/* xdrv_28_pcf8574.ino - PCF8574 I2C support for Tasmota Copyright (C) 2021 Stefan Bode and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_PCF8574 /*********************************************************************************************\ * PCF8574 - I2C IO Expander * * I2C Address: PCF8574 = 0x20 .. 0x27 (0x27 is not supported), * PCF8574A = 0x39 .. 0x3F (0x38 is not supported) * * Start address and count can be overriden in user_config_override.h to allow better * sharing of the I2C address space. Still the covered range must remains valid. * A count of 0 can be used totaly disable any of the 2 ranges. * By default, the following addresses are explicitly excluded (as per the docs) : * - 0x27 and 0x37 are reserved for USE_DISPLAY_LCD in xdsp_01_lcd.ino * - 0X38 is reserved for other sensors * If the respective drivers are not used, overrides allows to recover those addresses * If defined, USE_MCP230xx_ADDR is also always excluded * * Mode 1: * See documentation. * * Mode 2: * Allows easy configuration by using a sequential list of pins configured as Tasmota * template and handle any input and output as configured GPIOs. * * Restrictions: * - Uses incremental I2C addresses until template pin count reached * - Max support for 28 switches (input), 32 buttons (input), 32 relays (output) * * Supported template fields: * NAME - Template name * BASE - Optional. 0 = use relative buttons and switches (default), 1 = use absolute buttons and switches * GPIO - Sequential list of pin 1 and up with configured GPIO function * Function Code Description * ------------------- -------- ---------------------------------------- * None 0 Not used * Button1..32 B 32..63 Button to Gnd with internal pullup * Button_n1..32 Bn 64..95 Button to Gnd without internal pullup * Button_i1..32 Bi 96..127 Button inverted to Vcc with internal pullup * Button_in1..32 Bin 128..159 Button inverted to Vcc without internal pullup * Switch1..28 S 160..187 Switch to Gnd with internal pullup * Switch_n1..28 Sn 192..219 Switch to Gnd without internal pullup * Relay1..32 R 224..255 Relay * Relay_i1..32 Ri 256..287 Relay inverted * Output_Hi Oh 3840 Fixed output high * Output_lo Ol 3872 Fixed output low * * Prepare a template to be loaded either by: * - a rule like: rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]} endon * - a script like: >y{"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]}# * - file called pcf8574.dat with contents: {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]} * * Inverted relays and buttons Ri8 Ri7 Ri6 Ri5 Ri4 Ri3 Ri2 Ri1 B1 B2 B3 B4 B5 B6 B7 B8 * {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]} * B1 B2 B3 B4 Ri4 Ri3 Ri2 Ri1 B5 B6 B7 B8 Ri8 Ri7 Ri6 Ri5 * {"NAME":"PCF8574 A=B1-4,Ri4-1, B=B5-8,Ri8-5","GPIO":[32,33,34,35,259,258,257,256,36,37,38,39,263,262,261,260]} \*********************************************************************************************/ #define XDRV_28 28 #define XI2C_02 2 // See I2CDEVICES.md // PCF8574 address range from 0x20 to 0x26 #ifndef PCF8574_ADDR1 #define PCF8574_ADDR1 0x20 // PCF8574 #endif #ifndef PCF8574_ADDR1_COUNT #define PCF8574_ADDR1_COUNT 7 #endif // PCF8574A address range from 0x39 to 0x3E #ifndef PCF8574_ADDR2 #define PCF8574_ADDR2 0x39 // PCF8574A #endif #ifndef PCF8574_ADDR2_COUNT #define PCF8574_ADDR2_COUNT 6 #endif //#define USE_PCF8574_MODE2 // Enable Mode2 virtual relays/buttons/switches (+2k3 code) //#define USE_PCF8574_SENSOR // Enable Mode1 inputs and outputs in SENSOR message (+0k2 code) //#define USE_PCF8574_DISPLAYINPUT // Enable Mode1 inputs display in Web page (+0k2 code) //#define USE_PCF8574_MQTTINPUT // Enable Mode1 MQTT message & rule process on input change detection : stat/%topic%/PCF8574_INP = {"Time":"2021-03-07T16:19:23+01:00","PCF8574-1_INP":{"D1":1}} (+0k5 code) /*********************************************************************************************\ * PCF8574 support \*********************************************************************************************/ // Consistency tests - Checked across the complete range for the PCF8574/PCF8574A to allow override #if (PCF8574_ADDR1 < 0x20) || ((PCF8574_ADDR1 + PCF8574_ADDR1_COUNT - 1) > 0x27) #error PCF8574_ADDR1 and/or PCF8574_ADDR1_COUNT badly overriden. Fix your user_config_override #endif #if (PCF8574_ADDR2 < 0x38) || ((PCF8574_ADDR2 + PCF8574_ADDR2_COUNT - 1) > 0x3F) #error PCF8574_ADDR2 and/or PCF8574_ADDR2_COUNT badly overriden. Fix your user_config_override. #endif struct PCF8574 { uint32_t relay_inverted; uint32_t button_inverted; uint8_t address[MAX_PCF8574]; uint8_t pin_mask[MAX_PCF8574] = { 0 }; #ifdef USE_PCF8574_MQTTINPUT uint8_t last_input[MAX_PCF8574] = { 0 }; #endif uint8_t max_connected_ports = 0; // Max numbers of devices comming from PCF8574 modules uint8_t max_devices = 0; // Max numbers of PCF8574 modules uint8_t mode; uint8_t relay_max; uint8_t relay_offset; uint8_t button_max; uint8_t switch_max; int8_t button_offset; int8_t switch_offset; bool base; bool interrupt; } Pcf8574; uint16_t *Pcf8574_pin = nullptr; /*********************************************************************************************\ * PCF8574 - I2C \*********************************************************************************************/ uint8_t Pcf8574Read(uint8_t idx) { Wire.requestFrom(Pcf8574.address[idx], (uint8_t)1); return Wire.read(); } void Pcf8574Write(uint8_t idx) { Wire.beginTransmission(Pcf8574.address[idx]); Wire.write(Pcf8574.pin_mask[idx]); Wire.endTransmission(); } #ifdef USE_PCF8574_MODE2 bool Pcf8574DigitalRead(uint8_t pin) { // pin 0 - 63 uint32_t chip = pin / 8; uint32_t bit = pin % 8; uint32_t value = Pcf8574Read(chip); return value & (1 << bit); } void Pcf8574DigitalWrite(uint8_t pin, bool pin_value) { // pin 0 - 63 // INPUT or INPUT_PULLUP = Pcf8574DigitalWrite(pin, 1); // OUTPUT = Pcf8574DigitalWrite(pin, 0); or Pcf8574DigitalWrite(pin, 1); uint32_t chip = pin / 8; uint32_t bit = pin % 8; uint32_t value = Pcf8574Read(chip); value |= Pcf8574.pin_mask[chip]; // Restore inputs if (pin_value) { value |= 1 << bit; } else { value &= ~(1 << bit); } Wire.beginTransmission(Pcf8574.address[chip]); Wire.write(value); Wire.endTransmission(); } void Pcf8574DigitalWriteConfig(uint8_t pin, bool pin_value) { if (pin_value) { bitSet(Pcf8574.pin_mask[pin / 8], pin % 8); // Save inputs } Pcf8574DigitalWrite(pin, pin_value); } /*********************************************************************************************\ * PCF8574 Mode 2 - Theo Arends \*********************************************************************************************/ int Pcf8574Pin(uint32_t gpio, uint32_t index = 0); int Pcf8574Pin(uint32_t gpio, uint32_t index) { uint16_t real_gpio = gpio << 5; uint16_t mask = 0xFFE0; if (index < GPIO_ANY) { real_gpio += index; mask = 0xFFFF; } for (uint32_t i = 0; i < Pcf8574.max_connected_ports; i++) { if ((Pcf8574_pin[i] & mask) == real_gpio) { return i; // Pin number configured for gpio } } return -1; // No pin used for gpio } bool Pcf8574PinUsed(uint32_t gpio, uint32_t index = 0); bool Pcf8574PinUsed(uint32_t gpio, uint32_t index) { return (Pcf8574Pin(gpio, index) >= 0); } uint32_t Pcf8574GetPin(uint32_t lpin) { if (lpin < Pcf8574.max_connected_ports) { return Pcf8574_pin[lpin]; } else { return GPIO_NONE; } } /*********************************************************************************************/ String Pcf8574TemplateLoadFile(void) { String pcftmplt = ""; #ifdef USE_UFILESYS pcftmplt = TfsLoadString("/pcf8574.dat"); #endif // USE_UFILESYS #ifdef USE_RULES if (!pcftmplt.length()) { pcftmplt = RuleLoadFile("PCF8574.DAT"); } #endif // USE_RULES #ifdef USE_SCRIPT if (!pcftmplt.length()) { pcftmplt = ScriptLoadSection(">y"); } #endif // USE_SCRIPT return pcftmplt; } bool Pcf8574LoadTemplate(void) { String pcftmplt = Pcf8574TemplateLoadFile(); uint32_t len = pcftmplt.length() +1; if (len < 7) { return false; } // No PcfTmplt found JsonParser parser((char*)pcftmplt.c_str()); JsonParserObject root = parser.getRootObject(); if (!root) { return false; } // rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B12345678,B=Ri87654321","GPIO":[32,33,34,35,36,37,38,39,263,262,261,260,259,258,257,256]} endon // rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B1234,Ri4321,B=B5678,Ri8765","GPIO":[32,33,34,35,259,258,257,256,36,37,38,39,263,262,261,260]} endon // rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B3456,Ri6543,B=B78910,Ri10987","BASE":1,"GPIO":[34,35,36,37,261,260,259,258,38,39,40,41,265,264,263,262]} endon JsonParserToken val = root[PSTR(D_JSON_BASE)]; if (val) { Pcf8574.base = (val.getUInt()) ? true : false; } val = root[PSTR(D_JSON_NAME)]; if (val) { AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Base %d, Template '%s'"), Pcf8574.base, val.getStr()); } JsonParserArray arr = root[PSTR(D_JSON_GPIO)]; if (arr) { uint32_t pin = 0; for (pin; pin < Pcf8574.max_connected_ports; pin++) { // Max number of detected chip pins // if (0 == (pin % 8)) { Pcf8574.pin_mask[pin / 8] = 0; } // Reset config for next 8-pins JsonParserToken val = arr[pin]; if (!val) { break; } uint16_t mpin = val.getUInt(); if (mpin) { // Above GPIO_NONE if ((mpin >= AGPIO(GPIO_SWT1)) && (mpin < (AGPIO(GPIO_SWT1) + MAX_SWITCHES_SET))) { Pcf8574.switch_max++; Pcf8574DigitalWriteConfig(pin, 1); // INPUT_PULLUP } else if ((mpin >= AGPIO(GPIO_SWT1_NP)) && (mpin < (AGPIO(GPIO_SWT1_NP) + MAX_SWITCHES_SET))) { mpin -= (AGPIO(GPIO_SWT1_NP) - AGPIO(GPIO_SWT1)); Pcf8574.switch_max++; Pcf8574DigitalWriteConfig(pin, 1); // INPUT } else if ((mpin >= AGPIO(GPIO_KEY1)) && (mpin < (AGPIO(GPIO_KEY1) + MAX_KEYS_SET))) { Pcf8574.button_max++; Pcf8574DigitalWriteConfig(pin, 1); // INPUT_PULLUP } else if ((mpin >= AGPIO(GPIO_KEY1_NP)) && (mpin < (AGPIO(GPIO_KEY1_NP) + MAX_KEYS_SET))) { mpin -= (AGPIO(GPIO_KEY1_NP) - AGPIO(GPIO_KEY1)); Pcf8574.button_max++; Pcf8574DigitalWriteConfig(pin, 1); // INPUT } else if ((mpin >= AGPIO(GPIO_KEY1_INV)) && (mpin < (AGPIO(GPIO_KEY1_INV) + MAX_KEYS_SET))) { bitSet(Pcf8574.button_inverted, mpin - AGPIO(GPIO_KEY1_INV)); mpin -= (AGPIO(GPIO_KEY1_INV) - AGPIO(GPIO_KEY1)); Pcf8574.button_max++; Pcf8574DigitalWriteConfig(pin, 1); // INPUT_PULLUP } else if ((mpin >= AGPIO(GPIO_KEY1_INV_NP)) && (mpin < (AGPIO(GPIO_KEY1_INV_NP) + MAX_KEYS_SET))) { bitSet(Pcf8574.button_inverted, mpin - AGPIO(GPIO_KEY1_INV_NP)); mpin -= (AGPIO(GPIO_KEY1_INV_NP) - AGPIO(GPIO_KEY1)); Pcf8574.button_max++; Pcf8574DigitalWriteConfig(pin, 1); // INPUT } else if ((mpin >= AGPIO(GPIO_REL1)) && (mpin < (AGPIO(GPIO_REL1) + MAX_RELAYS_SET))) { Pcf8574.relay_max++; // Pcf8574DigitalWriteConfig(pin, 1); // OUTPUT - Leave unchanged to fix restart and power on spikes (default is 1) } else if ((mpin >= AGPIO(GPIO_REL1_INV)) && (mpin < (AGPIO(GPIO_REL1_INV) + MAX_RELAYS_SET))) { bitSet(Pcf8574.relay_inverted, mpin - AGPIO(GPIO_REL1_INV)); mpin -= (AGPIO(GPIO_REL1_INV) - AGPIO(GPIO_REL1)); Pcf8574.relay_max++; // Pcf8574DigitalWriteConfig(pin, 1); // OUTPUT - Leave unchanged to fix restart and power on spikes (default is 1) } else if (mpin == AGPIO(GPIO_OUTPUT_HI)) { Pcf8574DigitalWriteConfig(pin, 1); // OUTPUT } else if (mpin == AGPIO(GPIO_OUTPUT_LO)) { Pcf8574DigitalWriteConfig(pin, 0); // OUTPUT } else { mpin = 0; } Pcf8574_pin[pin] = mpin; } if ((Pcf8574.switch_max >= MAX_SWITCHES_SET) || (Pcf8574.button_max >= MAX_KEYS_SET) || (Pcf8574.relay_max >= MAX_RELAYS_SET)) { AddLog(LOG_LEVEL_INFO, PSTR("PCF: Max reached (S%d/B%d/R%d)"), Pcf8574.switch_max, Pcf8574.button_max, Pcf8574.relay_max); break; } } Pcf8574.max_connected_ports = pin; // Max number of configured pins } return true; } void Pcf8574ServiceInput(void) { Pcf8574.interrupt = false; // This works with no interrupt too uint32_t pin_offset = 0; for (uint32_t chip = 0; chip < Pcf8574.max_devices; chip++) { uint32_t gpio = Pcf8574Read(chip); // Reset interrupt uint32_t mask = 1; for (uint32_t pin = 0; pin < 8; pin++) { uint32_t state = ((gpio & mask) != 0); uint32_t lpin = Pcf8574GetPin(pin_offset + pin); // 0 for None, 32 for KEY1, 160 for SWT1, 224 for REL1 uint32_t index = lpin & 0x001F; // Max 32 buttons or switches lpin = BGPIO(lpin); // UserSelectablePins number if (GPIO_KEY1 == lpin) { ButtonSetVirtualPinState(Pcf8574.button_offset + index, (state != bitRead(Pcf8574.button_inverted, index))); // Pcf8574DigitalWrite(pin_offset + pin, 1); // INPUT and reset interrupt } else if (GPIO_SWT1 == lpin) { SwitchSetVirtualPinState(Pcf8574.switch_offset + index, state); // Pcf8574DigitalWrite(pin_offset + pin, 1); // INPUT and reset interrupt } mask <<= 1; } pin_offset += 8; } } static void IRAM_ATTR Pcf8574InputIsr(void) { Pcf8574.interrupt = true; } void Pcf8574Init(void) { if (Pcf8574.button_max || Pcf8574.switch_max) { if (PinUsed(GPIO_PCF8574_INT)) { pinMode(Pin(GPIO_PCF8574_INT), INPUT_PULLUP); attachInterrupt(Pin(GPIO_PCF8574_INT), Pcf8574InputIsr, CHANGE); } } } void Pcf8574Power(void) { // XdrvMailbox.index = 32-bit rpower bit mask // Use absolute relay indexes unique with main template power_t rpower = XdrvMailbox.index; uint32_t relay_max = TasmotaGlobal.devices_present; if (!Pcf8574.base) { // Use relative and sequential relay indexes rpower >>= Pcf8574.relay_offset; relay_max = Pcf8574.relay_max; } for (uint32_t index = 0; index < relay_max; index++) { power_t state = rpower &1; if (Pcf8574PinUsed(GPIO_REL1, index)) { uint32_t pin = Pcf8574Pin(GPIO_REL1, index) & 0x3F; // Fix possible overflow over 63 gpios Pcf8574DigitalWrite(pin, bitRead(Pcf8574.relay_inverted, index) ? !state : state); } rpower >>= 1; // Select next power } } bool Pcf8574AddButton(void) { // XdrvMailbox.index = button/switch index uint32_t index = XdrvMailbox.index; if (!Pcf8574.base) { // Use relative and sequential button indexes if (Pcf8574.button_offset < 0) { Pcf8574.button_offset = index; } index -= Pcf8574.button_offset; if (index >= Pcf8574.button_max) { return false; } } else { // Use absolute button indexes unique with main template if (!Pcf8574PinUsed(GPIO_KEY1, index)) { return false; } Pcf8574.button_offset = 0; } XdrvMailbox.index = (Pcf8574DigitalRead(Pcf8574Pin(GPIO_KEY1, index)) != bitRead(Pcf8574.button_inverted, index)); return true; } bool Pcf8574AddSwitch(void) { // XdrvMailbox.index = button/switch index uint32_t index = XdrvMailbox.index; if (!Pcf8574.base) { // Use relative and sequential switch indexes if (Pcf8574.switch_offset < 0) { Pcf8574.switch_offset = index; } index -= Pcf8574.switch_offset; if (index >= Pcf8574.switch_max) { return false; } } else { // Use absolute switch indexes unique with main template if (!Pcf8574PinUsed(GPIO_SWT1, index)) { return false; } Pcf8574.switch_offset = 0; } XdrvMailbox.index = Pcf8574DigitalRead(Pcf8574Pin(GPIO_SWT1, index)); return true; } #endif // USE_PCF8574_MODE2 /*********************************************************************************************\ * PCF8574 Mode 1 - Stefan Bode \*********************************************************************************************/ void Pcf8574SwitchRelay(void) { for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { uint8_t relay_state = bitRead(XdrvMailbox.index, i); if (Pcf8574.max_devices > 0 && Pcf8574_pin[i] < 99) { uint8_t board = Pcf8574_pin[i]>>3; uint8_t pin = Pcf8574_pin[i]&0x7; uint8_t oldpinmask = Pcf8574.pin_mask[board]; uint8_t _val = bitRead(TasmotaGlobal.rel_inverted, i) ? !relay_state : relay_state; //AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay %d=%d => PCF-%d.D%d=%d"), i, relay_state, board +1, pin, _val); bitWrite(Pcf8574.pin_mask[board], pin, _val); if (oldpinmask != Pcf8574.pin_mask[board]) { Pcf8574Write(board); } //else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay skipped")); } } } #ifdef USE_PCF8574_MQTTINPUT void Pcf8574CheckForInputChange(void) { for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) { uint8_t input_mask = ~Settings->pcf8574_config[idx]; // Invert to 1 = input uint8_t input = Pcf8574Read(idx) & input_mask; uint8_t last_input = Pcf8574.last_input[idx]; if (input != last_input) { // Don't scan bits if no change (EVERY_50_MS !) for (uint32_t pin = 0 ; pin < 8 ; ++pin) { if (bitRead(input_mask,pin) && bitRead(input,pin) != bitRead(last_input,pin)) { ResponseTime_P(PSTR(",\"PCF8574%c%d_INP\":{\"D%i\":%i}}"), IndexSeparator(), idx +1, pin, bitRead(input,pin)); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("PCF8574_INP")); if (Settings->flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/SENSOR in addition to stat/%topic%/RESULT MqttPublishSensor(); } } Pcf8574.last_input[idx] = input; } } } } #endif // USE_PCF8574_MQTTINPUT void Pcf8574ModuleInitMode1(void) { for (uint32_t i = 0; i < Pcf8574.max_connected_ports; i++) { Pcf8574_pin[i] = 99; } Pcf8574.max_connected_ports = 0; // Reset no of devices for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) { // suport up to 8 boards PCF8574 uint8_t gpio = Pcf8574Read(idx); // Insure the input pins are actually writen a 1 for proper input operation Pcf8574.pin_mask[idx] = gpio | ~Settings->pcf8574_config[idx]; Pcf8574Write(idx); // Write back to the register #ifdef USE_PCF8574_MQTTINPUT Pcf8574.last_input[idx] = gpio & ~Settings->pcf8574_config[idx]; #endif // USE_PCF8574_MQTTINPUT //AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: PCF-%d config=0x%02x, gpio=0x%02X"), idx +1, Settings->pcf8574_config[idx], gpio); for (uint32_t i = 0; i < 8; i++, gpio>>=1) { uint8_t _result = Settings->pcf8574_config[idx] >> i &1; //AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: I2C shift i %d: %d. Powerstate: %d, TasmotaGlobal.devices_present: %d"), i,_result, Settings->power>>i&1, TasmotaGlobal.devices_present); if (_result > 0) { Pcf8574_pin[TasmotaGlobal.devices_present] = i + 8 * idx; bitWrite(TasmotaGlobal.rel_inverted, TasmotaGlobal.devices_present, Settings->flag3.pcf8574_ports_inverted); // SetOption81 - Invert all ports on PCF8574 devices if (!Settings->flag.save_state && !Settings->flag3.no_power_feedback) { // SetOption63 - Don't scan relay power state at restart - #5594 and #5663 //AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Set power from from chip state")); uint8_t power_state = Settings->flag3.pcf8574_ports_inverted ? 1 & ~gpio : 1 & gpio; bitWrite(TasmotaGlobal.power, TasmotaGlobal.devices_present, power_state); bitWrite(Settings->power, TasmotaGlobal.devices_present, power_state); } //else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: DON'T set power from chip state")); UpdateDevicesPresent(1); Pcf8574.max_connected_ports++; } } } //AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Settings->power=0x%08X, TasmotaGlobal.power=0x%08X"), Settings->power, TasmotaGlobal.power); AddLog(LOG_LEVEL_INFO, PSTR("PCF: Total devices %d, PCF8574 output ports %d"), Pcf8574.max_devices, Pcf8574.max_connected_ports); } /*********************************************************************************************\ * Presentation \*********************************************************************************************/ #ifdef USE_WEBSERVER #define WEB_HANDLE_PCF8574 "pcf" const char HTTP_BTN_MENU_PCF8574[] PROGMEM = "

"; const char HTTP_FORM_I2C_PCF8574_1[] PROGMEM = "
 " D_PCF8574_PARAMETERS " " "
" "


"; const char HTTP_FORM_I2C_PCF8574_2[] PROGMEM = "" D_DEVICE " %d " D_PORT " %d"; const char HTTP_SNS_PCF8574_GPIO[] PROGMEM = "{s}PCF8574%c%d D%d{m}%d{e}"; // {s} = , {m} = , {e} = void HandlePcf8574(void) { if (!HttpCheckPriviledgedAccess()) { return; } AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_HTTP D_CONFIGURE_PCF8574)); if (Webserver->hasArg("save")) { Pcf8574SaveSettings(); WebRestart(1); return; } WSContentStart_P(D_CONFIGURE_PCF8574); WSContentSendStyle(); WSContentSend_P(HTTP_FORM_I2C_PCF8574_1, (Settings->flag3.pcf8574_ports_inverted) ? PSTR(" checked") : ""); // SetOption81 - Invert all ports on PCF8574 devices WSContentSend_P(HTTP_TABLE100); for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) { for (uint32_t idx2 = 0; idx2 < 8; idx2++) { // 8 ports on PCF8574 uint8_t helper = 1 << idx2; WSContentSend_P(HTTP_FORM_I2C_PCF8574_2, idx +1, idx2, idx2 + 8*idx, idx2 + 8*idx, ((helper & Settings->pcf8574_config[idx]) >> idx2 == 0) ? PSTR(" selected ") : " ", ((helper & Settings->pcf8574_config[idx]) >> idx2 == 1) ? PSTR(" selected ") : " " ); } } WSContentSend_P(PSTR("")); WSContentSend_P(HTTP_FORM_END); WSContentSpaceButton(BUTTON_CONFIGURATION); WSContentStop(); } void Pcf8574SaveSettings(void) { char stemp[7]; char tmp[100]; //AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Start working on Save arguements: inverted:%d")), Webserver->hasArg("b1"); Settings->flag3.pcf8574_ports_inverted = Webserver->hasArg("b1"); // SetOption81 - Invert all ports on PCF8574 devices for (byte idx = 0; idx < Pcf8574.max_devices; idx++) { byte count=0; byte n = Settings->pcf8574_config[idx]; while(n!=0) { n = n&(n-1); count++; } if (count <= TasmotaGlobal.devices_present) { UpdateDevicesPresent(-count); } for (byte i = 0; i < 8; i++) { snprintf_P(stemp, sizeof(stemp), PSTR("i2cs%d"), i+8*idx); WebGetArg(stemp, tmp, sizeof(tmp)); byte _value = (!strlen(tmp)) ? 0 : atoi(tmp); if (_value) { Settings->pcf8574_config[idx] = Settings->pcf8574_config[idx] | 1 << i; UpdateDevicesPresent(1); Pcf8574.max_connected_ports++; } else { Settings->pcf8574_config[idx] = Settings->pcf8574_config[idx] & ~(1 << i ); } } //Settings->pcf8574_config[0] = (!strlen(webServer->arg("i2cs0").c_str())) ? 0 : atoi(webServer->arg("i2cs0").c_str()); //AddLog(LOG_LEVEL_INFO, PSTR("PCF: I2C Board: %d, Config: %2x")), idx, Settings->pcf8574_config[idx]; } } #ifdef USE_PCF8574_DISPLAYINPUT void Pcf8574ShowWeb(void) { for (uint32_t idx = 0 ; idx < Pcf8574.max_devices ; idx++) { uint8_t input_mask = ~Settings->pcf8574_config[idx]; // Invert to 1 = input uint8_t gpio = Pcf8574Read(idx); for (uint32_t pin = 0 ; pin < 8 ; ++pin, input_mask >>= 1, gpio >>= 1) { if (input_mask & 1) { WSContentSend_P(HTTP_SNS_PCF8574_GPIO, IndexSeparator(), idx +1, pin, gpio & 1); } } } } #endif // USE_PCF8574_DISPLAYINPUT #endif // USE_WEBSERVER #ifdef USE_PCF8574_SENSOR void Pcf8574ShowJson(void) { for (uint32_t idx = 0 ; idx < Pcf8574.max_devices ; idx++) { uint8_t gpio = Pcf8574Read(idx); ResponseAppend_P(PSTR(",\"PCF8574%c%d\":{"), IndexSeparator(), idx +1); for (uint32_t pin = 0; pin < 8; ++pin, gpio >>= 1) { ResponseAppend_P(PSTR("%s\"D%d\":%i"), (0==pin)?"":",", pin, gpio & 1); } ResponseJsonEnd(); } } #endif // #ifdef USE_PCF8574_SENSOR /*********************************************************************************************\ * PCF8574 Module Init \*********************************************************************************************/ void Pcf8574ModuleInit(void) { uint8_t pcf8574_address = (PCF8574_ADDR1_COUNT > 0) ? PCF8574_ADDR1 : PCF8574_ADDR2; while ((Pcf8574.max_devices < MAX_PCF8574) && (pcf8574_address < PCF8574_ADDR2 +PCF8574_ADDR2_COUNT)) { #if defined(USE_MCP230xx) && defined(USE_MCP230xx_ADDR) if (USE_MCP230xx_ADDR == pcf8574_address) { AddLog(LOG_LEVEL_INFO, PSTR("PCF: Address 0x%02x reserved for MCP230xx"), pcf8574_address); } else { #endif if (I2cSetDevice(pcf8574_address)) { Pcf8574.mode = 1; Pcf8574.max_connected_ports += 8; Pcf8574.address[Pcf8574.max_devices] = pcf8574_address; Pcf8574.max_devices++; char stype[12]; sprintf_P(stype, PSTR("PCF8574%s"), (pcf8574_address >= PCF8574_ADDR2) ? "A" : ""); I2cSetActiveFound(pcf8574_address, stype); } #if defined(USE_MCP230xx) && defined(USE_MCP230xx_ADDR) } #endif pcf8574_address++; if ((PCF8574_ADDR1 +PCF8574_ADDR1_COUNT) == pcf8574_address) { // Support I2C addresses 0x20 to 0x26 and 0x39 to 0x3F pcf8574_address = PCF8574_ADDR2; } } if (Pcf8574.mode) { Pcf8574_pin = (uint16_t*)malloc(Pcf8574.max_connected_ports * sizeof(uint16_t)); if (Pcf8574_pin) { #ifdef USE_PCF8574_MODE2 if (Pcf8574LoadTemplate()) { Pcf8574.mode = 2; Pcf8574.button_offset = -1; Pcf8574.switch_offset = -1; Pcf8574.relay_offset = TasmotaGlobal.devices_present; Pcf8574.relay_max -= UpdateDevicesPresent(Pcf8574.relay_max); } else #endif // USE_PCF8574_MODE2 Pcf8574ModuleInitMode1(); } else { Pcf8574.mode = 0; } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv28(uint32_t function) { if (!I2cEnabled(XI2C_02)) { return false; } bool result = false; if (FUNC_SETUP_RING2 == function) { Pcf8574ModuleInit(); } else if (1 == Pcf8574.mode) { switch (function) { #ifdef USE_PCF8574_MQTTINPUT case FUNC_EVERY_50_MSECOND: Pcf8574CheckForInputChange(); break; #endif // USE_PCF8574_MQTTINPUT case FUNC_SET_POWER: Pcf8574SwitchRelay(); break; #ifdef USE_PCF8574_SENSOR case FUNC_JSON_APPEND: Pcf8574ShowJson(); break; #endif // USE_PCF8574_SENSOR #ifdef USE_WEBSERVER case FUNC_WEB_ADD_BUTTON: WSContentSend_P(HTTP_BTN_MENU_PCF8574); break; case FUNC_WEB_ADD_HANDLER: WebServer_on(PSTR("/" WEB_HANDLE_PCF8574), HandlePcf8574); break; #ifdef USE_PCF8574_DISPLAYINPUT case FUNC_WEB_SENSOR: Pcf8574ShowWeb(); break; #endif // USE_PCF8574_DISPLAYINPUT #endif // USE_WEBSERVER } #ifdef USE_PCF8574_MODE2 } else if (2 == Pcf8574.mode) { switch (function) { case FUNC_LOOP: case FUNC_SLEEP_LOOP: if (!Pcf8574.interrupt) { return false; } // AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("PCF: Interrupt")); Pcf8574ServiceInput(); break; case FUNC_EVERY_100_MSECOND: if (Pcf8574.button_max || Pcf8574.switch_max) { Pcf8574ServiceInput(); } break; case FUNC_SET_POWER: Pcf8574Power(); break; case FUNC_INIT: Pcf8574Init(); break; case FUNC_ADD_BUTTON: result = Pcf8574AddButton(); break; case FUNC_ADD_SWITCH: result = Pcf8574AddSwitch(); break; } #endif // USE_PCF8574_MODE2 } return result; } #endif // USE_PCF8574 #endif // USE_I2C