/*
xdrv_06_display.ino - display support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#if defined(USE_I2C) || defined(USE_SPI)
#ifdef USE_DISPLAY
/*********************************************************************************************\
* Display Libraries needed
* --------------- ----------------------------------------
* I2C LCD LiquidCrystal_I2C
* I2C SSD 1306 Adafruit_SSD1306 and Adafruit_GFX
* I2C 8x8 Matrix Adafruit_LED_Backpack and Adafruit_GFX
* SPI TFT ILI9341 TasmotaTFT and Adafruit_GFX
* SPI TFT ILI9481 TasmotaTFT and Adafruit_GFX
\*********************************************************************************************/
#define LCD_ADDRESS1 0x27 // LCD I2C address option 1
#define LCD_ADDRESS2 0x3F // LCD I2C address option 2
#define OLED_ADDRESS1 0x3C // Oled 128x32 I2C address
#define OLED_ADDRESS2 0x3D // Oled 128x64 I2C address
#define DISPLAY_BUFFER_COLS 40 // Max number of columns in log buffer and display shadow buffer (needed for LCD and Oled)
#define DISPLAY_BUFFER_ROWS 8 // Max number of lines in display shadow buffer (needed for LCD and Oled)
#define DISPLAY_LOG_ROWS 32 // Number of lines in display log buffer
enum display_types { DISP_NONE, DISP_LCD, DISP_OLED, DISP_MATRIX, DISP_TFT, DISP_TFT4, DISP_MAX };
enum DisplayCommands { CMND_DISP_MODEL, CMND_DISP_MODE, CMND_DISP_REFRESH, CMND_DISP_DIMMER, CMND_DISP_COLS, CMND_DISP_ROWS,
CMND_DISP_SIZE, CMND_DISP_TEXT, CMND_DISP_ADDRESS };
const char kDisplayCommands[] PROGMEM =
D_CMND_DISP_MODEL "|" D_CMND_DISP_MODE "|" D_CMND_DISP_REFRESH "|" D_CMND_DISP_DIMMER "|" D_CMND_DISP_COLS "|" D_CMND_DISP_ROWS "|"
D_CMND_DISP_SIZE "|" D_CMND_DISP_TEXT "|" D_CMND_DISP_ADDRESS ;
const char S_JSON_DISPLAY_COMMAND_VALUE[] PROGMEM = "{\"" D_CMND_DISPLAY "%s\":\"%s\"}";
const char S_JSON_DISPLAY_COMMAND_NVALUE[] PROGMEM = "{\"" D_CMND_DISPLAY "%s\":%d}";
const char S_JSON_DISPLAY_COMMAND_INDEX_NVALUE[] PROGMEM = "{\"" D_CMND_DISPLAY "%s%d\":%d}";
#define DISPLAY_LOG_COLS DISPLAY_BUFFER_COLS +1 // Number of characters in display log buffer line +1
#ifdef USE_I2C // ---------------------------------------------------------------------------
#include // 8x8 Matrix
#include // LCD
#include // Oled
LiquidCrystal_I2C *lcd;
Adafruit_SSD1306 *oled;
//char disp_screen_buffer[Settings.display_rows][Settings.display_cols[0] +1];
char disp_screen_buffer[DISPLAY_BUFFER_ROWS][DISPLAY_BUFFER_COLS +1];
Adafruit_8x8matrix *matrix[8];
uint8_t mtx_matrices = 0;
uint8_t mtx_state = 0;
uint8_t mtx_counter = 0;
int16_t mtx_x = 0;
int16_t mtx_y = 0;
#endif // USE_I2C ---------------------------------------------------------------------------
#ifdef USE_SPI // ---------------------------------------------------------------------------
#define TFT_TOP 16
#define TFT_BOTTOM 16
#define TFT_FONT_WIDTH 6
#define TFT_FONT_HEIGTH 8 // Adafruit minimal font heigth pixels
#include // TFT 320x240 and 480x320
TasmotaTFT *tft;
//#include
//Adafruit_ILI9341 *tft;
uint16_t tft_scroll;
#endif // USE_SPI ---------------------------------------------------------------------------
char disp_log_buffer[DISPLAY_LOG_ROWS][DISPLAY_LOG_COLS];
char disp_temp[2]; // C or F
char disp_time[9]; // 13:45:43
uint8_t disp_log_buffer_idx = 0;
uint8_t disp_log_buffer_ptr = 0;
bool disp_log_buffer_active = false;
uint8_t disp_model = DISP_NONE;
uint8_t disp_refresh = 1;
uint8_t disp_second = 0;
uint8_t disp_mode = 1;
uint8_t disp_power = 0;
uint8_t disp_device = 0;
uint8_t disp_subscribed = 0;
void DisplayLogBufferIdxInc()
{
char *pch = strchr(disp_log_buffer[disp_log_buffer_idx],'~'); // = 0x7E (~) Replace degrees character (276 octal)
if (pch != NULL) {
switch (disp_model) {
case DISP_LCD:
disp_log_buffer[disp_log_buffer_idx][pch - disp_log_buffer[disp_log_buffer_idx]] = '\337'; // = 0xDF
break;
case DISP_OLED:
case DISP_MATRIX:
case DISP_TFT:
case DISP_TFT4:
disp_log_buffer[disp_log_buffer_idx][pch - disp_log_buffer[disp_log_buffer_idx]] = '\370'; // = 0xF8
break;
}
}
disp_log_buffer_idx++;
if (DISPLAY_LOG_ROWS == disp_log_buffer_idx) {
disp_log_buffer_idx = 0;
}
}
void DisplayLogBufferPtrInc()
{
disp_log_buffer_ptr++;
if (DISPLAY_LOG_ROWS == disp_log_buffer_ptr) {
disp_log_buffer_ptr = 0;
}
}
#ifdef USE_I2C // ---------------------------------------------------------------------------
void DisplayScreenBuffer()
{
uint8_t last_row = Settings.display_rows -1;
disp_refresh--;
if (!disp_refresh) {
disp_refresh = Settings.display_refresh;
disp_log_buffer_active = (disp_log_buffer_idx != disp_log_buffer_ptr);
if (disp_log_buffer_active) {
if (DISP_OLED == disp_model) {
oled->clearDisplay();
oled->setTextSize(Settings.display_size);
oled->setCursor(0,0);
}
for (byte i = 0; i < last_row; i++) {
strlcpy(disp_screen_buffer[i], disp_screen_buffer[i +1], sizeof(disp_screen_buffer[i]));
if (DISP_LCD == disp_model) {
lcd->setCursor(0, i); // Col 0, Row i
lcd->print(disp_screen_buffer[i +1]);
}
else if (DISP_OLED == disp_model) {
oled->println(disp_screen_buffer[i]);
}
}
strlcpy(disp_screen_buffer[last_row], disp_log_buffer[disp_log_buffer_ptr], sizeof(disp_screen_buffer[last_row]));
// Fill with spaces
byte len = sizeof(disp_screen_buffer[last_row]) - strlen(disp_screen_buffer[last_row]);
if (len) {
memset(disp_screen_buffer[last_row] + strlen(disp_screen_buffer[last_row]), 0x20, len);
disp_screen_buffer[last_row][sizeof(disp_screen_buffer[last_row])-1] = 0;
}
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "[%s]"), disp_screen_buffer[last_row]);
AddLog(LOG_LEVEL_DEBUG);
if (DISP_LCD == disp_model) {
lcd->setCursor(0, last_row);
lcd->print(disp_screen_buffer[last_row]);
}
else if (DISP_OLED == disp_model) {
oled->println(disp_screen_buffer[last_row]);
oled->display();
}
DisplayLogBufferPtrInc();
}
}
}
// -------------------------------------------------------------------------------------------
void DisplayMatrixInit()
{
mtx_state = 1;
for (mtx_matrices = 0; mtx_matrices < 8; mtx_matrices++) {
if (Settings.display_address[mtx_matrices]) {
matrix[mtx_matrices] = new Adafruit_8x8matrix();
matrix[mtx_matrices]->begin(Settings.display_address[mtx_matrices]);
matrix[mtx_matrices]->setRotation(1);
matrix[mtx_matrices]->setBrightness(Settings.display_dimmer);
matrix[mtx_matrices]->blinkRate(0); // 0 - 3
matrix[mtx_matrices]->setTextWrap(false); // Allow text to run off edges
// matrix[mtx_matrices]->setTextSize(Settings.display_size);
// matrix[mtx_matrices]->setTextColor(LED_RED);
matrix[mtx_matrices]->cp437(true);
} else {
break;
}
}
DisplayMatrixClear();
}
void DisplayMatrixWrite()
{
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->writeDisplay();
}
}
void DisplayMatrixClear()
{
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
}
DisplayMatrixWrite();
}
/*
void DisplayMatrixAll() // On based on Text value (1 - 6)
{
int value = atoi(Settings.text);
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
if (i < value) {
matrix[i]->fillRect(0,0, 8,8, LED_ON);
}
matrix[i]->setBrightness(Settings.display_dimmer);
}
DisplayMatrixWrite();
}
void DisplayMatrixAllOn()
{
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
matrix[i]->fillRect(0,0, 8,8, LED_ON);
matrix[i]->setBrightness(Settings.display_dimmer);
}
DisplayMatrixWrite();
}
*/
void DisplayMatrixFixed(char* txt)
{
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
matrix[i]->setCursor(-i *8, 0);
matrix[i]->print(txt);
matrix[i]->setBrightness(Settings.display_dimmer);
}
DisplayMatrixWrite();
}
void DisplayMatrixCenter(char* txt)
{
int offset;
int len = strlen(txt);
offset = (len < 8) ? offset = ((mtx_matrices *8) - (len *6)) / 2 : 0;
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
matrix[i]->setCursor(-(i *8)+offset, 0);
matrix[i]->print(txt);
matrix[i]->setBrightness(Settings.display_dimmer);
}
DisplayMatrixWrite();
}
void DisplayMatrixScrollLeft(char* txt, int loop)
{
switch (mtx_state) {
case 1:
mtx_state = 2;
// Horiz. position of text -- starts off right edge
mtx_x = 8 * mtx_matrices;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "[%s]"), txt);
AddLog(LOG_LEVEL_DEBUG);
disp_refresh = Settings.display_refresh;
case 2:
disp_refresh--;
if (!disp_refresh) {
disp_refresh = Settings.display_refresh;
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
matrix[i]->setCursor(mtx_x - i *8, 0);
matrix[i]->print(txt);
matrix[i]->setBrightness(Settings.display_dimmer);
}
DisplayMatrixWrite();
// Move text position left by 1 pixel.
mtx_x--;
int16_t len = strlen(txt);
if (mtx_x < -(len *6)) {
mtx_state = loop;
}
}
break;
}
}
void DisplayMatrixScrollUp(char* txt, int loop)
{
int wordcounter = 0;
char tmpbuf[200];
char *words[100];
// char separators[] = " ,.;:!?";
// char separators[] = " ";
// char separators[] = " /|";
char separators[] = " /";
switch (mtx_state) {
case 1:
mtx_state = 2;
// Vertical position of text -- starts off left bottom edge
mtx_y = 8;
mtx_counter = 0;
disp_refresh = Settings.display_refresh;
case 2:
disp_refresh--;
if (!disp_refresh) {
disp_refresh = Settings.display_refresh;
strlcpy(tmpbuf, txt, sizeof(tmpbuf));
char *p = strtok(tmpbuf, separators);
while (p != NULL && wordcounter < 40) {
words[wordcounter++] = p;
p = strtok(NULL, separators);
}
for (byte i = 0; i < mtx_matrices; i++) {
matrix[i]->clear();
for (byte j = 0; j < wordcounter; j++) {
matrix[i]->setCursor(-i *8, mtx_y + (j *8));
matrix[i]->println(words[j]);
}
matrix[i]->setBrightness(Settings.display_dimmer);
}
DisplayMatrixWrite();
if (((mtx_y %8) == 0) && mtx_counter) {
mtx_counter--;
} else {
mtx_y--; // Move text position up by 1 pixel.
mtx_counter = STATES * 1; // Hold text for 1 seconds
}
if (mtx_y < -(wordcounter *8)) {
mtx_state = loop;
}
}
break;
}
}
void DisplayMatrixBufferScroll(uint8_t direction)
{
if (disp_log_buffer_idx != disp_log_buffer_ptr) {
if (!mtx_state) {
mtx_state = 1;
}
if (direction) {
DisplayMatrixScrollUp(disp_log_buffer[disp_log_buffer_ptr], 0);
} else {
DisplayMatrixScrollLeft(disp_log_buffer[disp_log_buffer_ptr], 0);
}
if (!mtx_state) {
DisplayLogBufferPtrInc();
}
} else {
DisplayMatrixFixed(disp_time);
}
}
// -------------------------------------------------------------------------------------------
void DisplayLcdInit()
{
lcd = new LiquidCrystal_I2C(Settings.display_address[0], Settings.display_cols[0], Settings.display_rows);
lcd->init();
lcd->clear();
memset(disp_screen_buffer[Settings.display_rows -1], 0x20, Settings.display_cols[0]);
disp_screen_buffer[Settings.display_rows -1][Settings.display_cols[0]] = 0;
}
void DisplayLcdCenter(byte row, char* txt)
{
int offset;
int len;
char line[Settings.display_cols[0] +2];
memset(line, 0x20, Settings.display_cols[0]);
line[Settings.display_cols[0]] = 0;
len = strlen(txt);
offset = (len < Settings.display_cols[0]) ? offset = (Settings.display_cols[0] - len) / 2 : 0;
strncpy(line +offset, txt, len);
lcd->setCursor(0, row);
lcd->print(line);
}
void DisplayLcdTime()
{
char line[Settings.display_cols[0] +1];
snprintf_P(line, sizeof(line), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d"), RtcTime.hour, RtcTime.minute, RtcTime.second);
DisplayLcdCenter(0, line);
snprintf_P(line, sizeof(line), PSTR("%02d" D_MONTH_DAY_SEPARATOR "%02d" D_YEAR_MONTH_SEPARATOR "%04d"), RtcTime.day_of_month, RtcTime.month, RtcTime.year);
DisplayLcdCenter(1, line);
}
void DisplayLcdBufferOrTime()
{
DisplayScreenBuffer();
if (!disp_log_buffer_active) {
DisplayLcdTime();
}
}
// -------------------------------------------------------------------------------------------
void DisplayOledInit()
{
oled = new Adafruit_SSD1306();
oled->begin(SSD1306_SWITCHCAPVCC, Settings.display_address[0]);
oled->invertDisplay(false);
oled->clearDisplay();
oled->setTextWrap(false); // Allow text to run off edges
oled->cp437(true);
oled->setTextSize(Settings.display_size);
oled->setTextColor(WHITE);
oled->setCursor(0,0);
oled->display();
// memset(disp_screen_buffer[Settings.display_rows -1], 0x20, Settings.display_cols);
// disp_screen_buffer[Settings.display_rows -1][Settings.display_cols[0]] = 0;
}
void DisplayOledDisplayOnOff(byte state)
{
if (state) {
oled->ssd1306_command(SSD1306_DISPLAYON);
} else {
oled->ssd1306_command(SSD1306_DISPLAYOFF);
}
oled->display();
}
void DisplayOledTime()
{
char line[12];
oled->clearDisplay();
oled->setTextSize(2);
oled->setCursor(0, 0);
snprintf_P(line, sizeof(line), PSTR(" %02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d"), RtcTime.hour, RtcTime.minute, RtcTime.second); // [ 12:34:56 ]
oled->println(line);
snprintf_P(line, sizeof(line), PSTR("%02d" D_MONTH_DAY_SEPARATOR "%02d" D_YEAR_MONTH_SEPARATOR "%04d"), RtcTime.day_of_month, RtcTime.month, RtcTime.year); // [01-02-2018]
oled->println(line);
oled->display();
}
#endif // USE_I2C ---------------------------------------------------------------------------
#ifdef USE_SPI // ---------------------------------------------------------------------------
void DisplayTftInit()
{
if (DISP_TFT == disp_model) {
tft = new TasmotaTFT(ILI9341, pin[GPIO_SPI_CS], pin[GPIO_SPI_DC]);
// tft = new Adafruit_ILI9341(pin[GPIO_SPI_CS], pin[GPIO_SPI_DC]);
}
else if (DISP_TFT4 == disp_model) {
tft = new TasmotaTFT(ILI9481, pin[GPIO_SPI_CS], pin[GPIO_SPI_DC]);
}
tft->begin();
tft->setRotation(0);
tft->invertDisplay(0);
tft->fillScreen(TFT_BLACK);
tft->setTextWrap(false); // Allow text to run off edges
tft->cp437(true);
tft->setScrollMargins(TFT_TOP, TFT_BOTTOM);
tft->setCursor(0, 0);
tft->setTextColor(TFT_YELLOW, TFT_BLACK);
tft->setTextSize(2);
tft->println("HEADER");
tft_scroll = TFT_TOP;
}
void DisplayTftDisplayOnOff(byte state)
{
// tft->showDisplay(state);
// tft->invertDisplay(state);
if (pin[GPIO_BACKLIGHT] < 99) {
pinMode(pin[GPIO_BACKLIGHT], OUTPUT);
digitalWrite(pin[GPIO_BACKLIGHT], state);
}
}
void DisplayTftPrint(byte size, char *txt)
{
uint16_t theight;
tft->setCursor(0, tft_scroll);
tft->setTextSize(size);
theight = size * TFT_FONT_HEIGTH;
tft->fillRect(0, tft_scroll, tft->width(), theight, TFT_BLACK);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "[%s]"), txt);
AddLog(LOG_LEVEL_DEBUG);
tft->print(txt);
tft_scroll += theight;
if (tft_scroll >= (tft->height() - TFT_BOTTOM)) {
tft_scroll = TFT_TOP;
}
tft->setScrollStart(tft_scroll);
}
void DisplayTftBuffer()
{
disp_refresh--;
if (!disp_refresh) {
disp_refresh = Settings.display_refresh;
disp_log_buffer_active = (disp_log_buffer_idx != disp_log_buffer_ptr);
if (disp_log_buffer_active) {
DisplayTftPrint(Settings.display_size, disp_log_buffer[disp_log_buffer_ptr]);
DisplayLogBufferPtrInc();
}
}
}
#endif // USE_SPI ---------------------------------------------------------------------------
/*********************************************************************************************\
* Sensors
\*********************************************************************************************/
enum SensorQuantity {
JSON_TEMPERATURE,
JSON_HUMIDITY, JSON_LIGHT, JSON_NOISE, JSON_AIRQUALITY,
JSON_PRESSURE, JSON_PRESSUREATSEALEVEL,
JSON_ILLUMINANCE,
JSON_GAS,
JSON_YESTERDAY, JSON_TOTAL, JSON_TODAY,
JSON_PERIOD,
JSON_POWERFACTOR, JSON_COUNTER, JSON_ANALOG_INPUT, JSON_UV_LEVEL,
JSON_CURRENT,
JSON_VOLTAGE,
JSON_POWERUSAGE,
JSON_CO2 };
const char kSensorQuantity[] PROGMEM =
D_JSON_TEMPERATURE "|" // degrees
D_JSON_HUMIDITY "|" D_JSON_LIGHT "|" D_JSON_NOISE "|" D_JSON_AIRQUALITY "|" // percentage
D_JSON_PRESSURE "|" D_JSON_PRESSUREATSEALEVEL "|" // hPa
D_JSON_ILLUMINANCE "|" // lx
D_JSON_GAS "|" // kOhm
D_JSON_YESTERDAY "|" D_JSON_TOTAL "|" D_JSON_TODAY "|" // kWh
D_JSON_PERIOD "|" // Wh
D_JSON_POWERFACTOR "|" D_JSON_COUNTER "|" D_JSON_ANALOG_INPUT "|" D_JSON_UV_LEVEL "|" // No unit
D_JSON_CURRENT "|" // Ampere
D_JSON_VOLTAGE "|" // Volt
D_JSON_POWERUSAGE "|" // Watt
D_JSON_CO2 ; // ppm
void DisplayJsonValue(const char *topic, const char* device, const char* mkey, const char* value)
{
char quantity[TOPSZ];
char spaces[Settings.display_cols[0]];
char source[Settings.display_cols[0] - Settings.display_cols[1]];
char svalue[Settings.display_cols[1] +1];
memset(spaces, 0x20, sizeof(spaces));
spaces[sizeof(spaces) -1] = '\0';
snprintf_P(source, sizeof(source), PSTR("%s/%s%s"), topic, mkey, (DISP_MATRIX == Settings.display_model) ? "" : spaces); // pow1/Voltage
int quantity_code = GetCommandCode(quantity, sizeof(quantity), mkey, kSensorQuantity);
if ((-1 == quantity_code) || !strcmp_P(mkey, S_RSLT_POWER)) { // Ok: Power, Not ok: POWER
return;
}
if (JSON_TEMPERATURE == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s~%s"), value, disp_temp);
}
else if ((quantity_code >= JSON_HUMIDITY) && (quantity_code <= JSON_AIRQUALITY)) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s%%"), value);
}
else if ((quantity_code >= JSON_PRESSURE) && (quantity_code <= JSON_PRESSUREATSEALEVEL)) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_PRESSURE), value);
}
else if (JSON_ILLUMINANCE == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_LUX), value);
}
else if (JSON_GAS == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_KILOOHM), value);
}
else if ((quantity_code >= JSON_YESTERDAY) && (quantity_code <= JSON_TODAY)) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_KILOWATTHOUR), value);
}
else if (JSON_PERIOD == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_WATTHOUR), value);
}
else if ((quantity_code >= JSON_POWERFACTOR) && (quantity_code <= JSON_UV_LEVEL)) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s"), value);
}
else if (JSON_CURRENT == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_AMPERE), value);
}
else if (JSON_VOLTAGE == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_VOLT), value);
}
else if (JSON_POWERUSAGE == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_WATT), value);
}
else if (JSON_CO2 == quantity_code) {
snprintf_P(svalue, sizeof(svalue), PSTR("%s" D_UNIT_PARTS_PER_MILLION), value);
}
snprintf_P(disp_log_buffer[disp_log_buffer_idx], sizeof(disp_log_buffer[disp_log_buffer_idx]), PSTR("%s %s"), source, svalue);
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "mkey [%s], source [%s], value [%s], quantity_code %d, log_buffer [%s]"), mkey, source, value, quantity_code, disp_log_buffer[disp_log_buffer_idx]);
// AddLog(LOG_LEVEL_DEBUG);
DisplayLogBufferIdxInc();
}
void DisplayAnalyzeJson(char *topic, char *json)
{
// //tele/pow2/STATE {"Time":"2017-09-20T11:53:03", "Uptime":10, "Vcc":3.123, "POWER":"ON", "Wifi":{"AP":2, "SSId":"indebuurt2", "RSSI":68, "APMac":"00:22:6B:FE:8E:20"}}
// //tele/pow2/ENERGY {"Time":"2017-09-20T11:53:03", "Total":6.522, "Yesterday":0.150, "Today":0.073, "Period":0.5, "Power":12.1, "Factor":0.56, "Voltage":210.1, "Current":0.102}
// tele/pow1/SENSOR = {"Time":"2018-01-02T17:13:17","ENERGY":{"Total":13.091,"Yesterday":0.060,"Today":0.046,"Period":0.2,"Power":9.8,"Factor":0.49,"Voltage":206.8,"Current":0.096}}
// tele/dual/STATE {"Time":"2017-09-20T11:53:03","Uptime":25,"Vcc":3.178,"POWER1":"OFF","POWER2":"OFF","Wifi":{"AP":2,"SSId":"indebuurt2","RSSI":100,"APMac":"00:22:6B:FE:8E:20"}}
// tele/sc/SENSOR {"Time":"2017-09-20T11:53:09","Temperature":24.0,"Humidity":16.0,"Light":30,"Noise":20,"AirQuality":100,"TempUnit":"C"}
// tele/rf1/SENSOR {"Time":"2017-09-20T11:53:23","BH1750":{"Illuminance":57}}
// tele/wemos5/SENSOR {"Time":"2017-09-20T11:53:53","SHT1X":{"Temperature":20.1,"Humidity":58.9},"HTU21":{"Temperature":20.7,"Humidity":58.5},"BMP280":{"Temperature":21.6,"Pressure":1020.3},"TempUnit":"C"}
// tele/th1/SENSOR {"Time":"2017-09-20T11:54:48","DS18B20":{"Temperature":49.7},"TempUnit":"C"}
char jsonStr[MESSZ];
const char *tempunit;
strlcpy(jsonStr, json, sizeof(jsonStr)); // Save original before destruction by JsonObject
StaticJsonBuffer<400> jsonBuf;
JsonObject &root = jsonBuf.parseObject(jsonStr);
if (root.success()) {
tempunit = root[D_JSON_TEMPERATURE_UNIT];
if (tempunit) {
snprintf_P(disp_temp, sizeof(disp_temp), PSTR("%s"), tempunit);
// snprintf_P(log_data, sizeof(log_data), disp_temp);
// AddLog(LOG_LEVEL_DEBUG);
}
for (JsonObject::iterator it = root.begin(); it != root.end(); ++it) {
JsonVariant value = it->value;
if (value.is()) {
JsonObject& Object2 = value;
for (JsonObject::iterator it2 = Object2.begin(); it2 != Object2.end(); ++it2) {
JsonVariant value2 = it2->value;
if (value2.is()) {
JsonObject& Object3 = value2;
for (JsonObject::iterator it3 = Object3.begin(); it3 != Object3.end(); ++it3) {
DisplayJsonValue(topic, it->key, it3->key, it3->value.as()); // Sensor 56%
}
} else {
DisplayJsonValue(topic, it->key, it2->key, it2->value.as()); // Sensor 56%
}
}
} else {
DisplayJsonValue(topic, it->key, it->key, it->value.as()); // Topic 56%
}
}
}
}
/*********************************************************************************************\
* Public
\*********************************************************************************************/
void DisplayInit()
{
if (!Settings.display_model) {
#ifdef USE_I2C
if (i2c_flg) {
if (I2cDevice(LCD_ADDRESS1)) {
Settings.display_address[0] = LCD_ADDRESS1;
Settings.display_model = DISP_LCD;
}
else if (I2cDevice(LCD_ADDRESS2)) {
Settings.display_address[0] = LCD_ADDRESS2;
Settings.display_model = DISP_LCD;
}
else if (I2cDevice(OLED_ADDRESS1)) {
Settings.display_address[0] = OLED_ADDRESS1;
Settings.display_model = DISP_OLED;
}
else if (I2cDevice(OLED_ADDRESS2)) {
Settings.display_address[0] = OLED_ADDRESS2;
Settings.display_model = DISP_OLED;
}
else if (I2cDevice(Settings.display_address[1])) {
Settings.display_model = DISP_MATRIX;
}
}
#endif // USE_I2C
#ifdef USE_SPI
if (spi_flg) {
Settings.display_model = DISP_TFT;
}
#endif // USE_SPI
}
disp_model = Settings.display_model;
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "Display model %d"), disp_model);
// AddLog(LOG_LEVEL_DEBUG);
if (disp_model) {
devices_present++;
disp_device = devices_present;
snprintf_P(disp_temp, sizeof(disp_temp), PSTR("%c"), TempUnit());
disp_log_buffer_idx = 0;
disp_log_buffer_ptr = 0;
disp_log_buffer_active = false;
disp_refresh = Settings.display_refresh;
disp_mode = Settings.display_mode;
#ifdef USE_I2C
if (DISP_LCD == disp_model) {
DisplayLcdInit();
}
else if (DISP_OLED == disp_model) {
DisplayOledInit();
}
else if (DISP_MATRIX == disp_model) {
DisplayMatrixInit();
}
#endif // USE_I2C
#ifdef USE_SPI
if ((DISP_TFT == disp_model) || (DISP_TFT4 == disp_model)) {
DisplayTftInit();
}
#endif
snprintf_P(disp_log_buffer[disp_log_buffer_idx], sizeof(disp_log_buffer[disp_log_buffer_idx]), PSTR(D_VERSION " %s"), my_version);
DisplayLogBufferIdxInc();
snprintf_P(disp_log_buffer[disp_log_buffer_idx], sizeof(disp_log_buffer[disp_log_buffer_idx]), PSTR("Display mode %d"), disp_mode);
DisplayLogBufferIdxInc();
}
}
void DisplaySetPower()
{
// disp_power = XdrvMailbox.index;
disp_power = bitRead(XdrvMailbox.index, disp_device -1);
if (disp_model) {
if (disp_power) {
#ifdef USE_I2C
if (DISP_LCD == disp_model) {
lcd->backlight();
}
else if (DISP_OLED == disp_model) {
DisplayOledDisplayOnOff(1);
}
#endif
#ifdef USE_SPI
if ((DISP_TFT == disp_model) || (DISP_TFT4 == disp_model)) {
DisplayTftDisplayOnOff(1);
}
#endif
} else {
#ifdef USE_I2C
if (DISP_LCD == disp_model) {
lcd->noBacklight();
}
else if (DISP_OLED == disp_model) {
DisplayOledDisplayOnOff(0);
}
#endif
#ifdef USE_SPI
if ((DISP_TFT == disp_model) || (DISP_TFT4 == disp_model)) {
DisplayTftDisplayOnOff(0);
}
#endif
}
}
}
void DisplayMqttSubscribe()
{
/* Subscribe to tele messages only
* Supports the following FullTopic formats
* - %prefix%/%topic%
* - home/%prefix%/%topic%
* - home/level2/%prefix%/%topic% etc.
*/
// if (Settings.display_mode &0x04) {
if (Settings.display_model) {
char stopic[TOPSZ];
char ntopic[TOPSZ];
ntopic[0] = '\0';
strlcpy(stopic, Settings.mqtt_fulltopic, sizeof(stopic));
char *tp = strtok(stopic, "/");
while (tp != NULL) {
if (!strcmp_P(tp, PSTR(MQTT_TOKEN_PREFIX))) {
break;
}
strncat_P(ntopic, PSTR("+/"), sizeof(ntopic)); // Add single-level wildcards
tp = strtok(NULL, "/");
}
strncat(ntopic, Settings.mqtt_prefix[2], sizeof(ntopic)); // Subscribe to tele messages
strncat_P(ntopic, PSTR("/#"), sizeof(ntopic)); // Add multi-level wildcard
MqttSubscribe(ntopic);
disp_subscribed = 1;
} else {
disp_subscribed = 0;
}
}
boolean DisplayMqttData()
{
if (disp_subscribed) {
char stopic[TOPSZ];
snprintf_P(stopic, sizeof(stopic) , PSTR("%s/"), Settings.mqtt_prefix[2]); // tele/
char *tp = strstr(XdrvMailbox.topic, stopic);
if (tp) { // tele/sonoff/SENSOR
if (Settings.display_mode &0x04) {
tp = tp + strlen(stopic); // sonoff/SENSOR
char *topic = strtok(tp, "/"); // sonoff
DisplayAnalyzeJson(topic, XdrvMailbox.data);
}
return true;
}
}
return false;
}
void DisplayLocalSensor()
{
if ((Settings.display_mode &0x02) && (0 == tele_period)) {
DisplayAnalyzeJson(mqtt_topic, mqtt_data);
}
}
void DisplayRefresh() // Every 0.05 second
{
snprintf_P(disp_time, sizeof(disp_time), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d"), RtcTime.hour, RtcTime.minute, RtcTime.second);
disp_second++;
if (disp_second >= STATES) {
disp_second = 0;
#ifdef USE_I2C
if (DISP_LCD == disp_model) {
switch (disp_mode) {
case 0:
lcd->clear();
break;
case 1:
DisplayLcdTime();
break;
case 2:
case 4:
DisplayScreenBuffer();
break;
case 3:
case 5:
DisplayLcdBufferOrTime();
break;
}
}
else if (DISP_OLED == disp_model) {
switch (disp_mode) {
// case 0:
// oled->clearDisplay();
// oled->display();
// break;
case 1:
DisplayOledTime();
break;
case 0: // Text only
case 2: // Local
case 3: // Local
case 4: // Mqtt
case 5: // Mqtt
DisplayScreenBuffer();
break;
}
}
#endif
#ifdef USE_SPI
if (DISP_TFT == disp_model) {
char tftdt[21];
char disp_date4[11]; // 24-04-2017
snprintf_P(disp_date4, sizeof(disp_date4), PSTR("%02d" D_MONTH_DAY_SEPARATOR "%02d" D_YEAR_MONTH_SEPARATOR "%04d"), RtcTime.day_of_month, RtcTime.month, RtcTime.year);
tft->setTextSize(2);
tft->setTextColor(TFT_YELLOW, TFT_BLACK); // Add background color to solve flicker
tft->setCursor(0, 0);
snprintf_P(tftdt, sizeof(tftdt), PSTR("%s %s"), disp_date4, disp_time);
tft->print(tftdt);
switch (disp_mode) {
case 0: // Text
case 2: // Local
case 3: // Local
case 4: // Mqtt
case 5: // Mqtt
tft->setTextColor(TFT_CYAN, TFT_BLACK); // Add background color to solve flicker
DisplayTftBuffer();
break;
}
}
#endif
}
#ifdef USE_I2C
if (DISP_MATRIX == disp_model) {
if (!disp_power) {
DisplayMatrixClear();
} else {
char disp_date[9]; // 24-04-17
char disp_day[10]; // Mon
snprintf_P(disp_date, sizeof(disp_date), PSTR("%02d" D_MONTH_DAY_SEPARATOR "%02d" D_YEAR_MONTH_SEPARATOR "%02d"), RtcTime.day_of_month, RtcTime.month, RtcTime.year -2000);
snprintf_P(disp_day, sizeof(disp_day), PSTR("%d %s"), RtcTime.day_of_month, RtcTime.name_of_month);
switch (disp_mode) {
case 0:
// DisplayMatrixScrollLeft(Settings.text, Settings.loop);
case 2:
DisplayMatrixFixed(disp_date);
break;
case 3:
DisplayMatrixCenter(disp_day);
break;
case 4:
DisplayMatrixBufferScroll(0);
break;
case 1: // Time and user text
case 5: // Time, user text and MQTT
DisplayMatrixBufferScroll(1);
break;
// case 8:
// DisplayMatrixAllOn();
// break;
// case 9:
// DisplayMatrixAll();
// break;
}
}
}
#endif
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
boolean DisplayCommand()
{
char command [CMDSZ];
boolean serviced = true;
uint8_t disp_len = strlen(D_CMND_DISPLAY); // Prep for string length change
if (!strncasecmp_P(XdrvMailbox.topic, PSTR(D_CMND_DISPLAY), disp_len)) { // Prefix
int command_code = GetCommandCode(command, sizeof(command), XdrvMailbox.topic +disp_len, kDisplayCommands);
if (CMND_DISP_MODEL == command_code) {
if ((XdrvMailbox.payload >= DISP_NONE) && (XdrvMailbox.payload < DISP_MAX)) {
Settings.display_model = XdrvMailbox.payload;
restart_flag = 2; // Restart to re-init interface and add/Remove MQTT subscribe
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_NVALUE, command, Settings.display_model);
}
else if (CMND_DISP_MODE == command_code) {
/*
* Matrix LCD / Oled TFT
* 0 = Clear display
* 1 = Text up and time Time
* 2 = Date Local sensors Local sensors
* 3 = Day Local sensors and time Local sensors and time
* 4 = Mqtt left and time Mqtt (incl local) sensors Mqtt (incl local) sensors
* 5 = Mqtt up and time Mqtt (incl local) sensors and time Mqtt (incl local) sensors and time
*/
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 5)) {
Settings.display_mode = XdrvMailbox.payload;
// if ((disp_mode &0x04) != (Settings.display_mode &0x04)) {
if (!disp_subscribed) {
restart_flag = 2; // Restart to Add/Remove MQTT subscribe
}
disp_mode = Settings.display_mode;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_NVALUE, command, Settings.display_mode);
}
else if (CMND_DISP_REFRESH == command_code) {
if ((XdrvMailbox.payload >= 1) && (XdrvMailbox.payload <= 7)) {
Settings.display_refresh = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_NVALUE, command, Settings.display_refresh);
}
else if ((CMND_DISP_COLS == command_code) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= DISPLAY_BUFFER_COLS)) {
Settings.display_cols[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_INDEX_NVALUE, command, XdrvMailbox.index, Settings.display_cols[XdrvMailbox.index -1]);
}
else if (CMND_DISP_DIMMER == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.display_dimmer = ((XdrvMailbox.payload +1) * 100) / 666; // Correction for Domoticz (0 - 15)
if (Settings.display_dimmer && !(disp_power)) {
ExecuteCommandPower(disp_device, POWER_ON);
}
else if (!Settings.display_dimmer && disp_power) {
ExecuteCommandPower(disp_device, POWER_OFF);
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_NVALUE, command, Settings.display_dimmer);
}
else if (CMND_DISP_ROWS == command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= DISPLAY_BUFFER_ROWS)) {
Settings.display_rows = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_NVALUE, command, Settings.display_rows);
}
else if (CMND_DISP_SIZE == command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 4)) {
Settings.display_size = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_NVALUE, command, Settings.display_size);
}
else if (CMND_DISP_TEXT == command_code) {
if (XdrvMailbox.data_len > 0) {
// Here display command manipulation could take place like textsize, color, position etc. using intext parameters
// Currently just adds to the logbuffer
strlcpy(disp_log_buffer[disp_log_buffer_idx], XdrvMailbox.data, sizeof(disp_log_buffer[disp_log_buffer_idx]));
DisplayLogBufferIdxInc();
} else {
snprintf_P(XdrvMailbox.data, XdrvMailbox.data_len, PSTR("Text too long"));
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_VALUE, command, XdrvMailbox.data);
}
else if ((CMND_DISP_ADDRESS == command_code) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 8)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 255)) {
Settings.display_address[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_DISPLAY_COMMAND_INDEX_NVALUE, command, XdrvMailbox.index, Settings.display_address[XdrvMailbox.index -1]);
}
else serviced = false;
}
else serviced = false;
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XDRV_06
boolean Xdrv06(byte function)
{
boolean result = false;
switch (function) {
case FUNC_INIT:
if (i2c_flg || spi_flg) {
DisplayInit();
}
break;
case FUNC_EVERY_50_MSECOND:
DisplayRefresh();
break;
case FUNC_COMMAND:
result = DisplayCommand();
break;
case FUNC_MQTT_SUBSCRIBE:
DisplayMqttSubscribe();
break;
case FUNC_MQTT_DATA:
result = DisplayMqttData();
break;
case FUNC_SET_POWER:
DisplaySetPower();
break;
case FUNC_SHOW_SENSOR:
DisplayLocalSensor();
break;
}
return result;
}
#endif // USE_DISPLAY
#endif // USE_I2C or USE_SPI