/* xsns_02_analog.ino - ADC support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef FIRMWARE_MINIMAL #ifdef USE_ADC /*********************************************************************************************\ * ADC support for ESP8266 GPIO17 (=PIN_A0) and ESP32 up to 8 channels on GPIO32 to GPIO39 * * * * * For shelly RGBW PM: * Template {"NAME":"Shelly Plus RGBW PM Pot.meter","GPIO":[1,0,0,0,419,0,0,0,0,0,544,0,0,0,0,1,0,0,1,0,0,416,417,418,0,0,0,0,0,4736,11264,11296,4704,0,4705,0],"FLAG":0,"BASE":1} * AdcParam1 1,32000,40000,3350 <- Temperature parameters * AdcParam2 1,1161,3472,10,30 <- Voltage parameters * AdcParam3 1,960,1017,0.01,0.706 <- Current parameters * AdcParam4 1,1552,176,3,1 <- I1 Potentiometer RGBW or RGB if SO37 128 * AdcParam4 1,1552,176,3,3 <- I1 Potentiometer RGBW or RGB if SO37 128 without fading * AdcParam5 1,1552,176,3,1 <- I3 Potentiometer W if SO37 128 * Fade 1 * Speed 6 * VoltRes 2 * WattRes 2 * * Template {"NAME":"Shelly Plus RGBW PM Button","GPIO":[1,0,0,0,419,0,0,0,0,0,544,0,0,0,0,1,0,0,1,0,0,416,417,418,0,0,0,0,0,4736,11264,11296,4800,4801,4802,4803],"FLAG":0,"BASE":1} * AdcParam1 1,8000,9200,3350 <- Temperature parameters * AdcParam2 1,1161,3472,10,30 <- Voltage parameters * AdcParam3 1,960,1017,0.01,0.706 <- Current parameters * AdcParam4 1,511 <- I1 Button * AdcParam5 1,511 <- I2 Button * AdcParam6 1,511 <- I3 Button * AdcParam7 1,511 <- I4 Button * Fade 1 * Speed 6 * VoltRes 2 * WattRes 2 \*********************************************************************************************/ #define XSNS_02 2 #define XNRG_33 33 #ifdef ESP32 #include "esp32-hal-adc.h" #endif #ifdef ESP8266 #define ANALOG_RESOLUTION 10 // 12 = 4095, 11 = 2047, 10 = 1023 #define ANALOG_RANGE 1023 // 4095 = 12, 2047 = 11, 1023 = 10 #endif // ESP8266 #ifdef ESP32 #undef ANALOG_RESOLUTION #define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023 #undef ANALOG_RANGE #define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10 #endif // ESP32 #define TO_CELSIUS(x) ((x) - 273.15f) #define TO_KELVIN(x) ((x) + 273.15f) // Parameters for equation #define ANALOG_V33 3.3f // ESP8266 / ESP32 Analog voltage #define ANALOG_T0 TO_KELVIN(25.0f) // 25 degrees Celsius in Kelvin (= 298.15) // Mode 0 : Shelly 2.5 NTC Thermistor // 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd // | // ADC0 // Mode 1 : NTC towards 3V3 (Sinilink Thermostat Relay Board (XY-WFT1) // 3V3 --- NTC ---v--- ANALOG_NTC_BRIDGE_RESISTANCE --- Gnd // | // ADC0 #define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor #define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance #define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient // LDR parameters // 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd // | // ADC0 #define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor #define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental #define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050f // Experimental // CT Based Apparrent Power Measurement Parameters // 3V3 --- R1 ----v--- R1 --- Gnd // | // CT+ CT- // | // ADC0 // Default settings for a 20A/1V Current Transformer. // Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER #define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use #define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1 #define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V #define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total // Buttons // ---- Inverted // 3V3 ---| |----| // | // 3V3 --- R1 ----|--- R1 --- Gnd // | // |---| |--- Gnd // | ---- // ADC #define ANALOG_BUTTON_THRESHOLD ANALOG_RANGE / 8 // Add resistor tolerance // Odroid joysticks // ---- Up // 3V3 ---| |------------ // | // ---- Dn |--- R10k --- Gnd // 3V3 ---| |--- R10k ---| // | // ADC // Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2 #define ANALOG_JOYSTICK_THRESHOLD (ANALOG_RANGE / 3) +100 // Add resistor tolerance // pH scale minimum and maximum values #define ANALOG_PH_MAX 14.0f #define ANALOG_PH_MIN 0.0f // Default values for calibration solution with lower PH #define ANALOG_PH_CALSOLUTION_LOW_PH 4.0f #define ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE 282 // Default values for calibration solution with higher PH #define ANALOG_PH_CALSOLUTION_HIGH_PH 9.18f #define ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE 435 // Multiplier used to store pH with 2 decimal places in a non decimal datatype #define ANALOG_PH_DECIMAL_MULTIPLIER 100.0f // MQ-X sensor (MQ-02, MQ-03, MQ-04, MQ-05, MQ-06, MQ-07, MQ-08, MQ-09, MQ-131, MQ-135) // // A0 ------------------- // | // GND ----------- | // | | // VCC --- | | // | | | // 3V3 GND ADC <- (A0 for nodemcu, wemos; GPIO34,35,36,39 and other analog IN/OUT pin for esp32) //means mq type (ex for mq-02 use 2, mq-131 use 131) #define ANALOG_MQ_TYPE 2 //exponential regression a params #define ANALOG_MQ_A 574.25f //exponential regression b params #define ANALOG_MQ_B -2.222f /* Exponential regression: Gas | a | b LPG | 44771 | -3.245 CH4 | 2*10^31| 19.01 CO | 521853 | -3.821 Alcohol| 0.3934 | -1.504 Benzene| 4.8387 | -2.68 Hexane | 7585.3 | -2.849 NOx | -462.43 | -2.204 CL2 | 47.209 | -1.186 O3 | 23.943 | -1.11 */ //ratio for alarm, NOT USED yet (RS / R0 = 15 ppm) #define ANALOG_MQ_RatioMQCleanAir 15.0f // Multiplier used to store pH with 2 decimal places in a non decimal datatype #define ANALOG_MQ_DECIMAL_MULTIPLIER 100.0f // lenght of filter #define ANALOG_MQ_SAMPLES 60 struct { uint8_t present; } Adcs; struct { float *mq_samples; float temperature; float current; float energy; uint32_t previous_millis; uint32_t param1; uint32_t param2; int param3; int param4; int indexOfPointer; uint16_t last_value; uint16_t type; uint8_t index; uint8_t pin; } Adc[MAX_ADCS]; /*********************************************************************************************\ * External use \*********************************************************************************************/ uint32_t AdcRange(void) { return ANALOG_RANGE; } bool AdcPin(uint32_t pin) { for (uint32_t channel = 0; channel < Adcs.present; channel++) { if (pin == Adc[channel].pin) { return true; } } return false; } uint16_t AdcRead1(uint32_t pin) { #ifdef ESP32 return analogReadMilliVolts(pin) / (ANALOG_V33 * 1000) * ANALOG_RANGE; // Go back from mV to ADC #else return analogRead(pin); #endif } /*********************************************************************************************/ void AdcSaveSettings(uint32_t channel) { char parameters[32] = { 0 }; if (channel < Adcs.present) { snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"), Adc[channel].type, Adc[channel].param1, Adc[channel].param2, Adc[channel].param3, Adc[channel].param4); } SettingsUpdateText(SET_ADC_PARAM1 + channel, parameters); } bool AdcGetSettings(uint32_t channel) { uint32_t adc_type = 0; char parameters[32]; if (strchr(SettingsText(SET_ADC_PARAM1 + channel), ',') != nullptr) { adc_type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 1)); Adc[channel].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 2)); Adc[channel].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 3)); Adc[channel].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 4)); Adc[channel].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + channel), ",", 5)); if ((adc_type > 0) && (adc_type < GPIO_ADC_INPUT)) { // Former ADC_END AdcSaveSettings(channel); adc_type = Adc[channel].type; // Migrate for backwards compatibility } } return (Adc[channel].type == adc_type); } void AdcInitParams(uint32_t channel) { Adc[channel].param1 = 0; Adc[channel].param2 = 0; Adc[channel].param3 = 0; Adc[channel].param4 = 0; uint32_t adc_type = Adc[channel].type; switch (adc_type) { case GPIO_ADC_INPUT: // Adc[channel].param1 = 0; Adc[channel].param2 = ANALOG_RANGE; Adc[channel].param3 = 3; // Margin / Tolerance // Adc[channel].param4 = 0; // Default mode (0) or Direct mode (1) using Dimmer or Channel command break; case GPIO_ADC_TEMP: // Default Shelly 2.5 and 1PM parameters Adc[channel].param1 = ANALOG_NTC_BRIDGE_RESISTANCE; Adc[channel].param2 = ANALOG_NTC_RESISTANCE; Adc[channel].param3 = ANALOG_NTC_B_COEFFICIENT; // Adc[channel].param4 = 0; // Default to Shelly mode with NTC towards GND break; case GPIO_ADC_LIGHT: Adc[channel].param1 = ANALOG_LDR_BRIDGE_RESISTANCE; Adc[channel].param2 = ANALOG_LDR_LUX_CALC_SCALAR; Adc[channel].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000; // Adc[channel].param4 = 0; break; case GPIO_ADC_BUTTON: case GPIO_ADC_BUTTON_INV: Adc[channel].param1 = ANALOG_BUTTON_THRESHOLD; // Between 0 or 1 // Adc[channel].param2 = 0; // Adc[channel].param3 = 0; // Adc[channel].param4 = 0; break; case GPIO_ADC_RANGE: // Adc[channel].param1 = 0; Adc[channel].param2 = ANALOG_RANGE; // Adc[channel].param3 = 0; Adc[channel].param4 = 100; break; case GPIO_ADC_CT_POWER: Adc[channel].param1 = ANALOG_CT_FLAGS; // (uint32_t) 0 Adc[channel].param2 = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000 Adc[channel].param3 = ANALOG_CT_VOLTAGE; // (int) 10 break; case GPIO_ADC_JOY: Adc[channel].param1 = ANALOG_JOYSTICK_THRESHOLD; // Adc[channel].param2 = 0; // Adc[channel].param3 = 0; // Adc[channel].param4 = 0; break; case GPIO_ADC_PH: Adc[channel].param1 = ANALOG_PH_CALSOLUTION_LOW_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 1, which is the one with the lower PH Adc[channel].param2 = ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 1 Adc[channel].param3 = ANALOG_PH_CALSOLUTION_HIGH_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 2, which is the one with the higher PH Adc[channel].param4 = ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 2 break; case GPIO_ADC_MQ: Adc[channel].param1 = ANALOG_MQ_TYPE; // Could be MQ-002, MQ-004, MQ-131 .... Adc[channel].param2 = (int)(ANALOG_MQ_A * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[channel].param3 = (int)(ANALOG_MQ_B * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[channel].param4 = (int)(ANALOG_MQ_RatioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression break; case GPIO_ADC_VOLTAGE: case GPIO_ADC_CURRENT: // Adc[channel].param1 = 0; Adc[channel].param2 = ANALOG_RANGE; // Adc[channel].param3 = 0; Adc[channel].param4 = ANALOG_V33 * 10000; break; } // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: AdcParam%d %d,%d,%d,%d,%d"), channel+1, Adc[channel].pin, Adc[channel].param1, Adc[channel].param2, Adc[channel].param3, Adc[channel].param4); } void AdcInit(void) { Adcs.present = 0; memset(&Adc, 0, sizeof(Adc)); uint32_t pin = 0; // ESP32 full range of GPIOs possible for ADC channels #ifdef ESP8266 pin = ADC0_PIN; // ESP8266 single ADC channel #endif for (pin; pin < nitems(TasmotaGlobal.gpio_pin); pin++) { uint32_t adc_type = TasmotaGlobal.gpio_pin[pin] >> 5; switch(adc_type) { case GPIO_ADC_MQ: Adc[Adcs.present].mq_samples = (float*)calloc(sizeof(float), ANALOG_MQ_SAMPLES); // Need calloc to reset registers to 0 if (nullptr == Adc[Adcs.present].mq_samples) { continue; } case GPIO_ADC_CURRENT: case GPIO_ADC_VOLTAGE: case GPIO_ADC_PH: case GPIO_ADC_JOY: case GPIO_ADC_CT_POWER: case GPIO_ADC_RANGE: case GPIO_ADC_BUTTON_INV: case GPIO_ADC_BUTTON: case GPIO_ADC_LIGHT: case GPIO_ADC_TEMP: case GPIO_ADC_INPUT: Adc[Adcs.present].indexOfPointer = -1; Adc[Adcs.present].pin = pin; Adc[Adcs.present].type = adc_type; Adc[Adcs.present].index = TasmotaGlobal.gpio_pin[pin] & 0x001F; Adcs.present++; if (Adcs.present == MAX_ADCS) { break; } } } if (Adcs.present) { #ifdef ESP32 analogReadResolution(ANALOG_RESOLUTION); // Default 12 bits (0 - 4095) analogSetAttenuation(ADC_11db); // Default 11db #endif for (uint32_t channel = 0; channel < Adcs.present; channel++) { if (!AdcGetSettings(channel)) { AdcInitParams(channel); AdcSaveSettings(channel); } } } for (uint32_t channel = Adcs.present; channel < MAX_ADCS; channel++) { if (strlen(SettingsText(SET_ADC_PARAM1 + channel))) { AdcSaveSettings(channel); // Free space by unused params } } } uint16_t AdcRead(uint32_t pin, uint32_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples SystemBusyDelayExecute(); uint32_t samples = 1 << factor; uint32_t analog = 0; for (uint32_t i = 0; i < samples; i++) { #ifdef ESP32 analog += analogReadMilliVolts(pin); // get the value corrected by calibrated values from the eFuses #else analog += analogRead(pin); #endif delay(1); } analog >>= factor; #ifdef ESP32 analog = analog / (ANALOG_V33 * 1000) * ANALOG_RANGE; // Go back from mV to ADC #endif return analog; } void AdcEvery250ms(void) { char adc_channel[3] = { 0 }; uint32_t offset = 0; uint32_t dimmer_count = 0; #ifdef USE_LIGHT if (!light_controller.isCTRGBLinked()) { // SetOption37 >= 128 (Light) RGB and White channel separation (default 0) for (uint32_t channel = 0; channel < Adcs.present; channel++) { if ((GPIO_ADC_INPUT == Adc[channel].type) && (Adc[channel].param4 > 0)) { dimmer_count++; } } } #endif // USE_LIGHT for (uint32_t channel = 0; channel < Adcs.present; channel++) { uint32_t type_index = Adc[channel].index; #ifdef ESP32 snprintf_P(adc_channel, sizeof(adc_channel), PSTR("%d"), type_index +1); offset = 1; #endif uint32_t adc_type = Adc[channel].type; if (GPIO_ADC_INPUT == adc_type) { int adc = AdcRead(Adc[channel].pin, 4); // 4 = 16 mS bool swap = (Adc[channel].param2 < Adc[channel].param1); uint32_t lo = (swap) ? Adc[channel].param2 : Adc[channel].param1; uint32_t hi = (swap) ? Adc[channel].param1 : Adc[channel].param2; int new_value = changeUIntScale(adc, lo, hi, 0, 100); if (swap) { new_value = 100 - new_value; } if ((new_value < Adc[channel].last_value -Adc[channel].param3) || (new_value > Adc[channel].last_value +Adc[channel].param3) || ((0 == new_value) && (Adc[channel].last_value != 0)) || // Lowest end ((100 == new_value) && (Adc[channel].last_value != 100))) { // Highest end Adc[channel].last_value = new_value; if (-1 == Adc[channel].indexOfPointer) { Adc[channel].indexOfPointer = 0; continue; // Do not use potentiometer state on restart } #ifdef USE_LIGHT if (0 == Adc[channel].param4) { // Default (0) or Direct mode (1) #endif // USE_LIGHT Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), type_index + offset, new_value); XdrvRulesProcess(0); #ifdef USE_LIGHT } else { char command[33]; if (Settings->flag3.pwm_multi_channels) { // SetOption68 - Enable multi-channels PWM instead of Color PWM snprintf_P(command, sizeof(command), PSTR(D_CMND_CHANNEL "%d %d"), type_index +1, new_value); } else { uint32_t dimmer_option; if (dimmer_count > 1) { dimmer_option = (0 == type_index) ? 1 : 2; // Change RGB (1) or W(W) (2) dimmer } else { dimmer_option = (3 == Adc[channel].param4) ? 3 : 0; // Change both RGB and W(W) Dimmers (0) with no fading (3) } snprintf_P(command, sizeof(command), PSTR(D_CMND_DIMMER "%d %d"), dimmer_option, new_value); } ExecuteCommand(command, SRC_SWITCH); } #endif // USE_LIGHT } } else if (GPIO_ADC_JOY == adc_type) { uint16_t new_value = AdcRead(Adc[channel].pin, 1); if (new_value && (new_value != Adc[channel].last_value)) { Adc[channel].last_value = new_value; uint16_t value = new_value / Adc[channel].param1; Response_P(PSTR("{\"ANALOG\":{\"Joy%s\":%d}}"), adc_channel, value); XdrvRulesProcess(0); } else { Adc[channel].last_value = 0; } } } } uint8_t AdcGetButton(uint32_t pin) { for (uint32_t channel = 0; channel < Adcs.present; channel++) { uint32_t adc_type = Adc[channel].type; if (Adc[channel].pin == pin) { if (GPIO_ADC_BUTTON_INV == adc_type) { return (AdcRead(Adc[channel].pin, 1) < Adc[channel].param1); } else if (GPIO_ADC_BUTTON == adc_type) { return (AdcRead(Adc[channel].pin, 1) > Adc[channel].param1); } } } return 0; } uint16_t AdcGetLux(uint32_t channel) { int adc = AdcRead(Adc[channel].pin, 2); // Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/ double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33; double ldrVoltage = ANALOG_V33 - resistorVoltage; double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[channel].param1; double ldrLux = (double)Adc[channel].param2 * FastPrecisePow(ldrResistance, (double)Adc[channel].param3 / 10000); return (uint16_t)ldrLux; } void AddSampleMq(uint32_t channel){ // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Adding sample for mq-sensor")); int _adc = AdcRead(Adc[channel].pin, 2); // init af array at same value if (Adc[channel].indexOfPointer == -1) { // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Init samples for mq-sensor")); for (int i = 0; i < ANALOG_MQ_SAMPLES; i ++) { Adc[channel].mq_samples[i] = _adc; } } else { Adc[channel].mq_samples[Adc[channel].indexOfPointer] = _adc; } Adc[channel].indexOfPointer++; if (Adc[channel].indexOfPointer==ANALOG_MQ_SAMPLES) { Adc[channel].indexOfPointer=0; } } float AdcGetMq(uint32_t channel) { // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Getting value for mq-sensor")); float avg = 0.0; for (int i = 0; i < ANALOG_MQ_SAMPLES; i ++) { avg += Adc[channel].mq_samples[i]; } float voltage = (avg / ANALOG_MQ_SAMPLES) * ANALOG_V33 / ANALOG_RANGE; float _RL = 10; // Value in KiloOhms float _RS_Calc = ((ANALOG_V33 * _RL) / voltage) -_RL; // Get value of RS in a gas if (_RS_Calc < 0) { _RS_Calc = 0; // No negative values accepted. } float _R0 = 10; float _ratio = _RS_Calc / _R0; // Get ratio RS_gas/RS_air float ppm = Adc[channel].param2 / ANALOG_MQ_DECIMAL_MULTIPLIER * FastPrecisePow(_ratio, Adc[channel].param3 / ANALOG_MQ_DECIMAL_MULTIPLIER); // Source excel analisis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents if (ppm < 0) { ppm = 0; } // No negative values accepted or upper datasheet recomendation. if (ppm > 100000) { ppm = 100000; } // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Ppm read. ADC-RAW: %2_f, ppm: %2_f"), &voltage, &ppm); return ppm; } float AdcGetPh(uint32_t channel) { int adc = AdcRead(Adc[channel].pin, 2); float y1 = (float)Adc[channel].param1 / ANALOG_PH_DECIMAL_MULTIPLIER; int32_t x1 = Adc[channel].param2; float y2 = (float)Adc[channel].param3 / ANALOG_PH_DECIMAL_MULTIPLIER; int32_t x2 = Adc[channel].param4; float m = (y2 - y1) / (float)(x2 - x1); float ph = m * (float)(adc - x1) + y1; // AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Analog pH read. ADC-RAW: %d, cal-low(pH=ADC): %2_f = %d, cal-high(pH=ADC): %2_f = %d"), adc, &y1, x1, &y2, x2); return ph; } float AdcGetRange(uint32_t channel) { // formula for calibration: value, fromLow, fromHigh, toLow, toHigh // Example: 514, 632, 236, 0, 100 // int( (( - ) / ( - ) ) * ( - ) ) + ) int adc = AdcRead(Adc[channel].pin, 5); float adcrange = ( ((float)Adc[channel].param2 - (float)adc) / ( ((float)Adc[channel].param2 - (float)Adc[channel].param1)) * ((float)Adc[channel].param3 - (float)Adc[channel].param4) + (float)Adc[channel].param4 ); return adcrange; } void AdcGetCurrentPower(uint8_t channel, uint8_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples uint8_t samples = 1 << factor; uint16_t analog = 0; uint16_t analog_min = ANALOG_RANGE; uint16_t analog_max = 0; if (0 == Adc[channel].param1) { unsigned long tstart=millis(); while (millis()-tstart < 35) { analog = analogRead(Adc[channel].pin); if (analog < analog_min) { analog_min = analog; } if (analog > analog_max) { analog_max = analog; } } //AddLog(0, PSTR("min: %u, max:%u, dif:%u"), analog_min, analog_max, analog_max-analog_min); Adc[channel].current = (float)(analog_max-analog_min) * ((float)(Adc[channel].param2) / 100000); if (Adc[channel].current < (((float)Adc[channel].param4) / 10000.0)) Adc[channel].current = 0.0; } else { analog = AdcRead(Adc[channel].pin, 5); if (analog > Adc[channel].param1) { Adc[channel].current = ((float)(analog) - (float)Adc[channel].param1) * ((float)(Adc[channel].param2) / 100000); } else { Adc[channel].current = 0; } } float power = Adc[channel].current * (float)(Adc[channel].param3) / 10; uint32_t current_millis = millis(); Adc[channel].energy = Adc[channel].energy + ((power * (current_millis - Adc[channel].previous_millis)) / 3600000000); Adc[channel].previous_millis = current_millis; } void AdcEverySecond(void) { uint32_t voltage_count = 0; uint32_t current_count = 0; for (uint32_t channel = 0; channel < Adcs.present; channel++) { uint32_t type_index = Adc[channel].index; uint32_t adc_type = Adc[channel].type; if (GPIO_ADC_TEMP == adc_type) { int adc = AdcRead(Adc[channel].pin, 2); // Steinhart-Hart equation for thermistor as temperature sensor: // double Rt = (adc * Adc[channel].param1 * MAX_ADC_V) / (ANALOG_RANGE * ANALOG_V33 - (double)adc * MAX_ADC_V); // MAX_ADC_V in ESP8266 is 1 // MAX_ADC_V in ESP32 is 3.3 double Rt; #ifdef ESP8266 if (Adc[channel].param4) { // Alternate mode Rt = (double)Adc[channel].param1 * (ANALOG_RANGE * ANALOG_V33 - (double)adc) / (double)adc; } else { Rt = (double)Adc[channel].param1 * (double)adc / (ANALOG_RANGE * ANALOG_V33 - (double)adc); } #else if (Adc[channel].param4) { // Alternate mode Rt = (double)Adc[channel].param1 * (ANALOG_RANGE - (double)adc) / (double)adc; } else { Rt = (double)Adc[channel].param1 * (double)adc / (ANALOG_RANGE - (double)adc); } #endif if (Adc[channel].param3 > 1000000) { Adc[channel].param3 /= 10000; // Fix legacy value from 33500000 to 3350 } double BC = (double)Adc[channel].param3; // Shelly param3 = 3350 (ANALOG_NTC_B_COEFFICIENT) double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[channel].param2)); // Shelly param2 = 10000 (ANALOG_NTC_RESISTANCE) Adc[channel].temperature = ConvertTemp(TO_CELSIUS(T)); } else if (GPIO_ADC_CT_POWER == adc_type) { AdcGetCurrentPower(channel, 5); } else if (GPIO_ADC_MQ == adc_type) { AddSampleMq(channel); AdcGetMq(channel); } #ifdef USE_ENERGY_SENSOR else if (GPIO_ADC_VOLTAGE == adc_type) { Energy->voltage_available = true; Energy->voltage[type_index] = AdcGetRange(channel) / 10000; // Volt voltage_count++; } else if (GPIO_ADC_CURRENT == adc_type) { Energy->current_available = true; Energy->current[type_index] = AdcGetRange(channel) / 10000; // Ampere current_count++; } #endif // USE_ENERGY_SENSOR } #ifdef USE_ENERGY_SENSOR if (voltage_count && current_count) { for (uint32_t phase = 0; phase < current_count; phase++) { uint32_t voltage_phase = (voltage_count == current_count) ? phase : 0; Energy->active_power[phase] = Energy->voltage[voltage_phase] * Energy->current[phase]; // Watt Energy->kWhtoday_delta[phase] += (uint32_t)(Energy->active_power[phase] * 1000) / 36; // deca_microWh } EnergyUpdateToday(); } #endif // USE_ENERGY_SENSOR } void AdcShowContinuation(bool *jsonflg) { if (*jsonflg) { ResponseAppend_P(PSTR(",")); } else { ResponseAppend_P(PSTR(",\"ANALOG\":{")); *jsonflg = true; } } enum DomoFlagsAdc { ADC_TEMP, ADC_LIGHT, ADC_CT_POWER, ADC_END }; void AdcShow(bool json) { bool domo_flag[ADC_END] = { false }; char adc_name[10] = { 0 }; // ANALOG8 char adc_channel[3] = { 0 }; uint32_t offset = 0; bool jsonflg = false; for (uint32_t channel = 0; channel < Adcs.present; channel++) { uint32_t type_index = Adc[channel].index; #ifdef ESP32 snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), type_index +1); snprintf_P(adc_channel, sizeof(adc_channel), PSTR("%d"), type_index +1); offset = 1; #endif uint32_t adc_type = Adc[channel].type; switch (adc_type) { case GPIO_ADC_INPUT: { #ifdef USE_LIGHT if (0 == Adc[channel].param4) { // Default (0) or Direct mode (1) #endif // USE_LIGHT uint16_t analog = AdcRead(Adc[channel].pin, 5); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"A%d\":%d"), type_index + offset, analog); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ANALOG, "", type_index + offset, analog); #endif // USE_WEBSERVER } #ifdef USE_LIGHT } #endif // USE_LIGHT break; } case GPIO_ADC_TEMP: { if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "%s\":%*_f"), adc_channel, Settings->flag2.temperature_resolution, &Adc[channel].temperature); if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_TEMP])) { #ifdef USE_DOMOTICZ DomoticzFloatSensor(DZ_TEMP, Adc[channel].temperature); domo_flag[ADC_TEMP] = true; #endif // USE_DOMOTICZ #ifdef USE_KNX KnxSensor(KNX_TEMPERATURE, Adc[channel].temperature); #endif // USE_KNX } #ifdef USE_WEBSERVER } else { WSContentSend_Temp(adc_name, Adc[channel].temperature); #endif // USE_WEBSERVER } break; } case GPIO_ADC_LIGHT: { uint16_t adc_light = AdcGetLux(channel); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"" D_JSON_ILLUMINANCE "%s\":%d"), adc_channel, adc_light); #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_LIGHT])) { DomoticzSensor(DZ_ILLUMINANCE, adc_light); domo_flag[ADC_LIGHT] = true; } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light); #endif // USE_WEBSERVER } break; } case GPIO_ADC_RANGE: { float adc_range = AdcGetRange(channel); char range_chr[FLOATSZ]; dtostrfd(adc_range, Settings->flag2.frequency_resolution, range_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"" D_JSON_RANGE "%s\":%s"), adc_channel, range_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_RANGE_CHR, adc_name, range_chr); #endif // USE_WEBSERVER } break; } case GPIO_ADC_CT_POWER: { AdcGetCurrentPower(channel, 5); float voltage = (float)(Adc[channel].param3) / 10; char voltage_chr[FLOATSZ]; dtostrfd(voltage, Settings->flag2.voltage_resolution, voltage_chr); char current_chr[FLOATSZ]; dtostrfd(Adc[channel].current, Settings->flag2.current_resolution, current_chr); char power_chr[FLOATSZ]; dtostrfd(voltage * Adc[channel].current, Settings->flag2.wattage_resolution, power_chr); char energy_chr[FLOATSZ]; dtostrfd(Adc[channel].energy, Settings->flag2.energy_resolution, energy_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"CTEnergy%s\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"), adc_channel, energy_chr, power_chr, voltage_chr, current_chr); #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_CT_POWER])) { DomoticzSensor(DZ_POWER_ENERGY, power_chr); DomoticzSensor(DZ_VOLTAGE, voltage_chr); DomoticzSensor(DZ_CURRENT, current_chr); domo_flag[ADC_CT_POWER] = true; } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr); WSContentSend_PD(HTTP_SNS_CURRENT, current_chr); WSContentSend_PD(HTTP_SNS_POWER, power_chr); WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr); #endif // USE_WEBSERVER } break; } case GPIO_ADC_JOY: { uint16_t new_value = AdcRead(Adc[channel].pin, 1); uint16_t value = new_value / Adc[channel].param1; if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"Joy%s\":%d"), adc_channel, value); } break; } case GPIO_ADC_PH: { float ph = AdcGetPh(channel); char ph_chr[FLOATSZ]; dtostrfd(ph, 2, ph_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"pH%s\":%s"), adc_channel, ph_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_PH, "", ph_chr); #endif // USE_WEBSERVER } break; } case GPIO_ADC_MQ: { float mq = AdcGetMq(channel); char mq_chr[FLOATSZ]; dtostrfd(mq, 2, mq_chr); float mqnumber =Adc[channel].param1; char mqnumber_chr[FLOATSZ]; dtostrfd(mqnumber, 0, mqnumber_chr); if (json) { AdcShowContinuation(&jsonflg); ResponseAppend_P(PSTR("\"MQ%d_%d\":%s"), Adc[channel].param1, type_index + offset, mq_chr); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_MQ, mqnumber_chr, mq_chr); #endif // USE_WEBSERVER } break; } } } if (jsonflg) { ResponseJsonEnd(); } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ const char kAdcCommands[] PROGMEM = "Adc|" // No prefix D_CMND_ADCPARAM "|" D_CMND_ADCGPIO; void (* const AdcCommand[])(void) PROGMEM = { &CmndAdcParam, &CmndAdcGpio }; uint32_t Decimals(int value) { uint32_t decimals; for (decimals = 4; decimals > 0; decimals--) { if (value % 10) { break; } value /= 10; } return decimals; } void CmndAdcGpio(void) { // AdcGpio33 32000, 10000, 3350 ADC_TEMP Shelly mode for (uint32_t channel = 0; channel < Adcs.present; channel++) { if (XdrvMailbox.index == Adc[channel].pin) { XdrvMailbox.index = channel +1; if (XdrvMailbox.data_len) { char data[64]; snprintf_P(data, sizeof(data), PSTR("1,%s"), XdrvMailbox.data); XdrvMailbox.data = data; XdrvMailbox.data_len = strlen(data); } CmndAdcParam(); break; } } } void CmndAdcParam(void) { // AdcParam 1, 0, ANALOG_RANGE, 0 ADC_INPUT rule | dimmer // AdcParam 1, 32000, 10000, 3350 ADC_TEMP Shelly mode // AdcParam 1, 32000, 10000, 3350, 1 ADC_TEMP Alternate mode // AdcParam 1, 10000, 12518931, -1.405 // AdcParam 1, 128, 0, 0 // AdcParam 1, 128, 0, 0 // AdcParam 1, 0, ANALOG_RANGE, 0, 100 ADC_RANGE // AdcParam 1, 0, 2146, 0.23 // AdcParam 1, 1000, 0, 0 // AdcParam 1, ADC_PH // AdcParam 1, ADC_MQ // AdcParam 1, 0, ANALOG_RANGE, 0, 3.3 ADC_VOLTAGE // AdcParam 1, 0, ANALOG_RANGE, 0, 3.3 ADC_CURRENT if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) { uint8_t channel = XdrvMailbox.index -1; uint32_t adc_type = Adc[channel].type; if (XdrvMailbox.data_len) { AdcGetSettings(channel); if (ArgC() > 2) { // Process parameter entry char argument[XdrvMailbox.data_len]; Adc[channel].param1 = strtol(ArgV(argument, 2), nullptr, 10); // param1 = int Adc[channel].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int if ((GPIO_ADC_INPUT == adc_type) || (GPIO_ADC_TEMP == adc_type) || (GPIO_ADC_RANGE == adc_type)) { Adc[channel].param3 = abs(strtol(ArgV(argument, 4), nullptr, 10)); // param3 = abs(int) Adc[channel].param4 = abs(strtol(ArgV(argument, 5), nullptr, 10)); // param4 = abs(int) } else { Adc[channel].param3 = (int)(CharToFloat(ArgV(argument, 4)) * 10000); // param3 = float if (ArgC() > 4) { Adc[channel].param4 = (int)(CharToFloat(ArgV(argument, 5)) * 10000); // param4 = float } else { Adc[channel].param4 = 0; // param4 = fixed 0 } } if (GPIO_ADC_PH == adc_type) { float phLow = CharToFloat(ArgV(argument, 2)); Adc[channel].param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER; // param1 = float // Adc[channel].param2 = strtol(ArgV(argument, 3), nullptr, 10); // param2 = int float phHigh = CharToFloat(ArgV(argument, 4)); Adc[channel].param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER; // param3 = float Adc[channel].param4 = strtol(ArgV(argument, 5), nullptr, 10); // param4 = int // AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[channel].param2, &phHigh, Adc[channel].param4); } if (GPIO_ADC_CT_POWER == adc_type) { if (((1 == Adc[channel].param1) & CT_FLAG_ENERGY_RESET) > 0) { // param1 = int for (uint32_t i = 0; i < Adcs.present; i++) { Adc[i].energy = 0; } Adc[channel].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag } } if (GPIO_ADC_MQ == adc_type) { float a = CharToFloat(ArgV(argument, 3)); // param2 = float float b = CharToFloat(ArgV(argument, 4)); // param3 = float float ratioMQCleanAir = CharToFloat(ArgV(argument, 5)); // param4 = float if ((0 == a) && (0 == b) && (0 == ratioMQCleanAir)) { if (2 == Adc[channel].param1) { // param1 = int a = 574.25; b = -2.222; ratioMQCleanAir = 9.83; } else if (4 == Adc[channel].param1) { a = 1012.7; b = -2.786; ratioMQCleanAir = 4.4; } else if (7 == Adc[channel].param1) { a = 99.042; b = -1.518; ratioMQCleanAir = 27.5; } if (131 == Adc[channel].param1) { a = 23.943; b = -1.11; ratioMQCleanAir = 15; } } Adc[channel].param2 = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[channel].param3 = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression Adc[channel].param4 = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression // AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[channel].param1, &a, &b, &ratioMQCleanAir); } } else { // Set default values based on current adc type // AdcParam 1 AdcInitParams(channel); } AdcSaveSettings(channel); } // AdcParam / AdcGpio AdcGetSettings(channel); Response_P(PSTR("{\"%s"), XdrvMailbox.command); // {"AdcParam or {"AdcGpio if (strstr_P(XdrvMailbox.command, PSTR(D_CMND_ADCGPIO))) { ResponseAppend_P(PSTR("%d\":["), Adc[channel].pin); } else { ResponseAppend_P(PSTR("%d\":[%d,"), channel +1, Adc[channel].pin); } ResponseAppend_P(PSTR("%d,%d"), Adc[channel].param1, Adc[channel].param2); if ((GPIO_ADC_INPUT == adc_type) || (GPIO_ADC_TEMP == adc_type) || (GPIO_ADC_RANGE == adc_type) || (GPIO_ADC_MQ == adc_type)) { ResponseAppend_P(PSTR(",%d,%d"), Adc[channel].param3, Adc[channel].param4); // param3 = int, param4 = int } else { float param = (float)Adc[channel].param3 / 10000; ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[channel].param3), ¶m); // param3 = float if ((GPIO_ADC_CT_POWER == adc_type) || (GPIO_ADC_VOLTAGE == adc_type) || (GPIO_ADC_CURRENT == adc_type)) { param = (float)Adc[channel].param4 / 10000; ResponseAppend_P(PSTR(",%*_f"), Decimals(Adc[channel].param4), ¶m); // param4 = float } else { ResponseAppend_P(PSTR(",%d"), Adc[channel].param4); // param4 = int } } ResponseAppend_P(PSTR("]}")); } } /*********************************************************************************************\ * Energy Interface \*********************************************************************************************/ #ifdef USE_ENERGY_SENSOR bool Xnrg33(uint32_t function) { bool result = false; if (FUNC_PRE_INIT == function) { uint32_t voltage_count = 0; uint32_t current_count = 0; for (uint32_t channel = 0; channel < Adcs.present; channel++) { uint32_t adc_type = Adc[channel].type; if (GPIO_ADC_VOLTAGE == adc_type) { voltage_count++; } if (GPIO_ADC_CURRENT == adc_type) { current_count++; } } if (voltage_count || current_count) { Energy->type_dc = true; Energy->voltage_common = (1 == voltage_count); Energy->phase_count = (voltage_count > current_count) ? voltage_count : current_count; Energy->voltage_available = false; Energy->current_available = false; Energy->use_overtemp = true; // Use global temperature for overtemp detection TasmotaGlobal.energy_driver = XNRG_33; } } return result; } #endif // USE_ENERGY_SENSOR /*********************************************************************************************\ * Sensor Interface \*********************************************************************************************/ bool Xsns02(uint32_t function) { bool result = false; switch (function) { case FUNC_COMMAND: result = DecodeCommand(kAdcCommands, AdcCommand); break; case FUNC_SETUP_RING2: AdcInit(); break; default: if (Adcs.present) { switch (function) { case FUNC_EVERY_250_MSECOND: AdcEvery250ms(); break; case FUNC_EVERY_SECOND: AdcEverySecond(); break; case FUNC_JSON_APPEND: AdcShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: AdcShow(0); break; #endif // USE_WEBSERVER } } } return result; } #endif // USE_ADC #endif // FIRMWARE_MINIMAL