active_power : Energy->power_history[0][phase]; if (0 == min_power) { min_power++; } // Fix divide by 0 exception (#6741) delta = (delta * 100) / min_power; if (delta >= Energy->Settings.power_delta[phase]) { threshold_met = true; } } else { // 101..32000 = Absolute if (delta >= (Energy->Settings.power_delta[phase] -100)) { threshold_met = true; } } } if (threshold_met) { Energy->power_history[1][phase] = active_power; // We only want one report so reset history Energy->power_history[2][phase] = active_power; jsonflg = true; } else { power_diff[phase] = 0; } } Energy->power_history[0][phase] = Energy->power_history[1][phase]; // Shift in history every second allowing power changes to settle for up to three seconds Energy->power_history[1][phase] = Energy->power_history[2][phase]; Energy->power_history[2][phase] = active_power; } if (jsonflg) { float power_diff_f[Energy->phase_count]; for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { power_diff_f[phase] = power_diff[phase]; } ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFmt(power_diff_f, 0)); } // PowerMargins uint16_t energy_power_u; if (Energy->power_on) { bool flag; for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { energy_power_u = (uint16_t)(Energy->active_power[phase]); uint16_t energy_voltage_u = (uint16_t)(Energy->voltage[phase]); uint16_t energy_current_u = (uint16_t)(Energy->current[phase] * 1000); if (EnergyMargin(false, Energy->Settings.phase[phase].min_power, energy_power_u, flag, Energy->min_power_flag[phase])) { ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "%d\":\"%s\""), (jsonflg)?",":"", phase +1, GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Energy->Settings.phase[phase].max_power, energy_power_u, flag, Energy->max_power_flag[phase])) { ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "%d\":\"%s\""), (jsonflg)?",":"", phase +1, GetStateText(flag)); jsonflg = true; } if (EnergyMargin(false, Energy->Settings.phase[phase].min_voltage, energy_voltage_u, flag, Energy->min_voltage_flag[phase])) { ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "%d\":\"%s\""), (jsonflg)?",":"", phase +1, GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Energy->Settings.phase[phase].max_voltage, energy_voltage_u, flag, Energy->max_voltage_flag[phase])) { ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "%d\":\"%s\""), (jsonflg)?",":"", phase +1, GetStateText(flag)); jsonflg = true; } if (EnergyMargin(false, Energy->Settings.phase[phase].min_current, energy_current_u, flag, Energy->min_current_flag[phase])) { ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "%d\":\"%s\""), (jsonflg)?",":"", phase +1, GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Energy->Settings.phase[phase].max_current, energy_current_u, flag, Energy->max_current_flag[phase])) { ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "%d\":\"%s\""), (jsonflg)?",":"", phase +1, GetStateText(flag)); jsonflg = true; } } } if (jsonflg) { ResponseJsonEndEnd(); MqttPublishTele(PSTR(D_RSLT_MARGINS)); EnergyMqttShow(); Energy->margin_stable = 3; // Allow 2 seconds to stabilize before reporting } // Max Power bool set_all_power = true; // Use all power control for backward compatibility for (uint32_t phase = 1; phase < Energy->phase_count; phase++) { if (Energy->Settings.phase[phase].max_power_limit) { set_all_power = false; // If any other power limit is set use new selected power control break; } } for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { if (Energy->Settings.phase[phase].max_power_limit) { energy_power_u = (uint16_t)(Energy->active_power[phase]); bool power_on = (TasmotaGlobal.power & (1 << phase)); if (energy_power_u > Energy->Settings.phase[phase].max_power_limit) { if (!Energy->mpl_hold_counter[phase]) { Energy->mpl_hold_counter[phase] = Energy->Settings.phase[phase].max_power_limit_hold +1; } Energy->mpl_hold_counter[phase]--; if (!Energy->mpl_hold_counter[phase]) { if (!Energy->mpl_retry_counter[phase]) { Energy->mpl_retry_counter[phase] = Settings->param[P_MAX_POWER_RETRY] +1; // SetOption33 - Max Power Retry count } Energy->mpl_retry_counter[phase]--; if (Energy->mpl_retry_counter[phase]) { ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "%d\":%d}"), phase +1, energy_power_u); } else { ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "%d\":\"%s\"}"), phase +1, GetStateText(0)); } MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); if (set_all_power) { SetAllPower(POWER_OFF_FORCE, SRC_MAXPOWER); } else { ExecuteCommandPower(phase +1, POWER_OFF_FORCE, SRC_MAXPOWER); } Energy->mpl_window_counter[phase] = Energy->Settings.phase[phase].max_power_limit_window; } } else if (power_on && (energy_power_u <= Energy->Settings.phase[phase].max_power_limit)) { Energy->mpl_hold_counter[phase] = 0; Energy->mpl_retry_counter[phase] = 0; Energy->mpl_window_counter[phase] = 0; } if (!power_on) { if (Energy->mpl_window_counter[phase]) { Energy->mpl_window_counter[phase]--; } else { if (Energy->mpl_retry_counter[phase]) { ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "%d\":\"%s\"}"), phase +1, GetStateText(1)); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR)); if (set_all_power) { RestorePower(true, SRC_MAXPOWER); } else { ExecuteCommandPower(phase +1, POWER_ON, SRC_MAXPOWER); } } } } } } // Max Energy set_all_power = true; // Use all power control for backward compatibility for (uint32_t phase = 1; phase < Energy->phase_count; phase++) { if (Energy->Settings.phase[phase].max_energy) { set_all_power = false; // If any other max energy is set use new selected power control break; } } float daily_sum = Energy->daily_sum; for (uint32_t phase = 0; phase < Energy->phase_count; phase++) { if (Energy->Settings.phase[phase].max_energy) { if (!set_all_power) { daily_sum = Energy->daily_kWh[phase]; } uint16_t energy_daily_u = (uint16_t)(daily_sum * 1000); if (!Energy->max_energy_state[phase] && (RtcTime.hour == Energy->Settings.phase[phase].max_energy_start)) { Energy->max_energy_state[phase] = 1; ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1)); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR)); if (set_all_power) { RestorePower(true, SRC_MAXENERGY); } else { ExecuteCommandPower(phase +1, POWER_ON, SRC_MAXENERGY); } } else if ((1 == Energy->max_energy_state[phase]) && (energy_daily_u >= Energy->Settings.phase[phase].max_energy)) { Energy->max_energy_state[phase] = 2; ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &daily_sum); MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); if (set_all_power) { SetAllPower(POWER_OFF_FORCE, SRC_MAXENERGY); } else { ExecuteCommandPower(phase +1, POWER_OFF_FORCE, SRC_MAXENERGY); } } } } EnergyFmtFree(); } void EnergyMqttShow(void) { // {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}} int tele_period_save = TasmotaGlobal.tele_period; TasmotaGlobal.tele_period = 2; ResponseClear(); ResponseAppendTime(); EnergyShow(true); TasmotaGlobal.tele_period = tele_period_save; ResponseJsonEnd(); MqttPublishTeleSensor(); } void EnergyEverySecond(void) { // Overtemp check if (Energy->use_overtemp && TasmotaGlobal.global_update) { if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) { // SetOption42 Device overtemp, turn off relays AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius); SetAllPower(POWER_OFF_FORCE, SRC_OVERTEMP); } } // Invalid data reset if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) { uint32_t data_valid = Energy->phase_count; for (uint32_t i = 0; i < Energy->phase_count; i++) { if (Energy->data_valid[i] <= ENERGY_WATCHDOG) { Energy->data_valid[i]++; if (Energy->data_valid[i] > ENERGY_WATCHDOG) { // Reset energy registers Energy->voltage[i] = 0; Energy->current[i] = 0; Energy->active_power[i] = 0; if (!isnan(Energy->apparent_power[i])) { Energy->apparent_power[i] = 0; } if (!isnan(Energy->reactive_power[i])) { Energy->reactive_power[i] = 0; } if (!isnan(Energy->frequency[i])) { Energy->frequency[i] = 0; } if (!isnan(Energy->power_factor[i])) { Energy->power_factor[i] = 0; } if (!isnan(Energy->export_active[i])) { Energy->export_active[i] = 0; } data_valid--; } } } if (!data_valid) { //Energy->start_energy = 0; AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data")); XnrgCall(FUNC_ENERGY_RESET); } } EnergyMarginCheck(); if (Energy->margin_stable) { Energy->margin_stable--; if (!Energy->margin_stable) { EnergyMqttShow(); } } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ void ResponseCmndEnergyTotalYesterdayToday(void) { float energy_yesterday_kWh[3]; for (uint32_t i = 0; i < Energy->phase_count; i++) { energy_yesterday_kWh[i] = Energy->Settings.energy_yesterday_kWh[i]; Energy->total[i] = RtcEnergySettings.energy_total_kWh[i] + Energy->energy_today_offset_kWh[i] + ((float)Energy->kWhtoday[i] / 100000); if (Energy->local_energy_active_export) { Energy->export_active[i] = RtcEnergySettings.energy_export_kWh[i]; } } Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s"), XdrvMailbox.command, EnergyFmt(Energy->total, Settings->flag2.energy_resolution)); ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s"), EnergyFmt(energy_yesterday_kWh, Settings->flag2.energy_resolution)); ResponseAppend_P(PSTR(",\"" D_JSON_TODAY "\":%s"), EnergyFmt(Energy->daily_kWh, Settings->flag2.energy_resolution)); if (Energy->local_energy_active_export) { ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"), EnergyFmt(Energy->export_active, Settings->flag2.energy_resolution)); } ResponseJsonEndEnd(); EnergyFmtFree(); } void CmndEnergyDisplay(void) { // Select either all relays, only powered on relays or user selected relay group // EnergyDisplay 1, EnergyDisplay 2 or EnergyDisplay 3 if ((XdrvMailbox.payload > ENERGY_DISPLAY_MIN_OPTION) && (XdrvMailbox.payload < ENERGY_DISPLAY_MAX_OPTION)) { Energy->Settings.gui_display = XdrvMailbox.payload; Energy->gui_rotate = 0; } ResponseCmndNumber(Energy->Settings.gui_display); } void CmndEnergyCols(void) { // Select number of columns // EnergyCols 1..8 if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= ENERGY_MAX_PHASES)) { Energy->Settings.gui_cols = XdrvMailbox.payload; Energy->gui_rotate = 0; } ResponseCmndNumber(Energy->Settings.gui_cols); } void CmndEnergyTotal(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) { uint32_t phase = XdrvMailbox.index -1; // Reset Energy Total RtcEnergySettings.energy_total_kWh[phase] = (float)(int32_t)values[0] / 1000; Energy->Settings.energy_total_kWh[phase] = RtcEnergySettings.energy_total_kWh[phase]; if (params > 1) { Energy->Settings.energy_kWhtotal_time = values[1]; } else { Energy->Settings.energy_kWhtotal_time = (!Energy->energy_today_offset_kWh[phase]) ? LocalTime() : Midnight(); } RtcEnergySettings.energy_usage.last_usage_total_kWh = Energy->total[phase]; } ResponseCmndEnergyTotalYesterdayToday(); } void CmndEnergyYesterday(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) { uint32_t phase = XdrvMailbox.index -1; // Reset Energy Yesterday Energy->Settings.energy_yesterday_kWh[phase] = (float)(int32_t)values[0] / 1000; if (params > 1) { Energy->Settings.energy_kWhtotal_time = values[1]; } } ResponseCmndEnergyTotalYesterdayToday(); } void CmndEnergyToday(void) { // EnergyToday 22 = 0.022 kWh uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) { uint32_t phase = XdrvMailbox.index -1; // Reset Energy Today Energy->energy_today_offset_kWh[phase] = (float)(int32_t)values[0] / 1000; Energy->kWhtoday[phase] = 0; Energy->kWhtoday_delta[phase] = 0; Energy->start_energy[phase] = 0; Energy->period_kWh[phase] = Energy->energy_today_offset_kWh[phase]; Energy->Settings.energy_today_kWh[phase] = Energy->energy_today_offset_kWh[phase]; RtcEnergySettings.energy_today_kWh[phase] = Energy->energy_today_offset_kWh[phase]; Energy->daily_kWh[phase] = Energy->energy_today_offset_kWh[phase]; if (params > 1) { Energy->Settings.energy_kWhtotal_time = values[1]; } else if (!RtcEnergySettings.energy_total_kWh[phase] && !Energy->energy_today_offset_kWh[phase]) { Energy->Settings.energy_kWhtotal_time = LocalTime(); } } ResponseCmndEnergyTotalYesterdayToday(); } void CmndEnergyExportActive(void) { // EnergyExportActive 0 - Disable local energy_active_export support // EnergyExportActive 1 - Enable local energy_active_export support uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) { if (!XdrvMailbox.usridx) { Energy->local_energy_active_export = values[0] &1; } else if (Energy->local_energy_active_export) { // EnergyExportActive1 24 // EnergyExportActive1 24,1650111291 uint32_t phase = XdrvMailbox.index -1; // Reset Energy Export Active RtcEnergySettings.energy_export_kWh[phase] = (float)(int32_t)values[0] / 1000; Energy->Settings.energy_export_kWh[phase] = RtcEnergySettings.energy_export_kWh[phase]; if (params > 1) { Energy->Settings.energy_kWhtotal_time = values[1]; } } } if (Energy->local_energy_active_export) { ResponseCmndEnergyTotalYesterdayToday(); } else { Energy->export_active[0] = NAN; // Disable display of unused export_active ResponseCmndStateText(Energy->local_energy_active_export); } } void ResponseCmndEnergyUsageExport(void) { Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"), XdrvMailbox.command, Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.usage_total_kWh[0], Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.usage_total_kWh[1], Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.return_total_kWh[0], Settings->flag2.energy_resolution, &Energy->Settings.energy_usage.return_total_kWh[1]); } void CmndEnergyUsage(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if (params > 0) { // Reset energy_usage.usage totals RtcEnergySettings.energy_usage.usage_total_kWh[0] = (float)(int32_t)values[0] / 1000; if (params > 1) { RtcEnergySettings.energy_usage.usage_total_kWh[1] = (float)(int32_t)values[1] / 1000; } Energy->Settings.energy_usage.usage_total_kWh[0] = RtcEnergySettings.energy_usage.usage_total_kWh[0]; Energy->Settings.energy_usage.usage_total_kWh[1] = RtcEnergySettings.energy_usage.usage_total_kWh[1]; } ResponseCmndEnergyUsageExport(); } void CmndEnergyExport(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if (params > 0) { // Reset energy_usage.return totals RtcEnergySettings.energy_usage.return_total_kWh[0] = (float)(int32_t)values[0] / 1000; if (params > 1) { RtcEnergySettings.energy_usage.return_total_kWh[1] = (float)(int32_t)values[1] / 1000; } Energy->Settings.energy_usage.return_total_kWh[0] = RtcEnergySettings.energy_usage.return_total_kWh[0]; Energy->Settings.energy_usage.return_total_kWh[1] = RtcEnergySettings.energy_usage.return_total_kWh[1]; } ResponseCmndEnergyUsageExport(); } void CmndTariff(void) { // Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time // Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time // Tariffx 1320, 1380 = minutes and also 22:00, 23:00 // Tariffx 22, 23 = hours and also 22:00, 23:00 // Tariff9 0/1 if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) { uint32_t tariff = XdrvMailbox.index -1; uint32_t time_type = 0; char *p; if (POWER_OFF == XdrvMailbox.payload) Settings->mbflag2.tariff_forced = 0; else if (POWER_ON == XdrvMailbox.payload) Settings->mbflag2.tariff_forced = tariff + 1; else { char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30 while ((str != nullptr) && (time_type < 2)) { char *q; uint32_t value = strtol(str, &q, 10); // 23 or 22 Energy->Settings.tariff[tariff][time_type] = value; if (value < 24) { // Below 24 is hours Energy->Settings.tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes char *minute = strtok_r(nullptr, ":", &q); if (minute) { value = strtol(minute, nullptr, 10); // 15 or 30 if (value > 59) { value = 59; } Energy->Settings.tariff[tariff][time_type] += value; } } if (Energy->Settings.tariff[tariff][time_type] > 1439) { Energy->Settings.tariff[tariff][time_type] = 1439; // Max is 23:59 } str = strtok_r(nullptr, ", ", &p); time_type++; } } } else if (XdrvMailbox.index == 9) { Settings->flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF } Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\",\"Forced\":\"%d\"}}"), XdrvMailbox.command, GetMinuteTime(Energy->Settings.tariff[0][0]).c_str(),GetMinuteTime(Energy->Settings.tariff[0][1]).c_str(), GetMinuteTime(Energy->Settings.tariff[1][0]).c_str(),GetMinuteTime(Energy->Settings.tariff[1][1]).c_str(), GetStateText(Settings->flag3.energy_weekend), // Tariff9 Settings->mbflag2.tariff_forced); // Tariff ON|OFF } uint32_t EnergyGetCalibration(uint32_t cal_type, uint32_t chan = 0) { // uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0; uint32_t channel = chan; switch (cal_type) { case ENERGY_POWER_CALIBRATION: return Energy->Settings.power_calibration[channel]; case ENERGY_VOLTAGE_CALIBRATION: return Energy->Settings.voltage_calibration[channel]; case ENERGY_CURRENT_CALIBRATION: return Energy->Settings.current_calibration[channel]; case ENERGY_FREQUENCY_CALIBRATION: return Energy->Settings.frequency_calibration[channel]; } return 0; } void EnergySetCalibration(uint32_t cal_type, uint32_t value, uint32_t chan = 0) { // uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0; uint32_t channel = chan; switch (cal_type) { case ENERGY_POWER_CALIBRATION: Energy->Settings.power_calibration[channel] = value; return; case ENERGY_VOLTAGE_CALIBRATION: Energy->Settings.voltage_calibration[channel] = value; return; case ENERGY_CURRENT_CALIBRATION: Energy->Settings.current_calibration[channel] = value; return; case ENERGY_FREQUENCY_CALIBRATION: Energy->Settings.frequency_calibration[channel] = value; return; } } void EnergyCommandCalSetResponse(uint32_t cal_type) { if (XdrvMailbox.payload > 99) { EnergySetCalibration(cal_type, XdrvMailbox.payload, XdrvMailbox.index -1); } if (Energy->phase_count > 1) { ResponseAppend_P(PSTR("[")); for (uint32_t i = 0; i < Energy->phase_count; i++) { ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", EnergyGetCalibration(cal_type, i)); } ResponseAppend_P(PSTR("]}")); } else { ResponseAppend_P(PSTR("%d}"), EnergyGetCalibration(cal_type)); } } void EnergyCommandCalResponse(uint32_t cal_type) { Energy->command_code = cal_type; // Is XxxCal command too if (XnrgCall(FUNC_COMMAND)) { // XxxCal ResponseCmnd(); EnergyCommandCalSetResponse(cal_type); } } void CmndPowerCal(void) { EnergyCommandCalResponse(ENERGY_POWER_CALIBRATION); } void CmndVoltageCal(void) { EnergyCommandCalResponse(ENERGY_VOLTAGE_CALIBRATION); } void CmndCurrentCal(void) { EnergyCommandCalResponse(ENERGY_CURRENT_CALIBRATION); } void CmndFrequencyCal(void) { EnergyCommandCalResponse(ENERGY_FREQUENCY_CALIBRATION); } void EnergyCommandSetCalResponse(uint32_t cal_type) { bool serviced = false; Energy->command_code = CMND_POWERSET + cal_type; // Adjust for XxxSet command if (0 == XdrvMailbox.index) { // XxxSet0 for (XdrvMailbox.index = 1; XdrvMailbox.index <= Energy->phase_count; XdrvMailbox.index++) { if (XnrgCall(FUNC_COMMAND)) { if (XdrvMailbox.payload > 99) { EnergySetCalibration(cal_type, XdrvMailbox.payload, XdrvMailbox.index -1); } } } XdrvMailbox.payload = 2; // No more updates but response only serviced = true; } else { serviced = (XnrgCall(FUNC_COMMAND)); // XxxSet } if (serviced) { Response_P(PSTR("{\"%sCal\":"), XdrvMailbox.command); EnergyCommandCalSetResponse(cal_type); } } void EnergyCommandSetCal(uint32_t cal_type) { if (XdrvMailbox.data_len && (XdrvMailbox.index > 0)) { // PowerSet 61.2 // CurrentSet 263 if (ArgC() > 1) { // Calibrate current and power using calibrated voltage and known resistive load voltage and power // PowerSet 60.0,230 // CurrentSet 60.0,230 char argument[32]; float Pgoal = CharToFloat(ArgV(argument, 1)); // 60.0 W float Ugoal = CharToFloat(ArgV(argument, 2)); // 230 V float Igoal = Pgoal / Ugoal; // 0.26087 A float R = Ugoal / Igoal; // 881,666 Ohm uint32_t channel = XdrvMailbox.index; if (channel > Energy->phase_count) { channel = 1; } channel--; float Umeas = Energy->voltage[channel]; // 232.0 // Calculate current and power based on measured voltage float Ical = Umeas / R; // 0.26306 A float Pcal = Umeas * Ical; // 61.03 W Ical *= 1000; // A to mA uint32_t cal_type1 = ENERGY_CURRENT_CALIBRATION; float cal1 = Ical; float cal2 = Pcal; if (ENERGY_CURRENT_CALIBRATION == cal_type) { cal_type1 = ENERGY_POWER_CALIBRATION; cal1 = Pcal; cal2 = Ical; } XdrvMailbox.data = argument; ext_snprintf_P(argument, sizeof(argument), PSTR("%5_f"), &cal1); XdrvMailbox.data_len = strlen(argument); EnergyCommandSetCalResponse(cal_type1); ext_snprintf_P(argument, sizeof(argument), PSTR("%5_f"), &cal2); XdrvMailbox.data_len = strlen(argument); } } EnergyCommandSetCalResponse(cal_type); } void CmndPowerSet(void) { EnergyCommandSetCal(ENERGY_POWER_CALIBRATION); } void CmndVoltageSet(void) { EnergyCommandSetCalResponse(ENERGY_VOLTAGE_CALIBRATION); } void CmndCurrentSet(void) { EnergyCommandSetCal(ENERGY_CURRENT_CALIBRATION); } void CmndFrequencySet(void) { EnergyCommandSetCalResponse(ENERGY_FREQUENCY_CALIBRATION); } void CmndModuleAddress(void) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 8) && (1 == Energy->phase_count)) { Energy->command_code = CMND_MODULEADDRESS; if (XnrgCall(FUNC_COMMAND)) { // Module address ResponseCmndDone(); } } } void CmndEnergyConfig(void) { Energy->command_code = CMND_ENERGYCONFIG; ResponseClear(); if (XnrgCall(FUNC_COMMAND)) { if (!ResponseLength()) { ResponseCmndDone(); } } } /*********************************************************************************************\ * USE_ENERGY_MARGIN_DETECTION and USE_ENERGY_POWER_LIMIT \*********************************************************************************************/ void ResponseAppendMargin(uint16_t* value, uint32_t step_size = 0); void ResponseAppendMargin(uint16_t* value, uint32_t step_size) { if (Energy->phase_count > 1) { if (0 == step_size) { step_size = sizeof(tPhase) / sizeof(uint16_t); } for (uint32_t i = 0; i < Energy->phase_count; i++) { ResponseAppend_P(PSTR("%c%d"), (i)?',':'[', value[i * step_size]); } ResponseAppend_P(PSTR("]")); } else { ResponseAppend_P(PSTR("%d"), value[0]); } } void EnergyMarginStatus(void) { Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":")); ResponseAppendMargin(&Energy->Settings.power_delta[0], 1); ResponseAppend_P(PSTR(",\"" D_CMND_POWERLOW "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].min_power); ResponseAppend_P(PSTR(",\"" D_CMND_POWERHIGH "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_power); ResponseAppend_P(PSTR(",\"" D_CMND_VOLTAGELOW "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].min_voltage); ResponseAppend_P(PSTR(",\"" D_CMND_VOLTAGEHIGH "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_voltage); ResponseAppend_P(PSTR(",\"" D_CMND_CURRENTLOW "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].min_current); ResponseAppend_P(PSTR(",\"" D_CMND_CURRENTHIGH "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_current); ResponseAppend_P(PSTR(",\"" D_CMND_MAXPOWER "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_power_limit); ResponseAppend_P(PSTR(",\"" D_CMND_MAXPOWERHOLD "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_power_limit_hold); ResponseAppend_P(PSTR(",\"" D_CMND_MAXPOWERWINDOW "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_power_limit_window); ResponseAppend_P(PSTR(",\"" D_CMND_MAXENERGY "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_energy); ResponseAppend_P(PSTR(",\"" D_CMND_MAXENERGYSTART "\":")); ResponseAppendMargin(&Energy->Settings.phase[0].max_energy_start); ResponseJsonEndEnd(); } bool ResponseCmndIdxEnergyMargin(uint16_t* value, uint32_t max_value, uint32_t default_value = 1, uint32_t step_size = 0); bool ResponseCmndIdxEnergyMargin(uint16_t* value, uint32_t max_value, uint32_t default_value, uint32_t step_size) { bool value_changed = false; if ((XdrvMailbox.index >= 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) { if (0 == step_size) { step_size = sizeof(tPhase) / sizeof(uint16_t); } if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_value)) { if (0 == XdrvMailbox.index) { // PowerLow0 10 for (uint32_t i = 0; i < Energy->phase_count; i++) { value[i * step_size] = (1 == XdrvMailbox.payload) ? default_value : XdrvMailbox.payload; } } else { // PowerLow 10 = PowerLow1 10 .. PowerLow8 10 value[(XdrvMailbox.index -1) * step_size] = (1 == XdrvMailbox.payload) ? default_value : XdrvMailbox.payload; } value_changed = true; } if (0 == XdrvMailbox.index) { // PowerLow0, PowerLow0 10 ResponseCmnd(); ResponseAppendMargin(value, step_size); ResponseJsonEnd(); } else { // PowerLow = PowerLow1 .. PowerLow8 ResponseCmndIdxNumber(value[(XdrvMailbox.index -1) * step_size]); } } return value_changed; } void CmndPowerDelta(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.power_delta[0], 32000, 1, 1); } void CmndPowerLow(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].min_power, 6000); } void CmndPowerHigh(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_power, 6000); } void CmndVoltageLow(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].min_voltage, 500); } void CmndVoltageHigh(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_voltage, 500); } void CmndCurrentLow(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].min_current, 25000); } void CmndCurrentHigh(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_current, 25000); } void CmndMaxPower(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_power_limit, 6000); } void CmndMaxPowerHold(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_power_limit_hold, 6000, MAX_POWER_HOLD); } void CmndMaxPowerWindow(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_power_limit_window, 6000, MAX_POWER_WINDOW); } void CmndMaxEnergy(void) { if (ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_energy, 6000)) { Energy->max_energy_state[XdrvMailbox.index -1] = 3; } } void CmndMaxEnergyStart(void) { ResponseCmndIdxEnergyMargin(&Energy->Settings.phase[0].max_energy_start, 23); } /********************************************************************************************/ void EnergyDrvInit(void) { Energy = (tEnergy*)calloc(1, sizeof(tEnergy)); // Need calloc to reset registers to 0/false if (!Energy) { return; } Energy->value = nullptr; // Energy->voltage_common = false; // Energy->frequency_common = false; // Energy->use_overtemp = false; for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) { Energy->apparent_power[phase] = NAN; Energy->reactive_power[phase] = NAN; Energy->power_factor[phase] = NAN; Energy->frequency[phase] = NAN; Energy->export_active[phase] = NAN; } Energy->phase_count = 1; // Number of phases active Energy->voltage_available = true; // Enable if voltage is measured Energy->current_available = true; // Enable if current is measured Energy->power_on = true; TasmotaGlobal.energy_driver = ENERGY_NONE; XnrgCall(FUNC_PRE_INIT); // Find first energy driver if (TasmotaGlobal.energy_driver) { EnergySettingsLoad(0); EnergyRtcSettingsLoad(); AddLog(LOG_LEVEL_INFO, PSTR("NRG: Init driver %d"), TasmotaGlobal.energy_driver); // } else { // free(Energy); // No energy driver found so release memory } } void EnergySnsInit(void) { XnrgCall(FUNC_INIT); if (TasmotaGlobal.energy_driver) { /* AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Rtc valid %d, kWhtoday_ph Rtc %3_f/%3_f/%3_f, Set %3_f/%3_f/%3_f"), EnergyRtcSettingsValid(), &RtcEnergySettings.energy_today_kWh[0],&RtcEnergySettings.energy_today_kWh[1],&RtcEnergySettings.energy_today_kWh[2], &Energy->Settings.energy_today_kWh[0],&Energy->Settings.energy_today_kWh[1],&Energy->Settings.energy_today_kWh[2] ); */ for (uint32_t i = 0; i < ENERGY_MAX_PHASES; i++) { // Energy->energy_today_offset_kWh[i] = 0; // Reset by EnergyDrvInit() // 20220805 - Change from https://github.com/arendst/Tasmota/issues/16118 if (EnergyRtcSettingsValid()) { Energy->energy_today_offset_kWh[i] = RtcEnergySettings.energy_today_kWh[i]; RtcEnergySettings.energy_today_kWh[i] = 0; Energy->kWhtoday_offset_init = true; } // Energy->kWhtoday_ph[i] = 0; // Reset by EnergyDrvInit() // Energy->kWhtoday_delta[i] = 0; // Reset by EnergyDrvInit() Energy->period_kWh[i] = Energy->energy_today_offset_kWh[i]; if (Energy->local_energy_active_export) { Energy->export_active[i] = 0; // Was set to NAN by EnergyDrvInit() } } EnergyUpdateToday(); ticker_energy.attach_ms(200, Energy200ms); } } void EnergyShow(bool json) { bool voltage_common = (Settings->flag6.no_voltage_common) ? false : Energy->voltage_common; bool frequency_common = (Settings->flag6.no_voltage_common) ? false : Energy->frequency_common; if (voltage_common) { for (uint32_t i = 0; i < Energy->phase_count; i++) { Energy->voltage[i] = Energy->voltage[0]; } } float apparent_power[Energy->phase_count]; float reactive_power[Energy->phase_count]; float power_factor[Energy->phase_count]; if (!Energy->type_dc) { if (Energy->current_available && Energy->voltage_available) { for (uint32_t i = 0; i < Energy->phase_count; i++) { if (0 == Energy->current[i]) { Energy->active_power[i] = 0; } apparent_power[i] = Energy->apparent_power[i]; if (isnan(apparent_power[i])) { apparent_power[i] = Energy->voltage[i] * Energy->current[i]; } else if (0 == Energy->current[i]) { apparent_power[i] = 0; } /* if (apparent_power[i] < Energy->active_power[i]) { // Should be impossible Energy->active_power[i] = apparent_power[i]; } power_factor[i] = Energy->power_factor[i]; if (isnan(power_factor[i])) { power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0; if (power_factor[i] > 1) { // Should not happen (Active > Apparent) power_factor[i] = 1; } } */ power_factor[i] = Energy->power_factor[i]; if (isnan(power_factor[i])) { power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0; } if (apparent_power[i] < Energy->active_power[i]) { // Should be impossible if (apparent_power[i]) { if ((power_factor[i] >= 1.02f) && (power_factor[i] < 2.0f)) { // Skip below 2% and don't expect 50% differences AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Calibrate as Active %3_fW > Apparent %3_fVA (PF = %4_f)"), &Energy->active_power[i], &apparent_power[i], &power_factor[i]); } } apparent_power[i] = Energy->active_power[i]; // Force apparent equal to active as mis-calibrated if (power_factor[i] > 1) { // Should not happen (Active > Apparent) power_factor[i] = 1; } } reactive_power[i] = Energy->reactive_power[i]; if (isnan(reactive_power[i])) { reactive_power[i] = 0; uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy->active_power[i] * 100)) / 10; if ((Energy->current[i] > 0.005f) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) { // calculating reactive power only if current is greater than 0.005A and // difference between active and apparent power is greater than 1.5W or 1% //reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy->active_power[i] * Energy->active_power[i] * 100))) / 10; float power_diff = apparent_power[i] * apparent_power[i] - Energy->active_power[i] * Energy->active_power[i]; if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1) reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0f))) / 10.0f; else reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff))); } } else if (0 == Energy->current[i]) { reactive_power[i] = 0; } } } } float energy_yesterday_kWh[Energy->phase_count]; float active_power_sum = 0.0f; int negative_phases = 0; for (uint32_t i = 0; i < Energy->phase_count; i++) { energy_yesterday_kWh[i] = Energy->Settings.energy_yesterday_kWh[i]; active_power_sum += Energy->active_power[i]; negative_phases += (Energy->active_power[i] < 0) ? -1 : 1; } bool energy_tariff = false; float energy_usage_kWh[2]; float energy_return_kWh[2]; if (Settings->mbflag2.tariff_forced || (Energy->Settings.tariff[0][0] != Energy->Settings.tariff[1][0])) { energy_usage_kWh[0] = RtcEnergySettings.energy_usage.usage_total_kWh[0]; // Tariff1 energy_usage_kWh[1] = RtcEnergySettings.energy_usage.usage_total_kWh[1]; // Tariff2 energy_return_kWh[0] = RtcEnergySettings.energy_usage.return_total_kWh[0]; // Tariff1 energy_return_kWh[1] = RtcEnergySettings.energy_usage.return_total_kWh[1]; // Tariff2 energy_tariff = true; } if (json) { bool show_energy_period = (0 == TasmotaGlobal.tele_period); ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"), GetDT(Energy->Settings.energy_kWhtotal_time).c_str(), EnergyFmt(Energy->total, Settings->flag2.energy_resolution, 2)); if (energy_tariff) { ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"), EnergyFmt(energy_usage_kWh, Settings->flag2.energy_resolution, 6)); } ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s"), EnergyFmt(energy_yesterday_kWh, Settings->flag2.energy_resolution, 2)); ResponseAppend_P(PSTR(",\"" D_JSON_TODAY "\":%s"), EnergyFmt(Energy->daily_kWh, Settings->flag2.energy_resolution, 2)); /* #if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP) if (!isnan(Energy->import_active[0])) { ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"), EnergyFmt(Energy->import_active, Settings->flag2.energy_resolution)); if (energy_tariff) { ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"), EnergyFmt(energy_return_kWh, Settings->flag2.energy_resolution, 6)); } } #endif // SDM630_IMPORT || SDM72_IMPEXP */ if (!isnan(Energy->export_active[0])) { uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 0 : 1; ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_IMPORT "\":%s"), EnergyFmt(&Energy->daily_sum_import_balanced, Settings->flag2.energy_resolution, 1)); ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_EXPORT "\":%s"), EnergyFmt(&Energy->daily_sum_export_balanced, Settings->flag2.energy_resolution, 1)); ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"), EnergyFmt(Energy->export_active, Settings->flag2.energy_resolution, single)); if (energy_tariff) { ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"), EnergyFmt(energy_return_kWh, Settings->flag2.energy_resolution, 6)); } } if (show_energy_period) { float energy_period[Energy->phase_count]; for (uint32_t i = 0; i < Energy->phase_count; i++) { energy_period[i] = (RtcEnergySettings.energy_today_kWh[i] - Energy->period_kWh[i]) * 1000; // Wh Energy->period_kWh[i] = RtcEnergySettings.energy_today_kWh[i]; } ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"), EnergyFmt(energy_period, Settings->flag2.wattage_resolution)); } ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"), EnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution)); if (!Energy->type_dc) { if (Energy->current_available && Energy->voltage_available) { ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s"), EnergyFmt(apparent_power, Settings->flag2.wattage_resolution)); ResponseAppend_P(PSTR(",\"" D_JSON_REACTIVE_POWERUSAGE "\":%s"), EnergyFmt(reactive_power, Settings->flag2.wattage_resolution)); ResponseAppend_P(PSTR(",\"" D_JSON_POWERFACTOR "\":%s"), EnergyFmt(power_factor, 2)); } } if (!isnan(Energy->frequency[0])) { ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"), EnergyFmt(Energy->frequency, Settings->flag2.frequency_resolution, frequency_common)); } if (Energy->voltage_available) { ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"), EnergyFmt(Energy->voltage, Settings->flag2.voltage_resolution, voltage_common)); } if (Energy->current_available) { ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"), EnergyFmt(Energy->current, Settings->flag2.current_resolution)); } XnrgCall(FUNC_JSON_APPEND); ResponseJsonEnd(); #ifdef USE_DOMOTICZ if (show_energy_period) { // Only send if telemetry char temp_chr[FLOATSZ]; if (Energy->voltage_available) { dtostrfd(Energy->voltage[0], Settings->flag2.voltage_resolution, temp_chr); DomoticzSensor(DZ_VOLTAGE, temp_chr); // Voltage } if (Energy->current_available) { dtostrfd(Energy->current[0], Settings->flag2.current_resolution, temp_chr); DomoticzSensor(DZ_CURRENT, temp_chr); // Current } dtostrfd(Energy->total_sum * 1000, 1, temp_chr); DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr); // PowerUsage, EnergyToday char energy_usage_chr[2][FLOATSZ]; char energy_return_chr[2][FLOATSZ]; dtostrfd(RtcEnergySettings.energy_usage.usage_total_kWh[0], 1, energy_usage_chr[0]); // Tariff1 dtostrfd(RtcEnergySettings.energy_usage.usage_total_kWh[1], 1, energy_usage_chr[1]); // Tariff2 dtostrfd(RtcEnergySettings.energy_usage.return_total_kWh[0], 1, energy_return_chr[0]); dtostrfd(RtcEnergySettings.energy_usage.return_total_kWh[1], 1, energy_return_chr[1]); DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (show_energy_period) { if (Energy->voltage_available) { KnxSensor(KNX_ENERGY_VOLTAGE, Energy->voltage[0]); } if (Energy->current_available) { KnxSensor(KNX_ENERGY_CURRENT, Energy->current[0]); } KnxSensor(KNX_ENERGY_POWER, active_power_sum); if (!Energy->type_dc) { KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]); } KnxSensor(KNX_ENERGY_DAILY, Energy->daily_sum); KnxSensor(KNX_ENERGY_TOTAL, Energy->total_sum); KnxSensor(KNX_ENERGY_YESTERDAY, Energy->yesterday_sum); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { uint8_t relays[ENERGY_MAX_PHASES]; uint32_t relay_show = 0; power_t power = TasmotaGlobal.power; for (uint32_t i = 0; i < Energy->phase_count; i++) { // Init relays and gui_indirect tables based on EnergyDisplay if ((ENERGY_DISPLAY_ROTATE == Energy->Settings.gui_display) || ((ENERGY_DISPLAY_ROTATE_POWERED_ON == Energy->Settings.gui_display) && (power >> i) &1) || (ENERGY_DISPLAY_TABS == Energy->Settings.gui_display)) { relays[relay_show] = i +1; Energy->gui_indirect[relay_show] = i; relay_show++; } } if (relay_show) { if (Energy->Settings.gui_display != ENERGY_DISPLAY_TABS) { if (relay_show > Energy->Settings.gui_cols) { Energy->gui_rotate++; } else { Energy->gui_rotate = 0; } } if (Energy->gui_rotate >= relay_show) { Energy->gui_rotate = 0; } Energy->gui_offset = (Energy->gui_rotate / Energy->Settings.gui_cols) * Energy->Settings.gui_cols; Energy->gui_count = relay_show - Energy->gui_offset; if (Energy->gui_count > Energy->Settings.gui_cols) { Energy->gui_count = Energy->Settings.gui_cols; } WSContentSend_P(PSTR("")); // Close current table as we will use different column count bool label_o = voltage_common; if (ENERGY_DISPLAY_TABS == Energy->Settings.gui_display) { uint32_t tabs = (relay_show -1 + Energy->Settings.gui_cols) / Energy->Settings.gui_cols; if (tabs > 1) { WSContentSend_P(PSTR("{t}")); // {t} = uint32_t cols_width = 100 / tabs; uint32_t current_tab = Energy->gui_rotate / Energy->Settings.gui_cols; for (uint32_t idx = 0; idx < tabs; idx++) { WSContentSend_P(PSTR(""), // &k03 is related to WebGetArg("k", tmp, sizeof(tmp)); cols_width, (current_tab == idx) ? WebColor(COL_BACKGROUND) : WebColor(COL_FORM), (current_tab == idx) ? "bold" : "normal", idx, (label_o) ? "O" : "L", (idx *Energy->Settings.gui_cols) +1); } WSContentSend_P(PSTR("
")); // Close current table as we will use different column count } } // {s}Head1{e} // {s}Head1Head2{e} // {s}Head1Head2Head3{e} // {s}Head1Head2Head3Head4{e} WSContentSend_P(PSTR("{t}{s}")); // First column is empty ({t} = , {s} = "), (no_label) ? "" : (label_o) ? "O" : "L", (no_label) ? "" : itoa(relays[Energy->gui_offset +i], number, 10)); } WSContentSend_P(PSTR(") if (Energy->voltage_available) { WSContentSend_PD(HTTP_SNS_VOLTAGE, WebEnergyFmt(Energy->voltage, Settings->flag2.voltage_resolution, voltage_common)); } if (!isnan(Energy->frequency[0])) { WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"), WebEnergyFmt(Energy->frequency, Settings->flag2.frequency_resolution, frequency_common)); } if (Energy->current_available) { WSContentSend_PD(HTTP_SNS_CURRENT, WebEnergyFmt(Energy->current, Settings->flag2.current_resolution)); } WSContentSend_PD(HTTP_SNS_POWER, WebEnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution)); if (!Energy->type_dc) { if (Energy->current_available && Energy->voltage_available) { WSContentSend_PD(HTTP_SNS_POWERUSAGE_APPARENT, WebEnergyFmt(apparent_power, Settings->flag2.wattage_resolution)); WSContentSend_PD(HTTP_SNS_POWERUSAGE_REACTIVE, WebEnergyFmt(reactive_power, Settings->flag2.wattage_resolution)); WSContentSend_PD(HTTP_SNS_POWER_FACTOR, WebEnergyFmt(power_factor, 2)); } } if (abs(negative_phases) != Energy->phase_count) { // Provide total power if producing power (PV) and multi phase WSContentSend_PD(HTTP_SNS_POWER_TOTAL, WebEnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution, 3)); } WSContentSend_PD(HTTP_SNS_ENERGY_TODAY, WebEnergyFmt(Energy->daily_kWh, Settings->flag2.energy_resolution, 2)); WSContentSend_PD(HTTP_SNS_ENERGY_YESTERDAY, WebEnergyFmt(energy_yesterday_kWh, Settings->flag2.energy_resolution, 2)); WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, WebEnergyFmt(Energy->total, Settings->flag2.energy_resolution, 2)); if (!isnan(Energy->export_active[0])) { uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 2 : 1; WSContentSend_PD(HTTP_SNS_EXPORT_ACTIVE, WebEnergyFmt(Energy->export_active, Settings->flag2.energy_resolution, single)); } XnrgCall(FUNC_WEB_COL_SENSOR); WSContentSend_P(PSTR("
) bool no_label = (1 == Energy->phase_count); char number[4]; for (uint32_t i = 0; i < Energy->gui_count; i++) { WSContentSend_P(PSTR("%s%s{e}")); // Last column is units ({e} =
{t}")); // {t} = - Define for next FUNC_WEB_SENSOR XnrgCall(FUNC_WEB_SENSOR); } #endif // USE_WEBSERVER } EnergyFmtFree(); } #ifdef USE_WEBSERVER void EnergyWebGetArg(void) { char tmp[8]; // WebGetArg numbers only WebGetArg(PSTR("k03"), tmp, sizeof(tmp)); // relay gtoups if (strlen(tmp)) { Energy->gui_rotate = atoi(tmp) * Energy->Settings.gui_cols; } } #endif // USE_WEBSERVER /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv03(uint32_t function) { bool result = false; if (FUNC_PRE_INIT == function) { EnergyDrvInit(); } else if (TasmotaGlobal.energy_driver) { switch (function) { case FUNC_LOOP: case FUNC_SLEEP_LOOP: XnrgCall(FUNC_LOOP); break; case FUNC_EVERY_100_MSECOND: case FUNC_EVERY_250_MSECOND: if (TasmotaGlobal.uptime > 4) { XnrgCall(function); } break; case FUNC_EVERY_SECOND: XnrgCall(FUNC_EVERY_SECOND); break; case FUNC_SERIAL: result = XnrgCall(FUNC_SERIAL); break; case FUNC_RESET_SETTINGS: EnergySettingsLoad(1); break; case FUNC_RESTORE_SETTINGS: result = EnergySettingsRestore(); break; case FUNC_SAVE_SETTINGS: EnergySettingsSave(); EnergyRtcSettingsSave(); break; case FUNC_SET_POWER: Energy->power_steady_counter = 2; break; case FUNC_COMMAND: result = DecodeCommand(kEnergyCommands, EnergyCommand); break; case FUNC_NETWORK_UP: XnrgCall(FUNC_NETWORK_UP); break; case FUNC_NETWORK_DOWN: XnrgCall(FUNC_NETWORK_DOWN); break; case FUNC_ACTIVE: result = true; break; } } return result; } bool Xsns03(uint32_t function) { bool result = false; if (TasmotaGlobal.energy_driver) { switch (function) { case FUNC_EVERY_SECOND: EnergyEverySecond(); break; case FUNC_JSON_APPEND: EnergyShow(true); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: EnergyShow(false); break; case FUNC_WEB_GET_ARG: EnergyWebGetArg(); break; #endif // USE_WEBSERVER case FUNC_SAVE_BEFORE_RESTART: EnergySaveState(); break; case FUNC_INIT: EnergySnsInit(); break; } } return result; } #endif // USE_ENERGY_SENSOR #endif // ESP32