/* xsns_08_htu21.ino - HTU21 temperature and humidity sensor support for Tasmota Copyright (C) 2021 Heiko Krupp and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_HTU /*********************************************************************************************\ * HTU21 - Temperature and Humidity * * Source: Heiko Krupp * * I2C Address: 0x40 \*********************************************************************************************/ #define XSNS_08 8 #define XI2C_09 9 // See I2CDEVICES.md #define HTU21_ADDR 0x40 #define SI7013_CHIPID 0x0D #define SI7020_CHIPID 0x14 #define SI7021_CHIPID 0x15 #define HTU21_CHIPID 0x32 #define HTU21_READTEMP 0xE3 #define HTU21_READHUM 0xE5 #define HTU21_WRITEREG 0xE6 #define HTU21_READREG 0xE7 #define HTU21_RESET 0xFE #define HTU21_HEATER_WRITE 0x51 #define HTU21_HEATER_READ 0x11 #define HTU21_SERIAL2_READ1 0xFC /* Read 3rd two Serial bytes */ #define HTU21_SERIAL2_READ2 0xC9 /* Read 4th two Serial bytes */ #define HTU21_HEATER_ON 0x04 #define HTU21_HEATER_OFF 0xFB #define HTU21_RES_RH12_T14 0x00 // Default #define HTU21_RES_RH8_T12 0x01 #define HTU21_RES_RH10_T13 0x80 #define HTU21_RES_RH11_T11 0x81 #define HTU21_CRC8_POLYNOM 0x13100 const char kHtuTypes[] PROGMEM = "HTU21|SI7013|SI7020|SI7021|T/RH?"; struct { float temperature = 0; float humidity = 0; uint8_t address; uint8_t bus; uint8_t type = 0; uint8_t delay_temp; uint8_t delay_humidity = 50; uint8_t valid = 0; char types[7]; } Htu; /*********************************************************************************************/ uint8_t HtuCheckCrc8(uint16_t data) { for (uint32_t bit = 0; bit < 16; bit++) { if (data & 0x8000) { data = (data << 1) ^ HTU21_CRC8_POLYNOM; } else { data <<= 1; } } return data >>= 8; } bool HtuReset(void) { /* TwoWire& myWire = I2cGetWire(Htu.bus); if (&myWire == nullptr) { return false; } // No valid I2c bus myWire.beginTransmission(HTU21_ADDR); myWire.write(HTU21_RESET); myWire.endTransmission(); */ I2cWrite0(HTU21_ADDR, HTU21_RESET, Htu.bus); delay(15); // Reset takes 15ms return true; } uint8_t HtuReadDeviceId(void) { if (!HtuReset()) { return 0; }; // Fixes ESP32 sensor loss at restart /* uint16_t deviceID = 0; uint8_t checksum = 0; TwoWire& myWire = I2cGetWire(Htu.bus); myWire.beginTransmission(HTU21_ADDR); myWire.write(HTU21_SERIAL2_READ1); myWire.write(HTU21_SERIAL2_READ2); myWire.endTransmission(); myWire.requestFrom(HTU21_ADDR, 3); deviceID = myWire.read() << 8; deviceID |= myWire.read(); checksum = myWire.read(); if (HtuCheckCrc8(deviceID) == checksum) { deviceID = deviceID >> 8; } else { deviceID = 0; } */ uint8_t data[3]; I2cReadBuffer(HTU21_ADDR, HTU21_SERIAL2_READ2 << 8 | HTU21_SERIAL2_READ1, data, 3, Htu.bus); uint16_t deviceID = (data[0] << 8) | data[1]; if (HtuCheckCrc8(deviceID) == data[2]) { deviceID = deviceID >> 8; } else { deviceID = 0; } return (uint8_t)deviceID; } void HtuSetResolution(uint8_t resolution) { uint8_t current = I2cRead8(HTU21_ADDR, HTU21_READREG, Htu.bus); current &= 0x7E; // Replace current resolution bits with 0 current |= resolution; // Add new resolution bits to register I2cWrite8(HTU21_ADDR, HTU21_WRITEREG, current, Htu.bus); } void HtuHeater(uint8_t heater) { uint8_t current = I2cRead8(HTU21_ADDR, HTU21_READREG, Htu.bus); switch(heater) { case HTU21_HEATER_ON : current |= heater; break; case HTU21_HEATER_OFF : current &= heater; break; default : current &= heater; break; } I2cWrite8(HTU21_ADDR, HTU21_WRITEREG, current, Htu.bus); } void HtuInit(void) { HtuReset(); HtuHeater(HTU21_HEATER_OFF); HtuSetResolution(HTU21_RES_RH12_T14); } bool HtuI2cRead(uint8_t reg, uint8_t hdelay, uint16_t &sensorval) { if (!I2cWrite0(HTU21_ADDR, reg, Htu.bus)) { return false; } delay(hdelay); // Sensor time at max resolution uint8_t data[3] = { 0 }; if (!I2cReadBuffer0(HTU21_ADDR, data, 3, Htu.bus)) { sensorval = data[0] << 8 | data[1]; // MSB, LSB } if (HtuCheckCrc8(sensorval) != data[2]) { return false; } // Checksum mismatch return true; } bool HtuRead(void) { if (Htu.valid) { Htu.valid--; } uint16_t sensorval = 0; /* uint8_t checksum = 0; TwoWire& myWire = I2cGetWire(Htu.bus); myWire.beginTransmission(HTU21_ADDR); myWire.write(HTU21_READTEMP); if (myWire.endTransmission() != 0) { return false; } // In case of error delay(Htu.delay_temp); // Sensor time at max resolution myWire.requestFrom(HTU21_ADDR, 3); if (3 == myWire.available()) { sensorval = myWire.read() << 8; // MSB sensorval |= myWire.read(); // LSB checksum = myWire.read(); } if (HtuCheckCrc8(sensorval) != checksum) { return false; } // Checksum mismatch Htu.temperature = ConvertTemp(0.002681f * (float)sensorval - 46.85f); myWire.beginTransmission(HTU21_ADDR); myWire.write(HTU21_READHUM); if (myWire.endTransmission() != 0) { return false; } // In case of error delay(Htu.delay_humidity); // Sensor time at max resolution myWire.requestFrom(HTU21_ADDR, 3); if (3 <= myWire.available()) { sensorval = myWire.read() << 8; // MSB sensorval |= myWire.read(); // LSB checksum = myWire.read(); } if (HtuCheckCrc8(sensorval) != checksum) { return false; } // Checksum mismatch */ if (!HtuI2cRead(HTU21_READTEMP, Htu.delay_temp, sensorval)) { return false; } // Checksum mismatch Htu.temperature = ConvertTemp(0.002681f * (float)sensorval - 46.85f); if (!HtuI2cRead(HTU21_READHUM, Htu.delay_humidity, sensorval)) { return false; } // Checksum mismatch sensorval ^= 0x02; // clear status bits Htu.humidity = 0.001907f * (float)sensorval - 6; if (Htu.humidity > 100) { Htu.humidity = 100.0f; } if (Htu.humidity < 0) { Htu.humidity = 0.01f; } if ((0.00f == Htu.humidity) && (0.00f == Htu.temperature)) { Htu.humidity = 0.0f; } if ((Htu.temperature > 0.00f) && (Htu.temperature < 80.00f)) { Htu.humidity = (-0.15f) * (25 - Htu.temperature) + Htu.humidity; } Htu.humidity = ConvertHumidity(Htu.humidity); Htu.valid = SENSOR_MAX_MISS; return true; } /********************************************************************************************/ void HtuDetect(void) { Htu.address = HTU21_ADDR; for (Htu.bus = 0; Htu.bus < 2; Htu.bus++) { if (!I2cSetDevice(Htu.address, Htu.bus)) { continue; } Htu.type = HtuReadDeviceId(); if (Htu.type) { uint8_t index = 0; HtuInit(); switch (Htu.type) { case HTU21_CHIPID: Htu.delay_temp = 50; Htu.delay_humidity = 16; break; case SI7021_CHIPID: index++; // 3 case SI7020_CHIPID: index++; // 2 case SI7013_CHIPID: index++; // 1 Htu.delay_temp = 12; Htu.delay_humidity = 23; break; default: index = 4; Htu.delay_temp = 50; Htu.delay_humidity = 23; } GetTextIndexed(Htu.types, sizeof(Htu.types), index, kHtuTypes); I2cSetActiveFound(Htu.address, Htu.types, Htu.bus); break; } } } void HtuEverySecond(void) { if (TasmotaGlobal.uptime &1) { // Every 2 seconds // HTU21: 68mS, SI70xx: 37mS if (!HtuRead()) { AddLogMissed(Htu.types, Htu.valid); } } } void HtuShow(bool json) { if (Htu.valid) { TempHumDewShow(json, (0 == TasmotaGlobal.tele_period), Htu.types, Htu.temperature, Htu.humidity); } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns08(uint32_t function) { if (!I2cEnabled(XI2C_09)) { return false; } bool result = false; if (FUNC_INIT == function) { HtuDetect(); } else if (Htu.type) { switch (function) { case FUNC_EVERY_SECOND: HtuEverySecond(); break; case FUNC_JSON_APPEND: HtuShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: HtuShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_HTU #endif // USE_I2C