/* xsns_23_sdm120.ino - Eastron SDM120-Modbus energy meter support for Sonoff-Tasmota Copyright (C) 2018 Gennaro Tortone This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_SDM120 /*********************************************************************************************\ * Eastron SDM120-Modbus energy meter * * Based on: https://github.com/reaper7/SDM_Energy_Meter \*********************************************************************************************/ #define XSNS_23 23 #include TasmotaSerial *SDM120Serial; uint8_t sdm120_type = 1; //uint8_t sdm120_state = 0; float sdm120_voltage = 0; float sdm120_current = 0; float sdm120_active_power = 0; float sdm120_apparent_power = 0; float sdm120_reactive_power = 0; float sdm120_power_factor = 0; float sdm120_frequency = 0; float sdm120_energy_total = 0; bool SDM120_ModbusReceiveReady(void) { return (SDM120Serial->available() > 1); } void SDM120_ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count) { uint8_t frame[8]; frame[0] = 0x01; // default SDM120 Modbus address frame[1] = function_code; frame[2] = (uint8_t)(start_address >> 8); frame[3] = (uint8_t)(start_address); frame[4] = (uint8_t)(register_count >> 8); frame[5] = (uint8_t)(register_count); uint16_t crc = SDM120_calculateCRC(frame, 6); // calculate out crc only from first 6 bytes frame[6] = lowByte(crc); frame[7] = highByte(crc); while (SDM120Serial->available() > 0) { // read serial if any old data is available SDM120Serial->read(); } SDM120Serial->flush(); SDM120Serial->write(frame, sizeof(frame)); } uint8_t SDM120_ModbusReceive(float *value) { uint8_t buffer[9]; *value = NAN; uint8_t len = 0; while (SDM120Serial->available() > 0) { buffer[len++] = (uint8_t)SDM120Serial->read(); } if (len < 9) return 3; // SDM_ERR_NOT_ENOUGHT_BYTES if (len == 9) { if (buffer[0] == 0x01 && buffer[1] == 0x04 && buffer[2] == 4) { // check node number, op code and reply bytes count if((SDM120_calculateCRC(buffer, 7)) == ((buffer[8] << 8) | buffer[7])) { //calculate crc from first 7 bytes and compare with received crc (bytes 7 & 8) ((uint8_t*)value)[3] = buffer[3]; ((uint8_t*)value)[2] = buffer[4]; ((uint8_t*)value)[1] = buffer[5]; ((uint8_t*)value)[0] = buffer[6]; } else return 1; // SDM_ERR_CRC_ERROR } else return 2; // SDM_ERR_WRONG_BYTES } return 0; // SDM_ERR_NO_ERROR } uint16_t SDM120_calculateCRC(uint8_t *frame, uint8_t num) { uint16_t crc, flag; crc = 0xFFFF; for (uint8_t i = 0; i < num; i++) { crc ^= frame[i]; for (uint8_t j = 8; j; j--) { if ((crc & 0x0001) != 0) { // If the LSB is set crc >>= 1; // Shift right and XOR 0xA001 crc ^= 0xA001; } else { // Else LSB is not set crc >>= 1; // Just shift right } } } return crc; } /*********************************************************************************************/ const uint16_t sdm120_start_addresses[] { 0x0000, // SDM120C_VOLTAGE [V] 0x0006, // SDM120C_CURRENT [A] 0x000C, // SDM120C_POWER [W] 0x0012, // SDM120C_APPARENT_POWER [VA] 0x0018, // SDM120C_REACTIVE_POWER [VAR] 0x001E, // SDM120C_POWER_FACTOR 0x0046, // SDM120C_FREQUENCY [Hz] 0x0156 // SDM120C_TOTAL_ACTIVE_ENERGY [Wh] }; uint8_t sdm120_read_state = 0; uint8_t sdm120_send_retry = 0; void SDM120250ms(void) // Every 250 mSec { // sdm120_state++; // if (6 == sdm120_state) { // Every 300 mSec // sdm120_state = 0; float value = 0; bool data_ready = SDM120_ModbusReceiveReady(); if (data_ready) { uint8_t error = SDM120_ModbusReceive(&value); if (error) { snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "SDM120 response error %d"), error); AddLog(LOG_LEVEL_DEBUG); } else { switch(sdm120_read_state) { case 0: sdm120_voltage = value; break; case 1: sdm120_current = value; break; case 2: sdm120_active_power = value; break; case 3: sdm120_apparent_power = value; break; case 4: sdm120_reactive_power = value; break; case 5: sdm120_power_factor = value; break; case 6: sdm120_frequency = value; break; case 7: sdm120_energy_total = value; break; } // end switch sdm120_read_state++; if (sizeof(sdm120_start_addresses)/2 == sdm120_read_state) { sdm120_read_state = 0; } } } // end data ready if (0 == sdm120_send_retry || data_ready) { sdm120_send_retry = 5; SDM120_ModbusSend(0x04, sdm120_start_addresses[sdm120_read_state], 2); } else { sdm120_send_retry--; } // } // end 300 ms } void SDM120Init(void) { sdm120_type = 0; if ((pin[GPIO_SDM120_RX] < 99) && (pin[GPIO_SDM120_TX] < 99)) { SDM120Serial = new TasmotaSerial(pin[GPIO_SDM120_RX], pin[GPIO_SDM120_TX], 1); #ifdef SDM120_SPEED if (SDM120Serial->begin(SDM120_SPEED)) { #else if (SDM120Serial->begin(2400)) { #endif if (SDM120Serial->hardwareSerial()) { ClaimSerial(); } sdm120_type = 1; } } } #ifdef USE_WEBSERVER const char HTTP_SNS_SDM120_DATA[] PROGMEM = "%s" "{s}SDM120 " D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}SDM120 " D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}SDM120 " D_POWERUSAGE_ACTIVE "{m}%s " D_UNIT_WATT "{e}" "{s}SDM120 " D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}" "{s}SDM120 " D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}" "{s}SDM120 " D_POWER_FACTOR "{m}%s{e}" "{s}SDM120 " D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}" "{s}SDM120 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; #endif // USE_WEBSERVER void SDM120Show(boolean json) { char voltage[10]; char current[10]; char active_power[10]; char apparent_power[10]; char reactive_power[10]; char power_factor[10]; char frequency[10]; char energy_total[10]; dtostrfd(sdm120_voltage, Settings.flag2.voltage_resolution, voltage); dtostrfd(sdm120_current, Settings.flag2.current_resolution, current); dtostrfd(sdm120_active_power, Settings.flag2.wattage_resolution, active_power); dtostrfd(sdm120_apparent_power, Settings.flag2.wattage_resolution, apparent_power); dtostrfd(sdm120_reactive_power, Settings.flag2.wattage_resolution, reactive_power); dtostrfd(sdm120_power_factor, 2, power_factor); dtostrfd(sdm120_frequency, Settings.flag2.frequency_resolution, frequency); dtostrfd(sdm120_energy_total, Settings.flag2.energy_resolution, energy_total); if (json) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_ACTIVE_POWERUSAGE "\":%s,\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_FREQUENCY "\":%s,\"" D_JSON_POWERFACTOR "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"), mqtt_data, energy_total, active_power, apparent_power, reactive_power, frequency, power_factor, voltage, current); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_VOLTAGE, voltage); DomoticzSensor(DZ_CURRENT, current); DomoticzSensorPowerEnergy((int)sdm120_active_power, energy_total); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_SDM120_DATA, mqtt_data, voltage, current, active_power, apparent_power, reactive_power, power_factor, frequency, energy_total); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ boolean Xsns23(byte function) { boolean result = false; if (sdm120_type) { switch (function) { case FUNC_INIT: SDM120Init(); break; case FUNC_EVERY_250_MSECOND: SDM120250ms(); break; case FUNC_JSON_APPEND: SDM120Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_APPEND: SDM120Show(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_SDM120