/* xdrv_23_zigbee_2a_devices_impl.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE /*********************************************************************************************\ * Implementation \*********************************************************************************************/ // // Create a new Z_Device entry in _devices. Only to be called if you are sure that no // entry with same shortaddr or longaddr exists. // Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) { if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return (Z_Device&) device_unk; } // it is not legal to create this entry Z_Device device(shortaddr, longaddr); dirty(); return _devices.addHead(device); } void Z_Devices::freeDeviceEntry(Z_Device *device) { if (device->manufacturerId) { free(device->manufacturerId); } if (device->modelId) { free(device->modelId); } if (device->friendlyName) { free(device->friendlyName); } free(device); } // // Scan all devices to find a corresponding shortaddr // Looks info device.shortaddr entry // In: // shortaddr (not BAD_SHORTADDR) // Out: // reference to device, or to device_unk if not found // (use foundDevice() to check if found) Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) { for (auto & elem : _devices) { if (elem.shortaddr == shortaddr) { return elem; } } return (Z_Device&) device_unk; } const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const { for (const auto & elem : _devices) { if (elem.shortaddr == shortaddr) { return elem; } } return device_unk; } // // Scan all devices to find a corresponding longaddr // Looks info device.longaddr entry // In: // longaddr (non null) // Out: // index in _devices of entry, -1 if not found // Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) { if (!longaddr) { return (Z_Device&) device_unk; } for (auto &elem : _devices) { if (elem.longaddr == longaddr) { return elem; } } return (Z_Device&) device_unk; } const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const { if (!longaddr) { return device_unk; } for (const auto &elem : _devices) { if (elem.longaddr == longaddr) { return elem; } } return device_unk; } // // Scan all devices to find a corresponding friendlyNme // Looks info device.friendlyName entry // In: // friendlyName (null terminated, should not be empty) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findFriendlyName(const char * name) const { if (!name) { return -1; } // if pointer is null size_t name_len = strlen(name); int32_t found = 0; if (name_len) { for (auto &elem : _devices) { if (elem.friendlyName) { if (strcasecmp(elem.friendlyName, name) == 0) { return found; } } found++; } } return -1; } uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const { const Z_Device & device = findLongAddr(longaddr); if (foundDevice(device)) { return device.shortaddr; // can be zero, if not yet registered } else { return BAD_SHORTADDR; } } uint16_t Z_Devices::isKnownIndex(uint32_t index) const { if (index < devicesSize()) { const Z_Device & device = devicesAt(index); return device.shortaddr; } else { return BAD_SHORTADDR; } } uint16_t Z_Devices::isKnownFriendlyName(const char * name) const { if ((!name) || (0 == strlen(name))) { return BAD_SHORTADDR; } // Error int32_t found = findFriendlyName(name); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.shortaddr; // can be zero, if not yet registered } else { return BAD_SHORTADDR; } } uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const { return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00 } // // We have a seen a shortaddr on the network, get the corresponding device object // Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) { if (BAD_SHORTADDR == shortaddr) { return (Z_Device&) device_unk; } // this is not legal Z_Device & device = findShortAddr(shortaddr); if (foundDevice(device)) { return device; } return createDeviceEntry(shortaddr, 0); } // find the Device object by its longaddr (unique key if not null) Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) { if (!longaddr) { return (Z_Device&) device_unk; } Z_Device & device = findLongAddr(longaddr); if (foundDevice(device)) { return device; } return createDeviceEntry(0, longaddr); } // Remove device from list, return true if it was known, false if it was not recorded bool Z_Devices::removeDevice(uint16_t shortaddr) { Z_Device & device = findShortAddr(shortaddr); if (foundDevice(device)) { _devices.remove(&device); dirty(); return true; } return false; } // // We have just seen a device on the network, update the info based on short/long addr // In: // shortaddr // longaddr (both can't be null at the same time) void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) { Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered if (s_found == l_found) { } else { // they don't match // the device with longaddr got a new shortaddr l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr // erase the previous shortaddr freeDeviceEntry(s_found); _devices.remove(s_found); dirty(); } } else if (foundDevice(*s_found)) { // shortaddr already exists but longaddr not // add the longaddr to the entry s_found->longaddr = longaddr; dirty(); } else if (foundDevice(*l_found)) { // longaddr entry exists, update shortaddr l_found->shortaddr = shortaddr; dirty(); } else { // neither short/lonf addr are found. if ((BAD_SHORTADDR != shortaddr) || longaddr) { createDeviceEntry(shortaddr, longaddr); } } } // // Clear all endpoints // void Z_Devices::clearEndpoints(uint16_t shortaddr) { Z_Device &device = getShortAddr(shortaddr); for (uint32_t i = 0; i < endpoints_max; i++) { device.endpoints[i] = 0; // no dirty here because it doesn't make sense to store it, does it? } } // // Add an endpoint to a shortaddr // void Z_Devices::addEndpoint(uint16_t shortaddr, uint8_t endpoint) { if (0x00 == endpoint) { return; } Z_Device &device = getShortAddr(shortaddr); for (uint32_t i = 0; i < endpoints_max; i++) { if (endpoint == device.endpoints[i]) { return; // endpoint already there } if (0 == device.endpoints[i]) { device.endpoints[i] = endpoint; dirty(); return; } } } // // Count the number of known endpoints // uint32_t Z_Devices::countEndpoints(uint16_t shortaddr) const { uint32_t count_ep = 0; const Z_Device & device =findShortAddr(shortaddr); if (!foundDevice(device)) return 0; for (uint32_t i = 0; i < endpoints_max; i++) { if (0 != device.endpoints[i]) { count_ep++; } } return count_ep; } // Find the first endpoint of the device uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const { // When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1 if (0x0000 == shortaddr) { return 1; } return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint } void Z_Devices::setStringAttribute(char*& attr, const char * str) { if (nullptr == str) { return; } // ignore a null parameter size_t str_len = strlen(str); if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything if (attr) { // we already have a value if (strcmp(attr, str) != 0) { // new value free(attr); // free previous value attr = nullptr; } else { return; // same value, don't change anything } } if (str_len) { attr = (char*) malloc(str_len + 1); strlcpy(attr, str, str_len + 1); } dirty(); } // // Sets the ManufId for a device. // No action taken if the device does not exist. // Inputs: // - shortaddr: 16-bits short address of the device. No action taken if the device is unknown // - str: string pointer, if nullptr it is considered as empty string // Impact: // - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash // void Z_Devices::setManufId(uint16_t shortaddr, const char * str) { setStringAttribute(getShortAddr(shortaddr).manufacturerId, str); } void Z_Devices::setModelId(uint16_t shortaddr, const char * str) { setStringAttribute(getShortAddr(shortaddr).modelId, str); } void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) { setStringAttribute(getShortAddr(shortaddr).friendlyName, str); } void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) { getShortAddr(shortaddr).setReachable(reachable); } void Z_Devices::setLQI(uint16_t shortaddr, uint8_t lqi) { if (shortaddr == localShortAddr) { return; } getShortAddr(shortaddr).lqi = lqi; } void Z_Devices::setLastSeenNow(uint16_t shortaddr) { if (shortaddr == localShortAddr) { return; } // Only update time if after 2020-01-01 0000. // Fixes issue where zigbee device pings before WiFi/NTP has set utc_time // to the correct time, and "last seen" calculations are based on the // pre-corrected last_seen time and the since-corrected utc_time. if (Rtc.utc_time < 1577836800) { return; } getShortAddr(shortaddr).last_seen = Rtc.utc_time; } void Z_Devices::setBatteryPercent(uint16_t shortaddr, uint8_t bp) { getShortAddr(shortaddr).batterypercent = bp; } // get the next sequance number for the device, or use the global seq number if device is unknown uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) { Z_Device & device = findShortAddr(shortaddr); if (foundDevice(device)) { device.seqNumber += 1; return device.seqNumber; } else { _seqNumber += 1; return _seqNumber; } } // General Zigbee device profile support void Z_Devices::setLightProfile(uint16_t shortaddr, uint8_t light_profile) { Z_Device &device = getShortAddr(shortaddr); if (device.setLightChannels(light_profile)) { dirty(); } } // Returns the device profile or 0xFF if the device or profile is unknown uint8_t Z_Devices::getLightProfile(uint16_t shortaddr) const { const Z_Device &device = findShortAddr(shortaddr); return device.getLightChannels(); } int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const { int8_t light_profile = getLightProfile(shortaddr); if (0x00 == (light_profile & 0xF0)) { return (light_profile & 0x07); } else { // not a bulb return -1; } } void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) { Z_Device &device = getShortAddr(shortaddr); if (device.hidden != hidden) { device.hidden = hidden; dirty(); } } // true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const { const Z_Device & device = findShortAddr(shortaddr); if (foundDevice(device)) { return device.hidden; } return true; // Fallback - Device is considered as hidden } // Deferred actions // Parse for a specific category, of all deferred for a device if category == 0xFF // Only with specific cluster number or for all clusters if cluster == 0xFFFF void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) { // iterate the list of deferred, and remove any linked to the shortaddr for (auto & defer : _deferred) { if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) { if ((0xFF == category) || (defer.category == category)) { if ((0xFFFF == cluster) || (defer.cluster == cluster)) { if ((0xFF == endpoint) || (defer.endpoint == endpoint)) { _deferred.remove(&defer); } } } } } } // Set timer for a specific device void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) { // First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway) if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster } // Now create the new timer Z_Deferred & deferred = _deferred.addHead(); deferred = { wait_ms + millis(), // timer shortaddr, groupaddr, cluster, endpoint, category, value, func }; } // Set timer after the already queued events // I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) { Z_Device & device = getShortAddr(shortaddr); uint32_t now_millis = millis(); if (TimeReached(device.defer_last_message_sent)) { device.defer_last_message_sent = now_millis; } // defer_last_message_sent equals now or a value in the future device.defer_last_message_sent += wait_ms; // for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func); } // Run timer at each tick // WARNING: don't set a new timer within a running timer, this causes memory corruption void Z_Devices::runTimer(void) { // visit all timers for (auto & defer : _deferred) { uint32_t timer = defer.timer; if (TimeReached(timer)) { (*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value); _deferred.remove(&defer); } } // check if we need to save to Flash if ((_saveTimer) && TimeReached(_saveTimer)) { saveZigbeeDevices(); _saveTimer = 0; } } // does the new payload conflicts with the existing payload, i.e. values would be overwritten // true - one attribute (except LinkQuality) woudl be lost, there is conflict // false - new attributes can be safely added bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const { const Z_Device & device = findShortAddr(shortaddr); if (!foundDevice(device)) { return false; } if (attr_list.isEmpty()) { return false; // if no previous value, no conflict } // compare groups if (device.attr_list.isValidGroupId() && attr_list.isValidGroupId()) { if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict } // compare src_ep if (device.attr_list.isValidSrcEp() && attr_list.isValidSrcEp()) { if (device.attr_list.src_ep != attr_list.src_ep) { return true; } } // LQI does not count as conflicting // parse all other parameters for (const auto & attr : attr_list) { const Z_attribute * curr_attr = device.attr_list.findAttribute(attr); if (nullptr != curr_attr) { if (!curr_attr->equalsVal(attr)) { return true; // the value already exists and is different - conflict! } } } return false; } void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) { Z_Device & device = getShortAddr(shortaddr); device.attr_list.mergeList(attr_list); } void Z_Devices::jsonPublishFlush(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (!device.valid()) { return; } // safeguard Z_attribute_list &attr_list = device.attr_list; if (!attr_list.isEmpty()) { const char * fname = zigbee_devices.getFriendlyName(shortaddr); bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname? // save parameters is global variables to be used by Rules gZbLastMessage.device = shortaddr; // %zbdevice% gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup% gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint% mqtt_data[0] = 0; // clear string // Do we prefix with `ZbReceived`? if (!Settings.flag4.remove_zbreceived) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":")); } // What key do we use, shortaddr or name? if (use_fname) { Response_P(PSTR("%s{\"%s\":{"), mqtt_data, fname); } else { Response_P(PSTR("%s{\"0x%04X\":{"), mqtt_data, shortaddr); } // Add "Device":"0x...." Response_P(PSTR("%s\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), mqtt_data, shortaddr); // Add "Name":"xxx" if name is present if (fname) { Response_P(PSTR("%s\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), mqtt_data, EscapeJSONString(fname).c_str()); } // Add all other attributes Response_P(PSTR("%s%s}}"), mqtt_data, attr_list.toString().c_str()); if (!Settings.flag4.remove_zbreceived) { Response_P(PSTR("%s}"), mqtt_data); } attr_list.reset(); // clear the attributes if (Settings.flag4.zigbee_distinct_topics) { if (Settings.flag4.zb_topic_fname && fname) { //Clean special characters and check size of friendly name char stemp[TOPSZ]; strlcpy(stemp, (!strlen(fname)) ? MQTT_TOPIC : fname, sizeof(stemp)); MakeValidMqtt(0, stemp); //Create topic with Prefix3 and cleaned up friendly name char frtopic[TOPSZ]; snprintf_P(frtopic, sizeof(frtopic), PSTR("%s/%s/" D_RSLT_SENSOR), SettingsText(SET_MQTTPREFIX3), stemp); MqttPublish(frtopic, Settings.flag.mqtt_sensor_retain); } else { char subtopic[16]; snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr); MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain); } } else { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); } XdrvRulesProcess(); // apply rules } } void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) { jsonPublishFlush(shortaddr); // flush any previous buffer jsonAppend(shortaddr, attr_list); jsonPublishFlush(shortaddr); // publish now } void Z_Devices::dirty(void) { _saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis(); } void Z_Devices::clean(void) { _saveTimer = 0; } // Parse the command parameters for either: // - a short address starting with "0x", example: 0x1234 // - a long address starting with "0x", example: 0x7CB03EBB0A0292DD // - a number 0..99, the index number in ZigbeeStatus // - a friendly name, between quotes, example: "Room_Temp" uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const { if (nullptr == param) { return BAD_SHORTADDR; } size_t param_len = strlen(param); char dataBuf[param_len + 1]; strcpy(dataBuf, param); RemoveSpace(dataBuf); uint16_t shortaddr = BAD_SHORTADDR; // start with unknown if (strlen(dataBuf) < 4) { // simple number 0..99 if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) { shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1); } } else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) { // starts with 0x if (strlen(dataBuf) < 18) { // expect a short address shortaddr = strtoull(dataBuf, nullptr, 0); if (short_must_be_known) { shortaddr = zigbee_devices.findShortAddr(shortaddr).shortaddr; // if not found, it reverts to the unknown_device with address BAD_SHORTADDR } // else we don't check if it's already registered to force unregistered devices } else { // expect a long address uint64_t longaddr = strtoull(dataBuf, nullptr, 0); shortaddr = zigbee_devices.isKnownLongAddr(longaddr); } } else { // expect a Friendly Name shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf); } return shortaddr; } // Display the tracked status for a light String Z_Devices::dumpLightState(uint16_t shortaddr) const { Z_attribute_list attr_list; char hex[8]; const Z_Device & device = findShortAddr(shortaddr); const char * fname = getFriendlyName(shortaddr); bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname? snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr); attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex); if (fname) { attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(fname); } if (foundDevice(device)) { // dump all known values attr_list.addAttribute(F("Reachable")).setBool(device.getReachable()); if (device.validPower()) { attr_list.addAttribute(F("Power")).setUInt(device.getPower()); } const Z_Data_Light & light = device.data.find(0); if (&light != nullptr) { light.toAttributes(attr_list, Z_Data_Light::type); // Exception, we need to convert Hue to 0..360 instead of 0..254 if (light.validHue()) { attr_list.findOrCreateAttribute(PSTR("Hue")).setUInt(light.getHue()); } } // Z_Data_Light::toAttributes(attr_list, device.data.find(0)); } Z_attribute_list attr_list_root; Z_attribute * attr_root; if (use_fname) { attr_root = &attr_list_root.addAttribute(fname); } else { attr_root = &attr_list_root.addAttribute(hex); } attr_root->setStrRaw(attr_list.toString(true).c_str()); return attr_list_root.toString(true); } // Dump the internal memory of Zigbee devices // Mode = 1: simple dump of devices addresses // Mode = 2: simple dump of devices addresses and names, endpoints, light String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const { Z_json_array json_arr; for (const auto & device : _devices) { uint16_t shortaddr = device.shortaddr; char hex[22]; // ignore non-current device, if device specified if ((BAD_SHORTADDR != status_shortaddr) && (status_shortaddr != shortaddr)) { continue; } Z_attribute_list attr_list; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr); attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex); if (device.friendlyName > 0) { attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(device.friendlyName); } if (2 <= dump_mode) { hex[0] = '0'; // prefix with '0x' hex[1] = 'x'; Uint64toHex(device.longaddr, &hex[2], 64); attr_list.addAttribute(F("IEEEAddr")).setStr(hex); if (device.modelId) { attr_list.addAttribute(F(D_JSON_MODEL D_JSON_ID)).setStr(device.modelId); } int8_t bulbtype = getHueBulbtype(shortaddr); if (bulbtype >= 0) { attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(bulbtype); // sign extend, 0xFF changed as -1 } if (device.manufacturerId) { attr_list.addAttribute(F("Manufacturer")).setStr(device.manufacturerId); } Z_json_array arr_ep; for (uint32_t i = 0; i < endpoints_max; i++) { uint8_t endpoint = device.endpoints[i]; if (0x00 == endpoint) { break; } arr_ep.add(endpoint); } attr_list.addAttribute(F("Endpoints")).setStrRaw(arr_ep.toString().c_str()); } json_arr.addStrRaw(attr_list.toString(true).c_str()); } return json_arr.toString(); } // Restore a single device configuration based on json export // Input: json element as expported by `ZbStatus2`` // Mandatory attribue: `Device` // // Returns: // 0 : Ok // <0 : Error // // Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]} int32_t Z_Devices::deviceRestore(JsonParserObject json) { // params uint16_t device = 0x0000; // 0x0000 is coordinator so considered invalid uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown const char * modelid = nullptr; const char * manufid = nullptr; const char * friendlyname = nullptr; int8_t bulbtype = -1; size_t endpoints_len = 0; // read mandatory "Device" JsonParserToken val_device = json[PSTR("Device")]; if (val_device) { device = (uint32_t) val_device.getUInt(device); } else { return -1; // missing "Device" attribute } ieeeaddr = json.getULong(PSTR("IEEEAddr"), ieeeaddr); // read "IEEEAddr" 64 bits in format "0x0000000000000000" friendlyname = json.getStr(PSTR("Name"), nullptr); // read "Name" modelid = json.getStr(PSTR("ModelId"), nullptr); manufid = json.getStr(PSTR("Manufacturer"), nullptr); JsonParserToken tok_bulbtype = json[PSTR(D_JSON_ZIGBEE_LIGHT)]; // update internal device information updateDevice(device, ieeeaddr); if (modelid) { setModelId(device, modelid); } if (manufid) { setManufId(device, manufid); } if (friendlyname) { setFriendlyName(device, friendlyname); } if (tok_bulbtype) { setLightProfile(device, tok_bulbtype.getInt()); } // read "Endpoints" JsonParserToken val_endpoints = json[PSTR("Endpoints")]; if (val_endpoints.isArray()) { JsonParserArray arr_ep = JsonParserArray(val_endpoints); clearEndpoints(device); // clear even if array is empty for (auto ep_elt : arr_ep) { uint8_t ep = ep_elt.getUInt(); if (ep) { addEndpoint(device, ep); } } } return 0; } Z_Data_Light & Z_Devices::getLight(uint16_t shortaddr) { return getShortAddr(shortaddr).data.get(); } /*********************************************************************************************\ * Export device specific attributes to ZbData \*********************************************************************************************/ void Z_Device::toAttributes(Z_attribute_list & attr_list) const { if (validLqi()) { attr_list.addAttribute(PSTR(D_CMND_ZIGBEE_LINKQUALITY)).setUInt(lqi); } if (validBatteryPercent()) { attr_list.addAttribute(PSTR("BatteryPercentage")).setUInt(batterypercent); } if (validLastSeen()) { attr_list.addAttribute(PSTR("LastSeen")).setUInt(last_seen); } } /*********************************************************************************************\ * Device specific data handlers \*********************************************************************************************/ void Z_Device::setPower(bool power_on, uint8_t ep) { data.get(ep).setPower(power_on); } bool Z_Device::validPower(uint8_t ep) const { const Z_Data_OnOff & onoff = data.find(ep); return (&onoff != nullptr); } bool Z_Device::getPower(uint8_t ep) const { const Z_Data_OnOff & onoff = data.find(ep); if (&onoff != nullptr) return onoff.getPower(); return false; } #endif // USE_ZIGBEE