/* support_wifi.ino - wifi support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*********************************************************************************************\ * Wifi \*********************************************************************************************/ #ifndef WIFI_RSSI_THRESHOLD // Decrease the roam threshold from 10 to 5 to address devices connecting at very low RSSI and being close to inoperative #define WIFI_RSSI_THRESHOLD 5 // Difference in dB between current network and scanned network #endif #ifndef WIFI_RESCAN_MINUTES // Increase rescan interval from 44 to 5 minutes to improve ability for devices to reach network harmony #define WIFI_RESCAN_MINUTES 5 // Number of minutes between wifi network rescan #endif const uint8_t WIFI_CONFIG_SEC = 180; // seconds before restart // Drop from 20 seconds to 5 seconds since we control the reconnections, not the Arduino SDK const uint8_t WIFI_CHECK_SEC = 5; // seconds const uint8_t WIFI_RETRY_OFFSET_SEC = 20; // seconds #include // Wifi, MQTT, Ota, WifiManager #if LWIP_IPV6 #include // IPv6 DualStack #endif // LWIP_IPV6=1 struct WIFI { uint32_t last_event = 0; // Last wifi connection event uint32_t downtime = 0; // Wifi down duration uint16_t link_count = 0; // Number of wifi re-connect uint8_t counter; uint8_t retry_init; uint8_t retry; uint8_t status; uint8_t config_type = 0; uint8_t config_counter = 0; uint8_t mdns_begun = 0; // mDNS active uint8_t scan_state; uint8_t bssid[6] = {0}; uint8_t bssid_last[6] = {0}; // store the last connect bssid int8_t best_network_db; } Wifi; int WifiGetRssiAsQuality(int rssi) { int quality = 0; if (rssi <= -100) { quality = 0; } else if (rssi >= -50) { quality = 100; } else { quality = 2 * (rssi + 100); } return quality; } bool WifiConfigCounter(void) { if (Wifi.config_counter) { Wifi.config_counter = WIFI_CONFIG_SEC; } return (Wifi.config_counter); } void WifiConfig(uint8_t type) { if (!Wifi.config_type) { if ((WIFI_RETRY == type) || (WIFI_WAIT == type)) { return; } #ifdef USE_EMULATION UdpDisconnect(); #endif // USE_EMULATION WiFi.disconnect(); // Solve possible Wifi hangs Wifi.config_type = type; #ifndef USE_WEBSERVER if (WIFI_MANAGER == Wifi.config_type) { Wifi.config_type = WIFI_SERIAL; } #endif // USE_WEBSERVER Wifi.config_counter = WIFI_CONFIG_SEC; // Allow up to WIFI_CONFIG_SECS seconds for phone to provide ssid/pswd Wifi.counter = Wifi.config_counter +5; blinks = 1999; if (WIFI_RESTART == Wifi.config_type) { restart_flag = 2; } else if (WIFI_SERIAL == Wifi.config_type) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_6_SERIAL " " D_ACTIVE_FOR_3_MINUTES)); } #ifdef USE_WEBSERVER else if (WIFI_MANAGER == Wifi.config_type || WIFI_MANAGER_RESET_ONLY == Wifi.config_type) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_2_WIFIMANAGER " " D_ACTIVE_FOR_3_MINUTES)); WifiManagerBegin(WIFI_MANAGER_RESET_ONLY == Wifi.config_type); } #endif // USE_WEBSERVER } } void WifiSetMode(WiFiMode_t wifi_mode) { if (WiFi.getMode() == wifi_mode) { return; } if (wifi_mode != WIFI_OFF) { // See: https://github.com/esp8266/Arduino/issues/6172#issuecomment-500457407 WiFi.forceSleepWake(); // Make sure WiFi is really active. delay(100); } uint32_t retry = 2; while (!WiFi.mode(wifi_mode) && retry--) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR("Retry set Mode...")); delay(100); } if (wifi_mode == WIFI_OFF) { delay(1000); WiFi.forceSleepBegin(); delay(1); } else { delay(30); // Must allow for some time to init. } } void WiFiSetSleepMode(void) { /* Excerpt from the esp8266 non os sdk api reference (v2.2.1): * Sets sleep type for power saving. Set WIFI_NONE_SLEEP to disable power saving. * - Default mode: WIFI_MODEM_SLEEP. * - In order to lower the power comsumption, ESP8266 changes the TCP timer * tick from 250ms to 3s in WIFI_LIGHT_SLEEP mode, which leads to increased timeout for * TCP timer. Therefore, the WIFI_MODEM_SLEEP or deep-sleep mode should be used * where there is a requirement for the accurancy of the TCP timer. * * Sleep is disabled in core 2.4.1 and 2.4.2 as there are bugs in their SDKs * See https://github.com/arendst/Tasmota/issues/2559 */ // Sleep explanation: https://github.com/esp8266/Arduino/blob/3f0c601cfe81439ce17e9bd5d28994a7ed144482/libraries/ESP8266WiFi/src/ESP8266WiFiGeneric.cpp#L255 #if defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2) #else // Enabled in 2.3.0, 2.4.0 and stage if (sleep && Settings.flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep WiFi.setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times } else { WiFi.setSleepMode(WIFI_MODEM_SLEEP); // Disable sleep (Esp8288/Arduino core and sdk default) } #endif WifiSetOutputPower(); } void WifiBegin(uint8_t flag, uint8_t channel) { const char kWifiPhyMode[] = " BGN"; #ifdef USE_EMULATION UdpDisconnect(); #endif // USE_EMULATION #ifdef ARDUINO_ESP8266_RELEASE_2_3_0 // (!strncmp_P(ESP.getSdkVersion(),PSTR("1.5.3"),5)) AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_PATCH_ISSUE_2186)); // WiFi.mode(WIFI_OFF); // See https://github.com/esp8266/Arduino/issues/2186 WifiSetMode(WIFI_OFF); #endif WiFi.persistent(false); // Solve possible wifi init errors (re-add at 6.2.1.16 #4044, #4083) WiFi.disconnect(true); // Delete SDK wifi config delay(200); // WiFi.mode(WIFI_STA); // Disable AP mode WifiSetMode(WIFI_STA); WiFiSetSleepMode(); // if (WiFi.getPhyMode() != WIFI_PHY_MODE_11N) { WiFi.setPhyMode(WIFI_PHY_MODE_11N); } // B/G/N // if (WiFi.getPhyMode() != WIFI_PHY_MODE_11G) { WiFi.setPhyMode(WIFI_PHY_MODE_11G); } // B/G if (!WiFi.getAutoConnect()) { WiFi.setAutoConnect(true); } // Handle the reconnection in WifiCheckIp() since the autoreconnect keeps sending deauthentication messages which causes the AP to block traffic as it looks like an DoS attack // This needs to be explicitly called as "false" otherwise the default is enabled WiFi.setAutoReconnect(false); switch (flag) { case 0: // AP1 case 1: // AP2 Settings.sta_active = flag; break; case 2: // Toggle Settings.sta_active ^= 1; } // 3: Current AP if (!strlen(SettingsText(SET_STASSID1 + Settings.sta_active))) { Settings.sta_active ^= 1; // Skip empty SSID } if (Settings.ip_address[0]) { WiFi.config(Settings.ip_address[0], Settings.ip_address[1], Settings.ip_address[2], Settings.ip_address[3]); // Set static IP } WiFi.hostname(my_hostname); char stemp[40] = { 0 }; if (channel) { WiFi.begin(SettingsText(SET_STASSID1 + Settings.sta_active), SettingsText(SET_STAPWD1 + Settings.sta_active), channel, Wifi.bssid); // Add connected BSSID and channel for multi-AP installations char hex_char[18]; snprintf_P(stemp, sizeof(stemp), PSTR(" Channel %d BSSId %s"), channel, ToHex_P((unsigned char*)Wifi.bssid, 6, hex_char, sizeof(hex_char), ':')); } else { WiFi.begin(SettingsText(SET_STASSID1 + Settings.sta_active), SettingsText(SET_STAPWD1 + Settings.sta_active)); } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECTING_TO_AP "%d %s%s " D_IN_MODE " 11%c " D_AS " %s..."), Settings.sta_active +1, SettingsText(SET_STASSID1 + Settings.sta_active), stemp, kWifiPhyMode[WiFi.getPhyMode() & 0x3], my_hostname); #if LWIP_IPV6 for (bool configured = false; !configured;) { uint16_t cfgcnt = 0; for (auto addr : addrList) { if ((configured = !addr.isLocal() && addr.isV6()) || cfgcnt==30) { AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI "Got IPv6 global address %s"), addr.toString().c_str()); break; // IPv6 is mandatory but stop after 15 seconds } delay(500); // Loop until real IPv6 address is aquired or too many tries failed cfgcnt++; } } #endif // LWIP_IPV6=1 } void WifiBeginAfterScan(void) { // Not active if (0 == Wifi.scan_state) { return; } // Init scan when not connected if (1 == Wifi.scan_state) { memset((void*) &Wifi.bssid, 0, sizeof(Wifi.bssid)); Wifi.best_network_db = -127; Wifi.scan_state = 3; } // Init scan when connected if (2 == Wifi.scan_state) { uint8_t* bssid = WiFi.BSSID(); // Get current bssid memcpy((void*) &Wifi.bssid, (void*) bssid, sizeof(Wifi.bssid)); Wifi.best_network_db = WiFi.RSSI(); // Get current rssi and add threshold if (Wifi.best_network_db < -WIFI_RSSI_THRESHOLD) { Wifi.best_network_db += WIFI_RSSI_THRESHOLD; } Wifi.scan_state = 3; } // Init scan if (3 == Wifi.scan_state) { if (WiFi.scanComplete() != WIFI_SCAN_RUNNING) { WiFi.scanNetworks(true); // Start wifi scan async Wifi.scan_state++; AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR("Network (re)scan started...")); return; } } int8_t wifi_scan_result = WiFi.scanComplete(); // Check scan done if (4 == Wifi.scan_state) { if (wifi_scan_result != WIFI_SCAN_RUNNING) { Wifi.scan_state++; } } // Scan done if (5 == Wifi.scan_state) { uint32_t number_known = 0; // count the number of known AP's so we can clear the Wifi.bssid_last if there is only one int32_t channel_max = 0; // No scan result int8_t ap_max = 3; // AP default if not found uint8_t bssid_max[6]; // Save last bssid memcpy((void*) &bssid_max, (void*) &Wifi.bssid, sizeof(bssid_max)); // store the strongest bssid int32_t channel = 0; // No scan result int8_t ap = 3; // AP default if not found uint8_t last_bssid[6]; // Save last bssid memcpy((void*) &last_bssid, (void*) &Wifi.bssid, sizeof(last_bssid)); if (wifi_scan_result > 0) { // Networks found for (uint32_t i = 0; i < wifi_scan_result; ++i) { String ssid_scan; int32_t rssi_scan; uint8_t sec_scan; uint8_t* bssid_scan; int32_t chan_scan; bool hidden_scan; WiFi.getNetworkInfo(i, ssid_scan, sec_scan, rssi_scan, bssid_scan, chan_scan, hidden_scan); bool known = false; uint32_t j; for (j = 0; j < MAX_SSIDS; j++) { if (ssid_scan == SettingsText(SET_STASSID1 + j)) { // SSID match known = true; number_known++; if (rssi_scan > Wifi.best_network_db) { // Best network if (sec_scan == ENC_TYPE_NONE || SettingsText(SET_STAPWD1 + j)) { // Check for passphrase if not open wlan // store the max values in case there is only one AP and we need to try to reconnect memcpy((void*) &bssid_max, (void*) bssid_scan, sizeof(bssid_max)); channel_max = chan_scan; ap_max = j; // if the bssid is not the same as the last failed attempt, force picking the next strongest AP to prevent getting stuck on a strong RSSI, but poor channel health for (uint32_t i = 0; i < sizeof(Wifi.bssid_last); i++) { if (bssid_scan[i] != Wifi.bssid_last[i]) { Wifi.best_network_db = (int8_t)rssi_scan; channel = chan_scan; ap = j; // AP1 or AP2 memcpy((void*) &Wifi.bssid, (void*) bssid_scan, sizeof(Wifi.bssid)); // save the last bssid used memcpy((void*) &Wifi.bssid_last, (void*) bssid_scan, sizeof(Wifi.bssid_last)); break; } } } } break; } } char hex_char[18]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Network %d, AP%c, SSId %s, Channel %d, BSSId %s, RSSI %d, Encryption %d"), i, (known) ? (j) ? '2' : '1' : '-', ssid_scan.c_str(), chan_scan, ToHex_P((unsigned char*)bssid_scan, 6, hex_char, sizeof(hex_char), ':'), rssi_scan, (sec_scan == ENC_TYPE_NONE) ? 0 : 1); delay(0); } WiFi.scanDelete(); // Clean up Ram delay(0); } // reset the last bssid if there is only one AP to allow the reconnect of the same AP on the next cycle if (number_known == 1) { // clear the last value memset((void*) &Wifi.bssid_last, 0, sizeof(Wifi.bssid_last)); memcpy((void*) &Wifi.bssid, (void*) bssid_max, sizeof(Wifi.bssid)); channel = channel_max; ap = ap_max; } Wifi.scan_state = 0; // If bssid changed then (re)connect wifi for (uint32_t i = 0; i < sizeof(Wifi.bssid); i++) { if (last_bssid[i] != Wifi.bssid[i]) { WifiBegin(ap, channel); // 0 (AP1), 1 (AP2) or 3 (default AP) break; } } } } uint16_t WifiLinkCount(void) { return Wifi.link_count; } String WifiDowntime(void) { return GetDuration(Wifi.downtime); } void WifiSetState(uint8_t state) { if (state == global_state.wifi_down) { if (state) { rules_flag.wifi_connected = 1; Wifi.link_count++; Wifi.downtime += UpTime() - Wifi.last_event; } else { rules_flag.wifi_disconnected = 1; Wifi.last_event = UpTime(); } } global_state.wifi_down = state ^1; } #if LWIP_IPV6 bool WifiCheckIPv6(void) { bool ipv6_global=false; for (auto a : addrList) { if(!a.isLocal() && a.isV6()) ipv6_global=true; } return ipv6_global; } String WifiGetIPv6(void) { for (auto a : addrList) { if(!a.isLocal() && a.isV6()) return a.toString(); } return ""; } bool WifiCheckIPAddrStatus(void) // Return false for 169.254.x.x or fe80::/64 { bool ip_global=false; for (auto a : addrList) { if(!a.isLocal()) ip_global=true; } return ip_global; } #endif // LWIP_IPV6=1 void WifiCheckIp(void) { #if LWIP_IPV6 if(WifiCheckIPAddrStatus()) { Wifi.status = WL_CONNECTED; #else if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0)) { #endif // LWIP_IPV6=1 // initialize the last connect bssid since we had a successful connection memset((void*) &Wifi.bssid_last, 0, sizeof(Wifi.bssid_last)); WifiSetState(1); Wifi.counter = WIFI_CHECK_SEC; Wifi.retry = Wifi.retry_init; #ifdef USE_DISCOVERY #ifdef WEBSERVER_ADVERTISE if (2 == Wifi.mdns_begun) { MDNS.update(); AddLog_P(LOG_LEVEL_DEBUG_MORE, D_LOG_MDNS, "MDNS.update"); } #endif // USE_DISCOVERY #endif // WEBSERVER_ADVERTISE } else { WifiSetState(0); uint8_t wifi_config_tool = Settings.sta_config; Wifi.status = WiFi.status(); switch (Wifi.status) { case WL_CONNECTED: AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_NO_IP_ADDRESS)); // if poor channel health prevents DHCP broadcast from succeeding, restart the request // The code will eventually do a recoonect when the 1/2 interval is hit to try another access point if this remains unsuccessful wifi_station_dhcpc_start(); break; case WL_NO_SSID_AVAIL: AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_NOT_REACHED)); break; case WL_CONNECT_FAILED: AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_WRONG_PASSWORD)); break; default: // WL_IDLE_STATUS and WL_DISCONNECTED // log on the 1/2 or full interval if (!Wifi.retry || ((Wifi.retry_init / 2) == Wifi.retry)) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_TIMEOUT)); } else { if (!strlen(SettingsText(SET_STASSID1)) && !strlen(SettingsText(SET_STASSID2))) { wifi_config_tool = WIFI_MANAGER; // Skip empty SSIDs and start Wifi config tool Wifi.retry = 0; } else { AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_ATTEMPTING_CONNECTION)); } } } if (Wifi.retry) { if (Settings.flag3.use_wifi_scan) { // SetOption56 - Scan wifi network at restart for configured AP's // check the 1/2 interval as well when rescanning - scan state machine takes 4 seconds if ((Wifi.retry_init == Wifi.retry) || ((Wifi.retry_init / 2) == Wifi.retry)){ Wifi.scan_state = 1; // Select scanned SSID } } else { if (Wifi.retry_init == Wifi.retry) { WifiBegin(3, 0); // Select default SSID } if ((Settings.sta_config != WIFI_WAIT) && ((Wifi.retry_init / 2) == Wifi.retry)) { WifiBegin(2, 0); // Select alternate SSID } } Wifi.counter = 1; Wifi.retry--; } else { WifiConfig(wifi_config_tool); Wifi.counter = 1; Wifi.retry = Wifi.retry_init; } } } void WifiCheck(uint8_t param) { Wifi.counter--; switch (param) { case WIFI_SERIAL: case WIFI_MANAGER: WifiConfig(param); break; default: if (Wifi.config_counter) { Wifi.config_counter--; Wifi.counter = Wifi.config_counter +5; if (Wifi.config_counter) { if (!Wifi.config_counter) { if (strlen(WiFi.SSID().c_str())) { SettingsUpdateText(SET_STASSID1, WiFi.SSID().c_str()); } if (strlen(WiFi.psk().c_str())) { SettingsUpdateText(SET_STAPWD1, WiFi.psk().c_str()); } Settings.sta_active = 0; AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_WCFG_2_WIFIMANAGER D_CMND_SSID "1 %s"), SettingsText(SET_STASSID1)); } } if (!Wifi.config_counter) { // SettingsSdkErase(); // Disabled v6.1.0b due to possible bad wifi connects restart_flag = 2; } } else { if (Wifi.scan_state) { WifiBeginAfterScan(); } if (Wifi.counter <= 0) { AddLog_P(LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CHECKING_CONNECTION)); Wifi.counter = WIFI_CHECK_SEC; WifiCheckIp(); } #if LWIP_IPV6 if (WifiCheckIPAddrStatus()) { #else if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0) && !Wifi.config_type) { #endif // LWIP_IPV6=1 WifiSetState(1); if (Settings.flag3.use_wifi_rescan) { // SetOption57 - Scan wifi network every 44 minutes for configured AP's if (!(uptime % (60 * WIFI_RESCAN_MINUTES))) { Wifi.scan_state = 2; } } #ifdef FIRMWARE_MINIMAL if (1 == RtcSettings.ota_loader) { RtcSettings.ota_loader = 0; ota_state_flag = 3; } #endif // FIRMWARE_MINIMAL #ifdef USE_DISCOVERY if (Settings.flag3.mdns_enabled) { // SetOption55 - Control mDNS service if (!Wifi.mdns_begun) { // if (mdns_delayed_start) { // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_MDNS D_ATTEMPTING_CONNECTION)); // mdns_delayed_start--; // } else { // mdns_delayed_start = Settings.param[P_MDNS_DELAYED_START]; Wifi.mdns_begun = (uint8_t)MDNS.begin(my_hostname); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MDNS "%s"), (Wifi.mdns_begun) ? D_INITIALIZED : D_FAILED); // } } } #endif // USE_DISCOVERY #ifdef USE_WEBSERVER if (Settings.webserver) { StartWebserver(Settings.webserver, WiFi.localIP()); #ifdef USE_DISCOVERY #ifdef WEBSERVER_ADVERTISE if (1 == Wifi.mdns_begun) { Wifi.mdns_begun = 2; MDNS.addService("http", "tcp", WEB_PORT); } #endif // WEBSERVER_ADVERTISE #endif // USE_DISCOVERY } else { StopWebserver(); } #ifdef USE_EMULATION if (Settings.flag2.emulation) { UdpConnect(); } #endif // USE_EMULATION #endif // USE_WEBSERVER #ifdef USE_KNX if (!knx_started && Settings.flag.knx_enabled) { // CMND_KNX_ENABLED KNXStart(); knx_started = true; } #endif // USE_KNX } else { WifiSetState(0); #ifdef USE_EMULATION UdpDisconnect(); #endif // USE_EMULATION Wifi.mdns_begun = 0; #ifdef USE_KNX knx_started = false; #endif // USE_KNX } } } } int WifiState(void) { int state = -1; if (!global_state.wifi_down) { state = WIFI_RESTART; } if (Wifi.config_type) { state = Wifi.config_type; } return state; } String WifiGetOutputPower(void) { char stemp1[TOPSZ]; dtostrfd((float)(Settings.wifi_output_power) / 10, 1, stemp1); return String(stemp1); } void WifiSetOutputPower(void) { WiFi.setOutputPower((float)(Settings.wifi_output_power) / 10); } void WifiConnect(void) { WifiSetState(0); WifiSetOutputPower(); WiFi.persistent(false); // Solve possible wifi init errors Wifi.status = 0; // lower the rety times now Tasmota control the reconnections, not the Arduino SDK // Wifi.retry_init = WIFI_RETRY_OFFSET_SEC + ((ESP.getChipId() & 0xF) * 2); Wifi.retry_init = WIFI_RETRY_OFFSET_SEC + (ESP.getChipId() & 0xF); Wifi.retry = Wifi.retry_init; Wifi.counter = 1; } // Enable from 6.0.0a until 6.1.0a - disabled due to possible cause of bad wifi connect on core 2.3.0 // Re-enabled from 6.3.0.7 with ESP.restart replaced by ESP.reset void WifiDisconnect(void) { // Courtesy of EspEasy WiFi.persistent(true); // use SDK storage of SSID/WPA parameters ETS_UART_INTR_DISABLE(); wifi_station_disconnect(); // this will store empty ssid/wpa into sdk storage ETS_UART_INTR_ENABLE(); WiFi.persistent(false); // Do not use SDK storage of SSID/WPA parameters } void WifiShutdown(void) { delay(100); // Allow time for message xfer - disabled v6.1.0b if (Settings.flag.mqtt_enabled) { // SetOption3 - Enable MQTT MqttDisconnect(); } WifiDisconnect(); } void EspRestart(void) { WifiShutdown(); CrashDumpClear(); // Clear the stack dump in RTC // ESP.restart(); // This results in exception 3 on restarts on core 2.3.0 ESP.reset(); }