/*
xnrg_14_bl09xx.ino - BL09XX energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#if defined(USE_BL0940) || defined(USE_BL09XX)
#ifdef USE_BL0940
#warning **** USE_BL0940 is obsolete. Please replace with USE_BLE09XX ****
#endif
/*********************************************************************************************\
* Support the following Shangai Belling energy sensors:
*
* BL0940 - Energy (as in Blitzwolf SHP10)
* Template {"NAME":"BW-SHP10","GPIO":[0,148,0,207,158,21,0,0,0,17,0,0,0],"FLAG":0,"BASE":18}
* Based on datasheet from http://www.belling.com.cn/media/file_object/bel_product/BL09XX/datasheet/BL09XX_V1.1_en.pdf
*
* BL0939 - Energy (as in Sonoff Dual R3 v2)
* {"NAME":"Sonoff Dual R3 v2","GPIO":[32,0,0,0,0,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,3200,8128,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
* Based on datasheet from https://www.belling.com.cn/product_info.html?id=368
* See https://github.com/arendst/Tasmota/discussions/10793
\*********************************************************************************************/
#define XNRG_14 14
//#define DEBUG_BL09XX
#define BL0939_PREF 713 // =(4046*1*0,51*1000)/(1,218*1,218*(390*5+0,51)) = 713,105
#define BL0939_UREF 17159 // =(79931*0,51*1000)/(1,218*(390*5+0,51)) = 17158,92
#define BL0939_IREF 266013 // =(324004*1)/1,218 = 266013,14
#define BL0940_PREF 1430
#define BL0940_UREF 33000
#define BL0940_IREF 275000
#define BL0942_PREF 596
#define BL0942_UREF 15187
#define BL0942_IREF 251213
#define BL09XX_WRITE_COMMAND 0xA0 // 0xA8 according to documentation
#define BL09XX_REG_I_FAST_RMS_CTRL 0x10
#define BL09XX_REG_MODE 0x18
#define BL09XX_REG_SOFT_RESET 0x19
#define BL09XX_REG_USR_WRPROT 0x1A
#define BL09XX_REG_TPS_CTRL 0x1B
#define BL09XX_READ_COMMAND 0x50 // 0x58 according to documentation
#define BL09XX_FULL_PACKET 0xAA
#define BL09XX_PACKET_HEADER 0x55 // 0x58 according to documentation
#include
TasmotaSerial *Bl09XXSerial = nullptr;
enum Bl09xxModel { BL0939_MODEL, BL0940_MODEL, BL0942_MODEL, BL09XX_MODEL }; // Model index number starting from 0
const uint32_t bl09xx_pref[] = { BL0939_PREF, BL0940_PREF, BL0942_PREF }; // Power reference constant
const uint32_t bl09xx_uref[] = { BL0939_UREF, BL0940_UREF, BL0942_UREF }; // Voltage reference constant
const uint32_t bl09xx_iref[] = { BL0939_IREF, BL0940_IREF, BL0942_IREF }; // Current reference constant
const uint8_t bl09xx_type[] = { 39, 40, 42 }; // Device name BL09xx
const uint8_t bl09xx_phase_count[] = { 2, 1, 1 }; // Supported phase/channel count
const uint8_t bl09xx_address[] = { 0x05, 0x00, 0x08 }; // Device address
const uint8_t bl09xx_buffer_size[] = { 35, 35, 23 }; // Serial receive buffer size
const uint8_t bl09xx_init[5][4] = {
{ BL09XX_REG_SOFT_RESET, 0x5A, 0x5A, 0x5A }, // Reset to default
{ BL09XX_REG_USR_WRPROT, 0x55, 0x00, 0x00 }, // Enable User Operation Write
{ BL09XX_REG_MODE, 0x00, 0x10, 0x00 }, // 0x0100 = CF_UNABLE energy pulse, AC_FREQ_SEL 50Hz, RMS_UPDATE_SEL 800mS
{ BL09XX_REG_TPS_CTRL, 0xFF, 0x47, 0x00 }, // 0x47FF = Over-current and leakage alarm on, Automatic temperature measurement, Interval 100mS
{ BL09XX_REG_I_FAST_RMS_CTRL, 0x1C, 0x18, 0x00 } // 0x181C = Half cycle, Fast RMS threshold 6172
};
struct BL09XX {
uint32_t voltage = 0;
uint32_t current[2] = { 0, };
uint32_t power[2] = { 0, };
float temperature;
uint16_t tps1 = 0;
uint8_t *rx_buffer = nullptr;
uint8_t buffer_size = 0;
uint8_t byte_counter = 0;
uint8_t address = 0;
uint8_t model = 0;
uint8_t rx_pin;
bool received = false;
} Bl09XX;
bool Bl09XXDecode3940(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Sample from BL0940 (single channel)
// 55 F2 03 00 00 00 00 7E 02 00 D4 B0 72 AC 01 00 00 00 00 02 01 00 00 00 00 00 00 00 BA 01 00 FE 03 00 83
// 55 88 02 00 49 00 00 FE 02 00 AF EF 71 D2 01 00 EB FF FF 49 01 00 00 00 00 02 00 00 CF 01 00 FE 03 00 9F
// 55 B9 33 00 DE 45 00 94 02 00 CF E4 70 63 02 00 6C 4C 00 13 01 00 09 00 00 00 00 00 E4 01 00 FE 03 00 72
// 55 B8 55 00 2F 73 00 D2 02 00 00 C6 74 F9 01 00 97 89 00 37 01 00 AB 00 00 2D 00 00 02 02 00 FE 03 00 6E = U 7652864, I 29487/0, P 35223/0, C 171/0, T 514
// Hd IFRms--- Current- Reserved Voltage- Reserved Power--- Reserved CF------ Reserved TPS1---- TPS2---- Ck
//
// Sample from BL0939 (dual channel)
// 55 82 03 00 00 00 00 1E 15 01 65 80 3E E5 C6 00 00 00 00 50 B1 00 00 00 00 00 00 00 F9 01 00 FE 03 00 D2 = U 4096101, I 0/70942, P 0/45392, C 0/0, T 505
// 55 E6 02 00 00 00 00 37 15 01 0F 83 3E F4 C7 00 00 00 00 69 B1 00 00 00 00 01 00 00 FA 01 00 FE 03 00 7E = U 4096783, I 0/70967, P 0/45417, C 0/1, T 506
// 55 29 03 00 00 00 00 27 15 01 3A 86 3E AF C8 00 00 00 00 67 B1 00 00 00 00 01 00 00 FA 01 00 FE 03 00 62 = U 4097594, I 0/70951, P 0/45415, C 0/1, T 506
// 55 04 03 00 00 00 00 D6 14 01 7D 8E 3E 25 C7 00 00 00 00 53 B1 00 00 00 00 01 00 00 F9 01 00 FE 03 00 2E = U 4099709, I 0/70870, P 0/45395, C 0/1, T 505
// Hd IFRms-A- CurrentA CurrentB Voltage- IFRms-B- PowerA-- PowerB-- CF-A---- CF-B---- TPS1---- TPS2---- Ck
uint16_t tps1 = Bl09XX.rx_buffer[29] << 8 | Bl09XX.rx_buffer[28]; // TPS1 unsigned
if ((Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) || // Bad header
(Bl09XX.tps1 && ((tps1 < (Bl09XX.tps1 -10)) || (tps1 > (Bl09XX.tps1 +10)))) // Invalid temperature change
) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X, tps1:%d"), Bl09XX.rx_buffer[0], tps1);
return false;
}
Bl09XX.tps1 = tps1;
float t = ((170.0f/448.0f)*(((float)Bl09XX.tps1/2.0f)-32.0f))-45.0f;
Bl09XX.temperature = ConvertTemp(t);
Bl09XX.voltage = Bl09XX.rx_buffer[12] << 16 | Bl09XX.rx_buffer[11] << 8 | Bl09XX.rx_buffer[10]; // V_RMS unsigned
Bl09XX.current[0] = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // IA_RMS unsigned
int32_t tmp = Bl09XX.rx_buffer[18] << 24 | Bl09XX.rx_buffer[17] << 16 | Bl09XX.rx_buffer[16] << 8; // WATT_A signed
Bl09XX.power[0] = abs(tmp >> 8); // WATT_A unsigned
if (Energy.phase_count > 1) {
Bl09XX.current[1] = Bl09XX.rx_buffer[9] << 16 | Bl09XX.rx_buffer[8] << 8 | Bl09XX.rx_buffer[7]; // IB_RMS unsigned
tmp = Bl09XX.rx_buffer[21] << 24 | Bl09XX.rx_buffer[20] << 16 | Bl09XX.rx_buffer[19] << 8; // WATT_B signed
Bl09XX.power[1] = abs(tmp >> 8); // WATT_B unsigned
}
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d/%d, P %d/%d, T %d"),
Bl09XX.voltage, Bl09XX.current[0], Bl09XX.current[1], Bl09XX.power[0], Bl09XX.power[1], Bl09XX.tps1);
#endif
return true;
}
bool Bl09XXDecode42(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Hd Current- Voltage- IFRms--- Power--- CF------ Freq- 00 St 00 00 Ck
// 55 A3 B9 00 9E 4C 36 93 43 00 F4 98 FF 99 00 00 16 4E 00 01 01 00
// U 3558558, I 47523, P 26380, C 153
// 55 AC B9 00 79 4D 36 C4 43 00 EF 98 FF 99 00 00 16 4E 00 01 01 00
// U 3558777, I 47532, P 26385, C 153
// 55 40 BA 00 2D 50 36 FE 43 00 96 98 FF 99 00 00 16 4E 00 01 01 00
// U 3559469, I 47680, P 26474, C 153
// 55 91 B9 00 33 4C 36 FB 43 00 FC 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3558451, I 47505, P 26372, C 153
// 55 AF B9 00 05 51 36 D1 43 00 E4 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3559685, I 47535, P 26396, C 153
// 55 21 BA 00 3A 5E 36 10 44 00 8B 98 FF 99 00 00 16 4E 00 01 01 00
// U 3563066, I 47649, P 26485, C 153
// 55 BE B9 00 B2 55 36 9D 42 00 D7 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3560882, I 47550, P 26409, C 153
// All above from a single test with a 40W buld on 230V
if (Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X"), Bl09XX.rx_buffer[0]);
return false;
}
Bl09XX.voltage = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // V_RMS unsigned
Bl09XX.current[0] = Bl09XX.rx_buffer[3] << 16 | Bl09XX.rx_buffer[2] << 8 | Bl09XX.rx_buffer[1]; // IA_RMS unsigned
int32_t tmp = Bl09XX.rx_buffer[12] << 24 | Bl09XX.rx_buffer[11] << 16 | Bl09XX.rx_buffer[10] << 8; // WATT_A signed
Bl09XX.power[0] = abs(tmp >> 8); // WATT_A unsigned
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d, P %d"),
Bl09XX.voltage, Bl09XX.current[0], Bl09XX.power[0]);
#endif
return true;
}
void Bl09XXUpdateEnergy() {
if (Energy.power_on) { // Powered on
Energy.voltage[0] = (float)Bl09XX.voltage / Settings->energy_voltage_calibration;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Voltage %f, Temp %f"), Energy.voltage[0], Bl09XX.temperature);
for (uint32_t chan = 0; chan < Energy.phase_count; chan++) {
if (Bl09XX.power[chan] > Settings->energy_power_calibration) { // We need at least 1W
Energy.active_power[chan] = (float)Bl09XX.power[chan] / Settings->energy_power_calibration;
Energy.current[chan] = (float)Bl09XX.current[chan] / Settings->energy_current_calibration;
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I %f, P %f"), chan, Energy.current[chan], Energy.active_power[chan]);
#endif
} else {
Energy.active_power[chan] = 0;
Energy.current[chan] = 0;
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I zero, P zero"), chan);
#endif
}
}
} else { // Powered off
Energy.voltage[0] = 0;
Energy.active_power[0] = Energy.active_power[1] = 0;
Energy.current[0] = Energy.current[1] = 0;
}
}
void Bl09XXSerialInput(void) {
while (Bl09XXSerial->available()) {
yield();
uint8_t serial_in_byte = Bl09XXSerial->read();
if (!Bl09XX.received && (BL09XX_PACKET_HEADER == serial_in_byte)) {
Bl09XX.received = true;
Bl09XX.byte_counter = 0;
}
if (Bl09XX.received) {
Bl09XX.rx_buffer[Bl09XX.byte_counter++] = serial_in_byte;
if (Bl09XX.buffer_size == Bl09XX.byte_counter -1) {
#ifdef DEBUG_BL09XX
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, Bl09XX.rx_buffer, Bl09XX.buffer_size);
#endif
uint8_t checksum = BL09XX_READ_COMMAND | Bl09XX.address;
for (uint32_t i = 0; i < Bl09XX.buffer_size -1; i++) { checksum += Bl09XX.rx_buffer[i]; }
checksum ^= 0xFF;
if (checksum == Bl09XX.rx_buffer[Bl09XX.buffer_size -1]) {
Energy.data_valid[0] = 0;
bool ok;
if (BL0942_MODEL == Bl09XX.model) {
ok = Bl09XXDecode42();
} else {
ok = Bl09XXDecode3940();
}
if (ok) { Bl09XXUpdateEnergy(); }
Bl09XX.received = false;
return;
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE " received 0x%02X instead of 0x%02X"), Bl09XX.rx_buffer[Bl09XX.buffer_size -1], checksum);
do { // Sync buffer with data (issue #1907 and #3425)
memmove(Bl09XX.rx_buffer, Bl09XX.rx_buffer +1, Bl09XX.buffer_size -1);
Bl09XX.byte_counter--;
} while ((Bl09XX.byte_counter > 1) && (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]));
if (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE));
Bl09XX.received = false;
Bl09XX.byte_counter = 0;
}
}
}
}
}
}
/********************************************************************************************/
void Bl09XXEverySecond(void) {
if (Energy.data_valid[0] > ENERGY_WATCHDOG) {
Bl09XX.voltage = 0;
memset(Bl09XX.current, 0, sizeof(Bl09XX.current));
memset(Bl09XX.power, 0, sizeof(Bl09XX.power));
} else {
// Calculate energy by using active power
for (uint32_t channel = 0; channel < Energy.phase_count; channel++) {
Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36;
}
EnergyUpdateToday();
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Poll"));
Bl09XXSerial->flush();
Bl09XXSerial->write(BL09XX_READ_COMMAND | Bl09XX.address);
Bl09XXSerial->write(BL09XX_FULL_PACKET);
}
void Bl09XXInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Bl09XXSerial = new TasmotaSerial(Bl09XX.rx_pin, Pin(GPIO_TXD), 1);
if (Bl09XXSerial->begin(4800, 1)) {
if (Bl09XXSerial->hardwareSerial()) {
ClaimSerial();
}
if (HLW_UREF_PULSE == Settings->energy_voltage_calibration) {
Settings->energy_voltage_calibration = bl09xx_uref[Bl09XX.model];
Settings->energy_current_calibration = bl09xx_iref[Bl09XX.model];
Settings->energy_power_calibration = bl09xx_pref[Bl09XX.model];
}
if ((BL0940_MODEL == Bl09XX.model) && (Settings->energy_current_calibration < (BL0940_IREF / 20))) {
Settings->energy_current_calibration *= 100;
}
if (BL0942_MODEL != Bl09XX.model) {
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Send Init string"));
#endif
Energy.use_overtemp = true; // Use global temperature for overtemp detection
for (uint32_t i = 0; i < 5; i++) {
uint8_t crc, byte;
crc = byte = BL09XX_WRITE_COMMAND | Bl09XX.address;
Bl09XXSerial->write(byte);
for (uint32_t j = 0; j < 4; j++) {
crc += byte = bl09xx_init[i][j];
Bl09XXSerial->write(byte);
}
Bl09XXSerial->write(0xFF ^ crc);
delay(1);
}
} else {
Energy.use_overtemp = false; // Use global temperature for overtemp detection
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Bl09XXPreInit(void) {
if (PinUsed(GPIO_TXD)) {
Bl09XX.model = BL09XX_MODEL;
if (PinUsed(GPIO_BL0939_RX)) {
Bl09XX.model = BL0939_MODEL;
Bl09XX.rx_pin = Pin(GPIO_BL0939_RX);
}
else if (PinUsed(GPIO_BL0940_RX)) {
Bl09XX.model = BL0940_MODEL;
Bl09XX.rx_pin = Pin(GPIO_BL0940_RX);
}
else if (PinUsed(GPIO_BL0942_RX)) {
Bl09XX.model = BL0942_MODEL;
Bl09XX.rx_pin = Pin(GPIO_BL0942_RX);
}
if (Bl09XX.model != BL09XX_MODEL) {
Bl09XX.address = bl09xx_address[Bl09XX.model];
Bl09XX.buffer_size = bl09xx_buffer_size[Bl09XX.model];
Bl09XX.rx_buffer = (uint8_t*)(malloc(Bl09XX.buffer_size));
if (Bl09XX.rx_buffer != nullptr) {
Energy.voltage_common = true; // Use common voltage
Energy.frequency_common = true; // Use common frequency
Energy.use_overtemp = true; // Use global temperature for overtemp detection
Energy.phase_count = bl09xx_phase_count[Bl09XX.model]; // Handle two channels as two phases
TasmotaGlobal.energy_driver = XNRG_14;
AddLog(LOG_LEVEL_DEBUG,PSTR("BL9: Enabling BL09%02d"), bl09xx_type[Bl09XX.model]);
}
}
}
}
bool Bl09XXCommand(void) {
bool serviced = true;
uint32_t channel = (2 == XdrvMailbox.index) && (Energy.phase_count > 1) ? 1 : 0;
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && Bl09XX.power[channel]) {
Settings->energy_power_calibration = (Bl09XX.power[channel] * 100) / value;
}
}
else if (CMND_VOLTAGESET == Energy.command_code) {
if (XdrvMailbox.data_len && Bl09XX.voltage) {
Settings->energy_voltage_calibration = (Bl09XX.voltage * 100) / value;
}
}
else if (CMND_CURRENTSET == Energy.command_code) {
if (XdrvMailbox.data_len && Bl09XX.current[channel]) {
Settings->energy_current_calibration = (Bl09XX.current[channel] * 100) / value;
}
}
else serviced = false; // Unknown command
return serviced;
}
void Bl09XXShow(bool json) {
if (BL0942_MODEL != Bl09XX.model) {
if (json) {
ResponseAppend_P(JSON_SNS_F_TEMP, "BL09XX", Settings->flag2.temperature_resolution, &Bl09XX.temperature);
if (0 == TasmotaGlobal.tele_period) {
#ifdef USE_DOMOTICZ
DomoticzFloatSensor(DZ_TEMP, Bl09XX.temperature);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, Bl09XX.temperature);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp("", Bl09XX.temperature);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg14(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_LOOP:
if (Bl09XXSerial) { Bl09XXSerialInput(); }
break;
case FUNC_EVERY_SECOND:
Bl09XXEverySecond();
break;
case FUNC_JSON_APPEND:
Bl09XXShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Bl09XXShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND:
result = Bl09XXCommand();
break;
case FUNC_INIT:
Bl09XXInit();
break;
case FUNC_PRE_INIT:
Bl09XXPreInit();
break;
}
return result;
}
#endif // USE_BL09XX
#endif // USE_ENERGY_SENSOR