/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE #include #include #ifndef ZIGBEE_SAVE_DELAY_SECONDS #define ZIGBEE_SAVE_DELAY_SECONDS 10; // wait for 10s before saving Zigbee info #endif const uint16_t kZigbeeSaveDelaySeconds = ZIGBEE_SAVE_DELAY_SECONDS; // wait for x seconds typedef int32_t (*Z_DeviceTimer)(uint16_t shortaddr, uint16_t cluster, uint16_t endpoint, uint32_t value); typedef struct Z_Device { uint16_t shortaddr; // unique key if not null, or unspecified if null uint64_t longaddr; // 0x00 means unspecified uint32_t firstSeen; // date when the device was first seen uint32_t lastSeen; // date when the device was last seen String manufacturerId; String modelId; String friendlyName; std::vector endpoints; // encoded as high 16 bits is endpoint, low 16 bits is ProfileId std::vector clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number std::vector clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number // below are per device timers, used for example to query the new state of the device uint32_t timer; // millis() when to fire the timer, 0 if no timer uint16_t cluster; // cluster to use for the timer uint16_t endpoint; // endpoint to use for timer uint32_t value; // any raw value to use for the timer Z_DeviceTimer func; // function to call when timer occurs // json buffer used for attribute reporting DynamicJsonBuffer *json_buffer; JsonObject *json; } Z_Device; // All devices are stored in a Vector // Invariants: // - shortaddr is unique if not null // - longaddr is unique if not null // - shortaddr and longaddr cannot be both null // - clusters_in and clusters_out containt only endpoints listed in endpoints class Z_Devices { public: Z_Devices() {}; // Probe the existence of device keys // Results: // - 0x0000 = not found // - 0xFFFF = bad parameter // - 0x = the device's short address uint16_t isKnownShortAddr(uint16_t shortaddr) const; uint16_t isKnownLongAddr(uint64_t longaddr) const; uint16_t isKnownIndex(uint32_t index) const; uint16_t isKnownFriendlyName(const char * name) const; // Add new device, provide ShortAddr and optional longAddr // If it is already registered, update information, otherwise create the entry void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0); // Add an endpoint to a device void addEndoint(uint16_t shortaddr, uint8_t endpoint); // Add endpoint profile void addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId); // Add cluster void addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out); uint8_t findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster); void setManufId(uint16_t shortaddr, const char * str); void setModelId(uint16_t shortaddr, const char * str); void setFriendlyName(uint16_t shortaddr, const char * str); const String * getFriendlyName(uint16_t) const; // device just seen on the network, update the lastSeen field void updateLastSeen(uint16_t shortaddr); // Dump json String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const; // Timers void resetTimer(uint32_t shortaddr); void setTimer(uint32_t shortaddr, uint32_t wait_ms, uint16_t cluster, uint16_t endpoint, uint32_t value, Z_DeviceTimer func); void runTimer(void); // Append or clear attributes Json structure void jsonClear(uint16_t shortaddr); void jsonAppend(uint16_t shortaddr, const JsonObject &values); const JsonObject *jsonGet(uint16_t shortaddr); void jsonPublishFlush(uint16_t shortaddr); // publish the json message and clear buffer bool jsonIsConflict(uint16_t shortaddr, const JsonObject &values); void jsonPublishNow(uint16_t shortaddr, JsonObject &values); // Iterator size_t devicesSize(void) const { return _devices.size(); } const Z_Device &devicesAt(size_t i) const { return _devices.at(i); } // Remove device from list bool removeDevice(uint16_t shortaddr); // Mark data as 'dirty' and requiring to save in Flash void dirty(void); // Find device by name, can be short_addr, long_addr, number_in_array or name uint16_t parseDeviceParam(const char * param, bool short_must_be_known = false) const; private: std::vector _devices = {}; uint32_t _saveTimer = 0; template < typename T> static bool findInVector(const std::vector & vecOfElements, const T & element); template < typename T> static int32_t findEndpointInVector(const std::vector & vecOfElements, const T & element); // find the first endpoint match for a cluster static int32_t findClusterEndpoint(const std::vector & vecOfElements, uint16_t element); Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist int32_t findShortAddr(uint16_t shortaddr) const; int32_t findLongAddr(uint64_t longaddr) const; int32_t findFriendlyName(const char * name) const; void _updateLastSeen(Z_Device &device) { if (&device != nullptr) { device.lastSeen = Rtc.utc_time; } }; // Create a new entry in the devices list - must be called if it is sure it does not already exist Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0); }; Z_Devices zigbee_devices = Z_Devices(); // https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/ template < typename T> bool Z_Devices::findInVector(const std::vector & vecOfElements, const T & element) { // Find given element in vector auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element); if (it != vecOfElements.end()) { return true; } else { return false; } } template < typename T> int32_t Z_Devices::findEndpointInVector(const std::vector & vecOfElements, const T & element) { // Find given element in vector int32_t found = 0; for (auto &elem : vecOfElements) { if ((elem >> 16) & 0xFF == element) { return found; } found++; } return -1; } // // Find the first endpoint match for a cluster, whether in or out // Clusters are stored in the format 0x00EECCCC (EE=endpoint, CCCC=cluster number) // In: // _devices.clusters_in or _devices.clusters_out // cluster number looked for // Out: // Index of found Endpoint_Cluster number, or -1 if not found // int32_t Z_Devices::findClusterEndpoint(const std::vector & vecOfElements, uint16_t cluster) { int32_t found = 0; for (auto &elem : vecOfElements) { if ((elem & 0xFFFF) == cluster) { return found; } found++; } return -1; } // // Create a new Z_Device entry in _devices. Only to be called if you are sure that no // entry with same shortaddr or longaddr exists. // Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) { if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null Z_Device device = { shortaddr, longaddr, Rtc.utc_time, Rtc.utc_time, String(), // ManufId String(), // DeviceId String(), // FriendlyName std::vector(), std::vector(), std::vector(), 0,0,0,0, nullptr, nullptr, nullptr }; device.json_buffer = new DynamicJsonBuffer(); _devices.push_back(device); dirty(); return _devices.back(); } // // Scan all devices to find a corresponding shortaddr // Looks info device.shortaddr entry // In: // shortaddr (non null) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findShortAddr(uint16_t shortaddr) const { if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost) int32_t found = 0; if (shortaddr) { for (auto &elem : _devices) { if (elem.shortaddr == shortaddr) { return found; } found++; } } return -1; } // // Scan all devices to find a corresponding longaddr // Looks info device.longaddr entry // In: // longaddr (non null) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findLongAddr(uint64_t longaddr) const { if (!longaddr) { return -1; } int32_t found = 0; if (longaddr) { for (auto &elem : _devices) { if (elem.longaddr == longaddr) { return found; } found++; } } return -1; } // // Scan all devices to find a corresponding friendlyNme // Looks info device.friendlyName entry // In: // friendlyName (null terminated, should not be empty) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findFriendlyName(const char * name) const { if (!name) { return -1; } // if pointer is null size_t name_len = strlen(name); int32_t found = 0; if (name_len) { for (auto &elem : _devices) { if (elem.friendlyName == name) { return found; } found++; } } return -1; } // Probe if device is already known but don't create any entry uint16_t Z_Devices::isKnownShortAddr(uint16_t shortaddr) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { return shortaddr; } else { return 0; // unknown } } uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const { int32_t found = findLongAddr(longaddr); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.shortaddr; // can be zero, if not yet registered } else { return 0; } } uint16_t Z_Devices::isKnownIndex(uint32_t index) const { if (index < devicesSize()) { const Z_Device & device = devicesAt(index); return device.shortaddr; } else { return 0; } } uint16_t Z_Devices::isKnownFriendlyName(const char * name) const { if ((!name) || (0 == strlen(name))) { return 0xFFFF; } // Error int32_t found = findFriendlyName(name); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.shortaddr; // can be zero, if not yet registered } else { return 0; } } // // We have a seen a shortaddr on the network, get the corresponding // Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) { if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal int32_t found = findShortAddr(shortaddr); if (found >= 0) { return _devices[found]; } //Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found); return createDeviceEntry(shortaddr, 0); } // find the Device object by its longaddr (unique key if not null) Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) { if (!longaddr) { return *(Z_Device*) nullptr; } int32_t found = findLongAddr(longaddr); if (found > 0) { return _devices[found]; } return createDeviceEntry(0, longaddr); } // Remove device from list, return true if it was known, false if it was not recorded bool Z_Devices::removeDevice(uint16_t shortaddr) { int32_t found = findShortAddr(shortaddr); if (found >= 0) { _devices.erase(_devices.begin() + found); dirty(); return true; } return false; } // // We have just seen a device on the network, update the info based on short/long addr // In: // shortaddr // longaddr (both can't be null at the same time) void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) { int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered if (s_found == l_found) { updateLastSeen(shortaddr); // short/long addr match, all good } else { // they don't match // the device with longaddr got a new shortaddr _devices[l_found].shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr // erase the previous shortaddr _devices.erase(_devices.begin() + s_found); updateLastSeen(shortaddr); dirty(); } } else if (s_found >= 0) { // shortaddr already exists but longaddr not // add the longaddr to the entry _devices[s_found].longaddr = longaddr; updateLastSeen(shortaddr); dirty(); } else if (l_found >= 0) { // longaddr entry exists, update shortaddr _devices[l_found].shortaddr = shortaddr; dirty(); } else { // neither short/lonf addr are found. if (shortaddr || longaddr) { createDeviceEntry(shortaddr, longaddr); } } } // // Add an endpoint to a shortaddr // void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) { if (!shortaddr) { return; } uint32_t ep_profile = (endpoint << 16); Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); if (findEndpointInVector(device.endpoints, ep_profile) < 0) { device.endpoints.push_back(ep_profile); dirty(); } } void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId) { if (!shortaddr) { return; } uint32_t ep_profile = (endpoint << 16) | profileId; Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); int32_t found = findEndpointInVector(device.endpoints, ep_profile); if (found < 0) { device.endpoints.push_back(ep_profile); dirty(); } else { if (device.endpoints[found] != ep_profile) { device.endpoints[found] = ep_profile; dirty(); } } } void Z_Devices::addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) { if (!shortaddr) { return; } Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); uint32_t ep_cluster = (endpoint << 16) | cluster; if (!out) { if (!findInVector(device.clusters_in, ep_cluster)) { device.clusters_in.push_back(ep_cluster); dirty(); } } else { // out if (!findInVector(device.clusters_out, ep_cluster)) { device.clusters_out.push_back(ep_cluster); dirty(); } } } // Look for the best endpoint match to send a command for a specific Cluster ID // return 0x00 if none found uint8_t Z_Devices::findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster){ int32_t short_found = findShortAddr(shortaddr); if (short_found < 0) return 0; // avoid creating an entry if the device was never seen Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return 0; } // don't crash if not found int32_t found = findClusterEndpoint(device.clusters_in, cluster); if (found >= 0) { return (device.clusters_in[found] >> 16) & 0xFF; } else { return 0; } } void Z_Devices::setManufId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); device.manufacturerId = str; dirty(); } void Z_Devices::setModelId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); device.modelId = str; dirty(); } void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); device.friendlyName = str; dirty(); } const String * Z_Devices::getFriendlyName(uint16_t shortaddr) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { const Z_Device & device = devicesAt(found); if (device.friendlyName.length() > 0) { return &device.friendlyName; } } return nullptr; } // device just seen on the network, update the lastSeen field void Z_Devices::updateLastSeen(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found _updateLastSeen(device); } // Per device timers // // Reset the timer for a specific device void Z_Devices::resetTimer(uint32_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found device.timer = 0; device.func = nullptr; } // Set timer for a specific device void Z_Devices::setTimer(uint32_t shortaddr, uint32_t wait_ms, uint16_t cluster, uint16_t endpoint, uint32_t value, Z_DeviceTimer func) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found device.cluster = cluster; device.endpoint = endpoint; device.value = value; device.func = func; device.timer = wait_ms + millis(); } // Run timer at each tick void Z_Devices::runTimer(void) { for (std::vector::iterator it = _devices.begin(); it != _devices.end(); ++it) { Z_Device &device = *it; uint16_t shortaddr = device.shortaddr; uint32_t timer = device.timer; if ((timer) && TimeReached(timer)) { device.timer = 0; // cancel the timer before calling, so the callback can set another timer // trigger the timer (*device.func)(device.shortaddr, device.cluster, device.endpoint, device.value); } } // save timer if ((_saveTimer) && TimeReached(_saveTimer)) { saveZigbeeDevices(); _saveTimer = 0; } } void Z_Devices::jsonClear(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found device.json = nullptr; device.json_buffer->clear(); } void CopyJsonVariant(JsonObject &to, const String &key, const JsonVariant &val) { to.remove(key); // force remove to have metadata like LinkQuality at the end if (val.is()) { String sval = val.as(); // force a copy of the String value to.set(key, sval); } else if (val.is()) { JsonArray &nested_arr = to.createNestedArray(key); CopyJsonArray(nested_arr, val.as()); } else if (val.is()) { JsonObject &nested_obj = to.createNestedObject(key); CopyJsonObject(nested_obj, val.as()); } else { to.set(key, val); } } void CopyJsonArray(JsonArray &to, const JsonArray &arr) { for (auto v : arr) { if (v.is()) { String sval = v.as(); // force a copy of the String value to.add(sval); } else if (v.is()) { } else if (v.is()) { } else { to.add(v); } } } void CopyJsonObject(JsonObject &to, const JsonObject &from) { for (auto kv : from) { String key_string = kv.key; JsonVariant &val = kv.value; CopyJsonVariant(to, key_string, val); } } // does the new payload conflicts with the existing payload, i.e. values would be overwritten bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const JsonObject &values) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return false; } // don't crash if not found if (&values == nullptr) { return false; } if (nullptr == device.json) { return false; // if no previous value, no conflict } for (auto kv : values) { String key_string = kv.key; if (strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_LINKQUALITY))) { // exception = ignore duplicates for LinkQuality if (device.json->containsKey(kv.key)) { return true; // conflict! } } } return false; } void Z_Devices::jsonAppend(uint16_t shortaddr, const JsonObject &values) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found if (&values == nullptr) { return; } if (nullptr == device.json) { device.json = &(device.json_buffer->createObject()); } // copy all values from 'values' to 'json' CopyJsonObject(*device.json, values); } const JsonObject *Z_Devices::jsonGet(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return nullptr; } // don't crash if not found return device.json; } void Z_Devices::jsonPublishFlush(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found JsonObject * json = device.json; if (json == nullptr) { return; } // abort if nothing in buffer const String * fname = zigbee_devices.getFriendlyName(shortaddr); bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname? if (use_fname) { // we need to add the Device short_addr inside the JSON char sa[8]; snprintf_P(sa, sizeof(sa), PSTR("0x%04X"), shortaddr); json->set(F(D_JSON_ZIGBEE_DEVICE), sa); } else if (fname) { json->set(F(D_JSON_NAME), (char*) fname); } String msg = ""; json->printTo(msg); zigbee_devices.jsonClear(shortaddr); if (use_fname) { Response_P(PSTR("{\"" D_CMND_ZIGBEE_RECEIVED "\":{\"%s\":%s}}"), fname->c_str(), msg.c_str()); } else { Response_P(PSTR("{\"" D_CMND_ZIGBEE_RECEIVED "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str()); } MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR)); XdrvRulesProcess(); } void Z_Devices::jsonPublishNow(uint16_t shortaddr, JsonObject & values) { jsonPublishFlush(shortaddr); // flush any previous buffer jsonAppend(shortaddr, values); jsonPublishFlush(shortaddr); // publish now } void Z_Devices::dirty(void) { _saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis(); } // Parse the command parameters for either: // - a short address starting with "0x", example: 0x1234 // - a long address starting with "0x", example: 0x7CB03EBB0A0292DD // - a number 0..99, the index number in ZigbeeStatus // - a friendly name, between quotes, example: "Room_Temp" uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const { if (nullptr == param) { return 0; } size_t param_len = strlen(param); char dataBuf[param_len + 1]; strcpy(dataBuf, param); RemoveSpace(dataBuf); uint16_t shortaddr = 0; if (strlen(dataBuf) < 4) { // simple number 0..99 if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) { shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1); } } else if ((dataBuf[0] == '0') && (dataBuf[1] == 'x')) { // starts with 0x if (strlen(dataBuf) < 18) { // expect a short address shortaddr = strtoull(dataBuf, nullptr, 0); if (short_must_be_known) { shortaddr = zigbee_devices.isKnownShortAddr(shortaddr); } // else we don't check if it's already registered to force unregistered devices } else { // expect a long address uint64_t longaddr = strtoull(dataBuf, nullptr, 0); shortaddr = zigbee_devices.isKnownLongAddr(longaddr); } } else { // expect a Friendly Name shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf); } return shortaddr; } // Dump the internal memory of Zigbee devices // Mode = 1: simple dump of devices addresses // Mode = 2: simple dump of devices addresses and names // Mode = 3: Mode 2 + also dump the endpoints, profiles and clusters String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const { DynamicJsonBuffer jsonBuffer; JsonArray& json = jsonBuffer.createArray(); JsonArray& devices = json; for (std::vector::const_iterator it = _devices.begin(); it != _devices.end(); ++it) { const Z_Device& device = *it; uint16_t shortaddr = device.shortaddr; char hex[22]; // ignore non-current device, if specified device is non-zero if ((status_shortaddr) && (status_shortaddr != shortaddr)) { continue; } JsonObject& dev = devices.createNestedObject(); snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr); dev[F(D_JSON_ZIGBEE_DEVICE)] = hex; if (device.friendlyName.length() > 0) { dev[F(D_JSON_ZIGBEE_NAME)] = device.friendlyName; } if (2 <= dump_mode) { hex[0] = '0'; // prefix with '0x' hex[1] = 'x'; Uint64toHex(device.longaddr, &hex[2], 64); dev[F("IEEEAddr")] = hex; if (device.modelId.length() > 0) { dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId; } if (device.manufacturerId.length() > 0) { dev[F("Manufacturer")] = device.manufacturerId; } } // If dump_mode == 2, dump a lot more details if (3 <= dump_mode) { JsonObject& dev_endpoints = dev.createNestedObject(F("Endpoints")); for (std::vector::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) { uint32_t ep_profile = *ite; uint8_t endpoint = (ep_profile >> 16) & 0xFF; uint16_t profileId = ep_profile & 0xFFFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonObject& ep = dev_endpoints.createNestedObject(hex); snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), profileId); ep[F("ProfileId")] = hex; int32_t found = -1; for (uint32_t i = 0; i < sizeof(Z_ProfileIds) / sizeof(Z_ProfileIds[0]); i++) { if (pgm_read_word(&Z_ProfileIds[i]) == profileId) { found = i; break; } } if (found > 0) { GetTextIndexed(hex, sizeof(hex), found, Z_ProfileNames); ep[F("ProfileIdName")] = hex; } ep.createNestedArray(F("ClustersIn")); ep.createNestedArray(F("ClustersOut")); } for (std::vector::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t endpoint = (*itc >> 16) & 0xFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersIn")]; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster); cluster_arr.add(hex); } for (std::vector::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t endpoint = (*itc >> 16) & 0xFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersOut")]; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster); cluster_arr.add(hex); } } } String payload = ""; payload.reserve(200); json.printTo(payload); return payload; } #endif // USE_ZIGBEE