/* settings.ino - user settings for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*********************************************************************************************\ * RTC memory \*********************************************************************************************/ const uint16_t RTC_MEM_VALID = 0xA55A; uint32_t rtc_settings_crc = 0; uint32_t GetRtcSettingsCrc(void) { uint32_t crc = 0; uint8_t *bytes = (uint8_t*)&RtcSettings; for (uint32_t i = 0; i < sizeof(RtcSettings); i++) { crc += bytes[i]*(i+1); } return crc; } void RtcSettingsSave(void) { RtcSettings.baudrate = Settings->baudrate * 300; if (GetRtcSettingsCrc() != rtc_settings_crc) { if (RTC_MEM_VALID != RtcSettings.valid) { memset(&RtcSettings, 0, sizeof(RtcSettings)); RtcSettings.valid = RTC_MEM_VALID; RtcSettings.energy_kWhtoday = Settings->energy_kWhtoday; RtcSettings.energy_kWhtotal = Settings->energy_kWhtotal; for (uint32_t i = 0; i < 3; i++) { RtcSettings.energy_kWhtoday_ph[i] = Settings->energy_kWhtoday_ph[i]; RtcSettings.energy_kWhtotal_ph[i] = Settings->energy_kWhtotal_ph[i]; } RtcSettings.energy_usage = Settings->energy_usage; for (uint32_t i = 0; i < MAX_COUNTERS; i++) { RtcSettings.pulse_counter[i] = Settings->pulse_counter[i]; } RtcSettings.power = Settings->power; // RtcSettings.baudrate = Settings->baudrate * 300; RtcSettings.baudrate = APP_BAUDRATE; } #ifdef ESP8266 ESP.rtcUserMemoryWrite(100, (uint32_t*)&RtcSettings, sizeof(RtcSettings)); #endif // ESP8266 #ifdef ESP32 RtcDataSettings = RtcSettings; #endif // ESP32 rtc_settings_crc = GetRtcSettingsCrc(); } } bool RtcSettingsLoad(uint32_t update) { #ifdef ESP8266 ESP.rtcUserMemoryRead(100, (uint32_t*)&RtcSettings, sizeof(RtcSettings)); // 0x290 #endif // ESP8266 #ifdef ESP32 RtcSettings = RtcDataSettings; #endif // ESP32 bool read_valid = (RTC_MEM_VALID == RtcSettings.valid); if (update) { if (!read_valid) { RtcSettingsSave(); } } return read_valid; } bool RtcSettingsValid(void) { return (RTC_MEM_VALID == RtcSettings.valid); } /********************************************************************************************/ uint32_t rtc_reboot_crc = 0; uint32_t GetRtcRebootCrc(void) { uint32_t crc = 0; uint8_t *bytes = (uint8_t*)&RtcReboot; for (uint32_t i = 0; i < sizeof(RtcReboot); i++) { crc += bytes[i]*(i+1); } return crc; } void RtcRebootSave(void) { if (GetRtcRebootCrc() != rtc_reboot_crc) { RtcReboot.valid = RTC_MEM_VALID; #ifdef ESP8266 ESP.rtcUserMemoryWrite(100 - sizeof(RtcReboot), (uint32_t*)&RtcReboot, sizeof(RtcReboot)); #endif // ESP8266 #ifdef ESP32 RtcDataReboot = RtcReboot; #endif // ESP32 rtc_reboot_crc = GetRtcRebootCrc(); } } void RtcRebootReset(void) { RtcReboot.fast_reboot_count = 0; RtcRebootSave(); } void RtcRebootLoad(void) { #ifdef ESP8266 ESP.rtcUserMemoryRead(100 - sizeof(RtcReboot), (uint32_t*)&RtcReboot, sizeof(RtcReboot)); // 0x280 #endif // ESP8266 #ifdef ESP32 RtcReboot = RtcDataReboot; #endif // ESP32 if (RtcReboot.valid != RTC_MEM_VALID) { memset(&RtcReboot, 0, sizeof(RtcReboot)); RtcReboot.valid = RTC_MEM_VALID; // RtcReboot.fast_reboot_count = 0; // Explicit by memset RtcRebootSave(); } rtc_reboot_crc = GetRtcRebootCrc(); } bool RtcRebootValid(void) { return (RTC_MEM_VALID == RtcReboot.valid); } /*********************************************************************************************\ * ESP8266 Tasmota Flash usage offset from 0x40200000 * * Tasmota 1M Tasmota 2M Tasmota 4M - Flash usage * 0x00000000 - 4k Unzipped binary bootloader * 0x00000FFF * * 0x00001000 - Unzipped binary code start * :::: * 0x000xxxxx - Unzipped binary code end * 0x000x1000 - First page used by Core OTA * :::: * 0x000F2FFF 0x000F5FFF 0x000F5FFF ****************************************************************************** * Next 32k is overwritten by OTA * 0x000F3000 0x000F6000 0x000F6000 - 4k Tasmota Quick Power Cycle counter (SETTINGS_LOCATION - CFG_ROTATES) - First four bytes only * 0x000F3FFF 0x000F6FFF 0x000F6FFF * 0x000F4000 0x000F7000 0x000F7000 - 4k First Tasmota rotating settings page * :::: * 0x000FA000 0x000FD000 0x000FD000 - 4k Last Tasmota rotating settings page = Last page used by Core OTA (SETTINGS_LOCATION) * 0x000FAFFF 0x000FDFFF 0x000FDFFF ****************************************************************************** * 0x000FE000 0x000FE000 - 3k9 Not used * 0x000FEFF0 0x000FEFF0 - 4k1 Empty * 0x000FFFFF 0x000FFFFF * * 0x000FB000 0x00100000 0x00100000 - 0k, 980k or 2980k Core FS start (LittleFS) * 0x000FB000 0x001FA000 0x003FA000 - 0k, 980k or 2980k Core FS end (LittleFS) * 0x001FAFFF 0x003FAFFF * * 0x000FB000 0x001FB000 0x003FB000 - 4k Core EEPROM = Tasmota settings page during OTA and when no flash rotation is active (EEPROM_LOCATION) * 0x000FBFFF 0x001FBFFF 0x003FBFFF * * 0x000FC000 0x001FC000 0x003FC000 - 4k SDK - Uses first 128 bytes for phy init data mirrored by Core in RAM. See core_esp8266_phy.cpp phy_init_data[128] = Core user_rf_cal_sector * 0x000FD000 0x001FD000 0x003FD000 - 4k SDK - Uses scattered bytes from 0x340 (iTead use as settings storage from 0x000FD000) * 0x000FE000 0x001FE000 0x003FE000 - 4k SDK - Uses scattered bytes from 0x340 (iTead use as mirrored settings storage from 0x000FE000) * 0x000FF000 0x001FF000 0x0031F000 - 4k SDK - Uses at least first 32 bytes of this page - Tasmota Zigbee persistence from 0x000FF800 to 0x000FFFFF * 0x000FFFFF 0x001FFFFF 0x003FFFFF \*********************************************************************************************/ extern "C" { #include "spi_flash.h" } #include "eboot_command.h" #ifdef ESP8266 extern "C" uint32_t _FS_start; // 1M = 0x402fb000, 2M = 0x40300000, 4M = 0x40300000 const uint32_t FLASH_FS_START = (((uint32_t)&_FS_start - 0x40200000) / SPI_FLASH_SEC_SIZE); uint32_t SETTINGS_LOCATION = FLASH_FS_START -1; // 0xFA, 0x0FF or 0x0FF // From libraries/EEPROM/EEPROM.cpp EEPROMClass extern "C" uint32_t _EEPROM_start; // 1M = 0x402FB000, 2M = 0x403FB000, 4M = 0x405FB000 const uint32_t EEPROM_LOCATION = ((uint32_t)&_EEPROM_start - 0x40200000) / SPI_FLASH_SEC_SIZE; // 0xFB, 0x1FB or 0x3FB #endif // ESP8266 #ifdef ESP32 // dummy defines #define EEPROM_LOCATION (SPI_FLASH_SEC_SIZE * 200) uint32_t SETTINGS_LOCATION = EEPROM_LOCATION; #endif // ESP32 const uint8_t CFG_ROTATES = 7; // Number of flash sectors used (handles uploads) uint32_t settings_location = EEPROM_LOCATION; uint32_t settings_crc32 = 0; uint8_t *settings_buffer = nullptr; uint8_t config_xor_on_set = CONFIG_FILE_XOR; void SettingsInit(void) { if (SETTINGS_LOCATION > 0xFA) { SETTINGS_LOCATION = 0xFD; // Skip empty partition part and keep in first 1M } } /*********************************************************************************************\ * Quick power cycle monitoring \*********************************************************************************************/ void UpdateQuickPowerCycle(bool update) { #ifndef FIRMWARE_MINIMAL if (Settings->flag3.fast_power_cycle_disable) { return; } // SetOption65 - Disable fast power cycle detection for device reset const uint32_t QPC_COUNT = 7; // Number of Power Cycles before Settings erase const uint32_t QPC_SIGNATURE = 0xFFA55AFF; #ifdef ESP8266 const uint32_t qpc_sector = SETTINGS_LOCATION - CFG_ROTATES; const uint32_t qpc_location = qpc_sector * SPI_FLASH_SEC_SIZE; uint32_t qpc_buffer[QPC_COUNT +1]; ESP.flashRead(qpc_location, (uint32*)&qpc_buffer, sizeof(qpc_buffer)); if (update && (QPC_SIGNATURE == qpc_buffer[0])) { uint32_t counter = 1; while ((0 == qpc_buffer[counter]) && (counter <= QPC_COUNT)) { counter++; } if (QPC_COUNT == counter) { // 7 power cycles in a row SettingsErase(3); // Quickly reset all settings including QuickPowerCycle flag EspRestart(); // And restart } else { qpc_buffer[0] = 0; ESP.flashWrite(qpc_location + (counter * 4), (uint32*)&qpc_buffer, 4); AddLog(LOG_LEVEL_INFO, PSTR("QPC: Count %d"), counter); } } else if ((qpc_buffer[0] != QPC_SIGNATURE) || (0 == qpc_buffer[1])) { qpc_buffer[0] = QPC_SIGNATURE; // Assume flash is default all ones and setting a bit to zero does not need an erase if (ESP.flashEraseSector(qpc_sector)) { ESP.flashWrite(qpc_location, (uint32*)&qpc_buffer, 4); AddLog(LOG_LEVEL_INFO, PSTR("QPC: Reset")); } } #endif // ESP8266 #ifdef ESP32 uint32_t pc_register; QPCRead(&pc_register, sizeof(pc_register)); if (update && ((pc_register & 0xFFFFFFF0) == 0xFFA55AF0)) { uint32_t counter = pc_register & 0xF; // Allow up to 15 cycles if (0xF == counter) { counter = 0; } counter++; if (QPC_COUNT == counter) { // 7 power cycles in a row SettingsErase(3); // Quickly reset all settings including QuickPowerCycle flag EspRestart(); // And restart } else { pc_register = 0xFFA55AF0 | counter; QPCWrite(&pc_register, sizeof(pc_register)); AddLog(LOG_LEVEL_INFO, PSTR("QPC: Count %d"), counter); } } else if (pc_register != QPC_SIGNATURE) { pc_register = QPC_SIGNATURE; QPCWrite(&pc_register, sizeof(pc_register)); AddLog(LOG_LEVEL_INFO, PSTR("QPC: Reset")); } #endif // ESP32 #endif // FIRMWARE_MINIMAL } #ifdef USE_EMERGENCY_RESET /*********************************************************************************************\ * Emergency reset if Rx and Tx are tied together \*********************************************************************************************/ void EmergencyReset(void) { Serial.begin(115200); Serial.write(0xA5); Serial.write(0x5A); delay(1); if (Serial.available() == 2) { if ((Serial.read() == 0xA5) && (Serial.read() == 0x5A)) { SettingsErase(3); // Reset all settings including QuickPowerCycle flag do { // Wait for user to remove Rx Tx jumper and power cycle Serial.write(0xA5); delay(1000); // Satisfy SDK } while (Serial.read() == 0xA5); // Poll for removal of jumper ESP_Restart(); // Restart to init default settings } } Serial.println(); Serial.flush(); #ifdef ESP32 delay(10); // Allow time to cleanup queues - if not used hangs ESP32 Serial.end(); delay(10); // Allow time to cleanup queues - if not used hangs ESP32 #endif // ESP32 } #endif // USE_EMERGENCY_RESET /*********************************************************************************************\ * Settings services \*********************************************************************************************/ uint16_t GetCfgCrc16(uint8_t *bytes, uint32_t size) { uint16_t crc = 0; for (uint32_t i = 0; i < size; i++) { if ((i < 14) || (i > 15)) { crc += bytes[i]*(i+1); } // Skip crc } return crc; } uint16_t GetSettingsCrc(void) { // Fix miscalculation if previous Settings was 3584 and current Settings is 4096 between 0x06060007 and 0x0606000A uint32_t size = ((Settings->version < 0x06060007) || (Settings->version > 0x0606000A)) ? 3584 : sizeof(TSettings); return GetCfgCrc16((uint8_t*)Settings, size); } uint32_t GetCfgCrc32(uint8_t *bytes, uint32_t size) { // https://create.stephan-brumme.com/crc32/#bitwise uint32_t crc = 0; while (size--) { crc ^= *bytes++; for (uint32_t j = 0; j < 8; j++) { crc = (crc >> 1) ^ (-int(crc & 1) & 0xEDB88320); } } return ~crc; } uint32_t GetSettingsCrc32(void) { return GetCfgCrc32((uint8_t*)Settings, sizeof(TSettings) -4); // Skip crc32 } void SettingsSaveAll(void) { if (Settings->flag.save_state) { Settings->power = TasmotaGlobal.power; } else { Settings->power = 0; } XsnsCall(FUNC_SAVE_BEFORE_RESTART); XdrvCall(FUNC_SAVE_BEFORE_RESTART); SettingsSave(0); } /*********************************************************************************************\ * Settings backup and restore \*********************************************************************************************/ void SettingsBufferFree(void) { if (settings_buffer != nullptr) { free(settings_buffer); settings_buffer = nullptr; } } bool SettingsBufferAlloc(void) { SettingsBufferFree(); if (!(settings_buffer = (uint8_t *)malloc(sizeof(TSettings)))) { AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_UPLOAD_ERR_2)); // Not enough (memory) space return false; } return true; } String SettingsConfigFilename(void) { char filename[TOPSZ]; char hostname[sizeof(TasmotaGlobal.hostname)]; snprintf_P(filename, sizeof(filename), PSTR("Config_%s_%s.dmp"), NoAlNumToUnderscore(hostname, TasmotaGlobal.hostname), TasmotaGlobal.version); return String(filename); } uint32_t SettingsConfigBackup(void) { if (!SettingsBufferAlloc()) { return 0; } uint32_t cfg_crc32 = Settings->cfg_crc32; Settings->cfg_crc32 = GetSettingsCrc32(); // Calculate crc (again) as it might be wrong when savedata = 0 (#3918) uint32_t config_len = sizeof(TSettings); memcpy(settings_buffer, Settings, config_len); Settings->cfg_crc32 = cfg_crc32; // Restore crc in case savedata = 0 to make sure settings will be noted as changed if (config_xor_on_set) { for (uint32_t i = 2; i < config_len; i++) { settings_buffer[i] ^= (config_xor_on_set +i); } } return config_len; } bool SettingsConfigRestore(void) { uint32_t config_len = sizeof(TSettings); if (config_xor_on_set) { for (uint32_t i = 2; i < config_len; i++) { settings_buffer[i] ^= (config_xor_on_set +i); } } bool valid_settings = false; // unsigned long version; // 008 unsigned long buffer_version = settings_buffer[11] << 24 | settings_buffer[10] << 16 | settings_buffer[9] << 8 | settings_buffer[8]; if (buffer_version > 0x06000000) { // uint16_t cfg_size; // 002 uint32_t buffer_size = settings_buffer[3] << 8 | settings_buffer[2]; if (buffer_version > 0x0606000A) { // uint32_t cfg_crc32; // FFC uint32_t buffer_crc32 = settings_buffer[4095] << 24 | settings_buffer[4094] << 16 | settings_buffer[4093] << 8 | settings_buffer[4092]; valid_settings = (GetCfgCrc32(settings_buffer, buffer_size -4) == buffer_crc32); } else { // uint16_t cfg_crc; // 00E uint16_t buffer_crc16 = settings_buffer[15] << 8 | settings_buffer[14]; valid_settings = (GetCfgCrc16(settings_buffer, buffer_size) == buffer_crc16); } } else { valid_settings = (settings_buffer[0] == CONFIG_FILE_SIGN); } if (valid_settings) { #ifdef ESP8266 // uint8_t config_version; // F36 valid_settings = (0 == settings_buffer[0xF36]); // Settings->config_version #endif // ESP8266 #ifdef ESP32 // uint8_t config_version; // F36 valid_settings = (1 == settings_buffer[0xF36]); // Settings->config_version #endif // ESP32 } if (valid_settings) { SettingsDefaultSet2(); memcpy((char*)Settings +16, settings_buffer +16, config_len -16); Settings->version = buffer_version; // Restore version and auto upgrade after restart } SettingsBufferFree(); return valid_settings; } /*********************************************************************************************\ * Config Settings->text char array support \*********************************************************************************************/ uint32_t GetSettingsTextLen(void) { char* position = Settings->text_pool; for (uint32_t size = 0; size < SET_MAX; size++) { while (*position++ != '\0') { } } return position - Settings->text_pool; } bool settings_text_mutex = false; uint32_t settings_text_busy_count = 0; bool SettingsUpdateFinished(void) { uint32_t wait_loop = 10; while (settings_text_mutex && wait_loop) { // Wait for any update to finish yield(); delayMicroseconds(1); wait_loop--; } return (wait_loop > 0); // true if finished } bool SettingsUpdateText(uint32_t index, const char* replace_me) { if (index >= SET_MAX) { return false; // Setting not supported - internal error } // Make a copy first in case we use source from Settings->text uint32_t replace_len = strlen_P(replace_me); char replace[replace_len +1]; memcpy_P(replace, replace_me, sizeof(replace)); uint32_t index_save = index; uint32_t start_pos = 0; uint32_t end_pos = 0; char* position = Settings->text_pool; for (uint32_t size = 0; size < SET_MAX; size++) { while (*position++ != '\0') { } if (1 == index) { start_pos = position - Settings->text_pool; } else if (0 == index) { end_pos = position - Settings->text_pool -1; } index--; } uint32_t char_len = position - Settings->text_pool; uint32_t current_len = end_pos - start_pos; int diff = replace_len - current_len; // AddLog(LOG_LEVEL_DEBUG, PSTR("TST: start %d, end %d, len %d, current %d, replace %d, diff %d"), // start_pos, end_pos, char_len, current_len, replace_len, diff); int too_long = (char_len + diff) - settings_text_size; if (too_long > 0) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_CONFIG "Text overflow by %d char(s)"), too_long); return false; // Replace text too long } if (settings_text_mutex && !SettingsUpdateFinished()) { settings_text_busy_count++; } else { settings_text_mutex = true; if (diff != 0) { // Shift Settings->text up or down memmove_P(Settings->text_pool + start_pos + replace_len, Settings->text_pool + end_pos, char_len - end_pos); } // Replace text memmove_P(Settings->text_pool + start_pos, replace, replace_len); // Fill for future use memset(Settings->text_pool + char_len + diff, 0x00, settings_text_size - char_len - diff); settings_text_mutex = false; } #ifdef DEBUG_FUNC_SETTINGSUPDATETEXT AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "CR %d/%d, Busy %d, Id %02d = \"%s\""), GetSettingsTextLen(), settings_text_size, settings_text_busy_count, index_save, replace); #else AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "CR %d/%d, Busy %d"), GetSettingsTextLen(), settings_text_size, settings_text_busy_count); #endif return true; } char* SettingsText(uint32_t index) { char* position = Settings->text_pool; if (index >= SET_MAX) { position += settings_text_size -1; // Setting not supported - internal error - return empty string } else { SettingsUpdateFinished(); for (;index > 0; index--) { while (*position++ != '\0') { } } } return position; } /*********************************************************************************************\ * Config Save - Save parameters to Flash ONLY if any parameter has changed \*********************************************************************************************/ void UpdateBackwardCompatibility(void) { // Perform updates for backward compatibility strlcpy(Settings->user_template_name, SettingsText(SET_TEMPLATE_NAME), sizeof(Settings->user_template_name)); } uint32_t GetSettingsAddress(void) { return settings_location * SPI_FLASH_SEC_SIZE; } void SettingsSave(uint8_t rotate) { /* Save configuration in eeprom or one of 7 slots below * * rotate 0 = Save in next flash slot * rotate 1 = Save only in eeprom flash slot until SetOption12 0 or restart * rotate 2 = Save in eeprom flash slot, erase next flash slots and continue depending on stop_flash_rotate * stop_flash_rotate 0 = Allow flash slot rotation (SetOption12 0) * stop_flash_rotate 1 = Allow only eeprom flash slot use (SetOption12 1) */ #ifndef FIRMWARE_MINIMAL XsnsCall(FUNC_SAVE_SETTINGS); XdrvCall(FUNC_SAVE_SETTINGS); UpdateBackwardCompatibility(); if ((GetSettingsCrc32() != settings_crc32) || rotate) { if (1 == rotate) { // Use eeprom flash slot only and disable flash rotate from now on (upgrade) TasmotaGlobal.stop_flash_rotate = 1; } if (TasmotaGlobal.stop_flash_rotate || (2 == rotate)) { // Use eeprom flash slot and erase next flash slots if stop_flash_rotate is off (default) settings_location = EEPROM_LOCATION; } else { // Rotate flash slots if (settings_location == EEPROM_LOCATION) { settings_location = SETTINGS_LOCATION; } else { settings_location--; } if (settings_location <= (SETTINGS_LOCATION - CFG_ROTATES)) { settings_location = EEPROM_LOCATION; } } Settings->save_flag++; if (UtcTime() > START_VALID_TIME) { Settings->cfg_timestamp = UtcTime(); } else { Settings->cfg_timestamp++; } Settings->cfg_size = sizeof(TSettings); Settings->cfg_crc = GetSettingsCrc(); // Keep for backward compatibility in case of fall-back just after upgrade Settings->cfg_crc32 = GetSettingsCrc32(); #ifdef ESP8266 #ifdef USE_UFILESYS TfsSaveFile(TASM_FILE_SETTINGS, (const uint8_t*)Settings, sizeof(TSettings)); #endif // USE_UFILESYS if (ESP.flashEraseSector(settings_location)) { ESP.flashWrite(settings_location * SPI_FLASH_SEC_SIZE, (uint32*)Settings, sizeof(TSettings)); } if (!TasmotaGlobal.stop_flash_rotate && rotate) { // SetOption12 - (Settings) Switch between dynamic (0) or fixed (1) slot flash save location for (uint32_t i = 0; i < CFG_ROTATES; i++) { ESP.flashEraseSector(SETTINGS_LOCATION -i); // Delete previous configurations by resetting to 0xFF delay(1); } } AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG D_SAVED_TO_FLASH_AT " %X, " D_COUNT " %d, " D_BYTES " %d"), settings_location, Settings->save_flag, sizeof(TSettings)); #endif // ESP8266 #ifdef ESP32 SettingsWrite(Settings, sizeof(TSettings)); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "Saved, " D_COUNT " %d, " D_BYTES " %d"), Settings->save_flag, sizeof(TSettings)); #endif // ESP32 settings_crc32 = Settings->cfg_crc32; } #endif // FIRMWARE_MINIMAL RtcSettingsSave(); } void SettingsLoad(void) { #ifdef ESP8266 // Load configuration from optional file and flash (eeprom and 7 additonal slots) if first valid load does not stop_flash_rotate // Activated with version 8.4.0.2 - Fails to read any config before version 6.6.0.11 settings_location = 0; uint32_t save_flag = 0; uint32_t max_slots = CFG_ROTATES +1; uint32_t flash_location; uint32_t slot = 1; #ifdef USE_UFILESYS if (TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)Settings, sizeof(TSettings))) { flash_location = 1; slot = 0; } #endif // USE_UFILESYS while (slot <= max_slots) { // Read all config pages in search of valid and latest if (slot > 0) { flash_location = (1 == slot) ? EEPROM_LOCATION : (2 == slot) ? SETTINGS_LOCATION : flash_location -1; ESP.flashRead(flash_location * SPI_FLASH_SEC_SIZE, (uint32*)Settings, sizeof(TSettings)); } if ((Settings->cfg_crc32 != 0xFFFFFFFF) && (Settings->cfg_crc32 != 0x00000000) && (Settings->cfg_crc32 == GetSettingsCrc32())) { if (Settings->save_flag > save_flag) { // Find latest page based on incrementing save_flag save_flag = Settings->save_flag; settings_location = flash_location; if (Settings->flag.stop_flash_rotate && (1 == slot)) { // Stop if only eeprom area should be used and it is valid break; } } } slot++; delay(1); } if (settings_location > 0) { #ifdef USE_UFILESYS if (1 == settings_location) { TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)Settings, sizeof(TSettings)); AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded from File, " D_COUNT " %lu"), Settings->save_flag); } else #endif // USE_UFILESYS { ESP.flashRead(settings_location * SPI_FLASH_SEC_SIZE, (uint32*)Settings, sizeof(TSettings)); AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG D_LOADED_FROM_FLASH_AT " %X, " D_COUNT " %lu"), settings_location, Settings->save_flag); } } #endif // ESP8266 #ifdef ESP32 uint32_t source = SettingsRead(Settings, sizeof(TSettings)); if (source) { settings_location = 1; if (Settings->cfg_holder == (uint16_t)CFG_HOLDER) { AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded from %s, " D_COUNT " %lu"), (source)?"File":"Nvm", Settings->save_flag); } } #endif // ESP32 #ifndef FIRMWARE_MINIMAL if ((0 == settings_location) || (Settings->cfg_holder != (uint16_t)CFG_HOLDER)) { // Init defaults if cfg_holder differs from user settings in my_user_config.h // if ((0 == settings_location) || (Settings->cfg_size != sizeof(TSettings)) || (Settings->cfg_holder != (uint16_t)CFG_HOLDER)) { // Init defaults if cfg_holder differs from user settings in my_user_config.h #ifdef USE_UFILESYS if (TfsLoadFile(TASM_FILE_SETTINGS_LKG, (uint8_t*)Settings, sizeof(TSettings)) && (Settings->cfg_crc32 == GetSettingsCrc32())) { settings_location = 1; AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded from LKG File, " D_COUNT " %lu"), Settings->save_flag); } else #endif // USE_UFILESYS { SettingsDefault(); } } settings_crc32 = GetSettingsCrc32(); #endif // FIRMWARE_MINIMAL RtcSettingsLoad(1); } // Used in TLS - returns the timestamp of the last Flash settings write uint32_t CfgTime(void) { return Settings->cfg_timestamp; } #ifdef ESP8266 void SettingsErase(uint8_t type) { /* For Arduino core and SDK: Erase only works from flash start address to SDK recognized flash end address (flashchip->chip_size = ESP.getFlashChipSize). Addresses above SDK recognized size (up to ESP.getFlashChipRealSize) are not accessable. For Esptool: The only way to erase whole flash is esptool which uses direct SPI writes to flash. The default erase function is EspTool (EsptoolErase) 0 = Erase from program end until end of flash as seen by SDK including optional filesystem 1 = Erase 16k SDK parameter area near end of flash as seen by SDK (0x0XFCxxx - 0x0XFFFFF) solving possible wifi errors 2 = Erase from program end until end of flash as seen by SDK excluding optional filesystem 3 = Erase Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF) 4 = Erase SDK parameter area used for wifi calibration (0x0FCxxx - 0x0FCFFF) */ #ifndef FIRMWARE_MINIMAL // Reset 2 = Erase all flash from program end to end of physical flash uint32_t _sectorStart = (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 1; uint32_t _sectorEnd = ESP.getFlashChipRealSize() / SPI_FLASH_SEC_SIZE; // Flash size as reported by hardware if (1 == type) { // Reset 3 = SDK parameter area // source Esp.cpp and core_esp8266_phy.cpp _sectorStart = (ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE) - 4; } else if (2 == type) { // Reset 5, 6 = Erase all flash from program end to end of physical flash but skip filesystem /* #ifdef USE_UFILESYS TfsDeleteFile(TASM_FILE_SETTINGS); // Not needed as it is recreated by set defaults before restart #endif */ EsptoolErase(_sectorStart, FLASH_FS_START); _sectorStart = EEPROM_LOCATION; _sectorEnd = ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE; // Flash size as seen by SDK } else if (3 == type) { // QPC Reached = QPC and Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF) #ifdef USE_UFILESYS TfsDeleteFile(TASM_FILE_SETTINGS); #endif EsptoolErase(SETTINGS_LOCATION - CFG_ROTATES, SETTINGS_LOCATION +1); _sectorStart = EEPROM_LOCATION; _sectorEnd = ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE; // Flash size as seen by SDK } else if (4 == type) { // WIFI_FORCE_RF_CAL_ERASE = SDK wifi calibration _sectorStart = EEPROM_LOCATION +1; // SDK phy area and Core calibration sector (0x0XFC000) _sectorEnd = _sectorStart +1; // SDK end of phy area and Core calibration sector (0x0XFCFFF) } EsptoolErase(_sectorStart, _sectorEnd); // Esptool - erases flash completely #endif // FIRMWARE_MINIMAL } #endif // ESP8266 void SettingsSdkErase(void) { WiFi.disconnect(false); // Delete SDK wifi config SettingsErase(1); delay(1000); } /********************************************************************************************/ void SettingsDefault(void) { AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG D_USE_DEFAULTS)); SettingsDefaultSet1(); SettingsDefaultSet2(); SettingsDefaultSet3(); SettingsSave(2); } void SettingsDefaultSet1(void) { memset(Settings, 0x00, sizeof(TSettings)); Settings->cfg_holder = (uint16_t)CFG_HOLDER; Settings->cfg_size = sizeof(TSettings); // Settings->save_flag = 0; Settings->version = VERSION; // Settings->bootcount = 0; // Settings->cfg_crc = 0; } // default Fingerprints in PROGMEM const uint8_t default_fingerprint1[] PROGMEM = { MQTT_FINGERPRINT1 }; const uint8_t default_fingerprint2[] PROGMEM = { MQTT_FINGERPRINT2 }; void SettingsDefaultSet2(void) { memset((char*)Settings +16, 0x00, sizeof(TSettings) -16); // this little trick allows GCC to optimize the assignment by grouping values and doing only ORs SOBitfield flag = { 0 }; SOBitfield3 flag3 = { 0 }; SOBitfield4 flag4 = { 0 }; SOBitfield5 flag5 = { 0 }; SysMBitfield1 flag2 = { 0 }; SysMBitfield2 mbflag2 = { 0 }; #ifdef ESP8266 Settings->gpio16_converted = 0xF5A0; // Settings->config_version = 0; // ESP8266 (Has been 0 for long time) #endif // ESP8266 #ifdef ESP32 Settings->config_version = 1; // ESP32 #endif // ESP32 flag.stop_flash_rotate |= APP_FLASH_CYCLE; flag.global_state |= APP_ENABLE_LEDLINK; flag3.sleep_normal |= APP_NORMAL_SLEEP; flag3.no_power_feedback |= APP_NO_RELAY_SCAN; flag3.fast_power_cycle_disable |= APP_DISABLE_POWERCYCLE; flag3.bootcount_update |= DEEPSLEEP_BOOTCOUNT; flag3.mqtt_buttons |= MQTT_BUTTONS; Settings->save_data = SAVE_DATA; Settings->param[P_BACKLOG_DELAY] = MIN_BACKLOG_DELAY; Settings->param[P_BOOT_LOOP_OFFSET] = BOOT_LOOP_OFFSET; // SetOption36 Settings->param[P_RGB_REMAP] = RGB_REMAP_RGBW; Settings->sleep = APP_SLEEP; if (Settings->sleep < 50) { Settings->sleep = 50; // Default to 50 for sleep, for now } // Module flag.interlock |= APP_INTERLOCK_MODE; Settings->interlock[0] = APP_INTERLOCK_GROUP_1; Settings->interlock[1] = APP_INTERLOCK_GROUP_2; Settings->interlock[2] = APP_INTERLOCK_GROUP_3; Settings->interlock[3] = APP_INTERLOCK_GROUP_4; Settings->module = MODULE; Settings->fallback_module = FALLBACK_MODULE; ModuleDefault(WEMOS); // for (uint32_t i = 0; i < nitems(Settings->my_gp.io); i++) { Settings->my_gp.io[i] = GPIO_NONE; } SettingsUpdateText(SET_FRIENDLYNAME1, PSTR(FRIENDLY_NAME)); SettingsUpdateText(SET_FRIENDLYNAME2, PSTR(FRIENDLY_NAME"2")); SettingsUpdateText(SET_FRIENDLYNAME3, PSTR(FRIENDLY_NAME"3")); SettingsUpdateText(SET_FRIENDLYNAME4, PSTR(FRIENDLY_NAME"4")); #ifdef DEVICE_NAME SettingsUpdateText(SET_DEVICENAME, PSTR(DEVICE_NAME)); #else SettingsUpdateText(SET_DEVICENAME, SettingsText(SET_FRIENDLYNAME1)); #endif SettingsUpdateText(SET_OTAURL, PSTR(OTA_URL)); // Power flag.save_state |= SAVE_STATE; Settings->power = APP_POWER; Settings->poweronstate = APP_POWERON_STATE; Settings->blinktime = APP_BLINKTIME; Settings->blinkcount = APP_BLINKCOUNT; Settings->ledstate = APP_LEDSTATE; Settings->ledmask = APP_LEDMASK; // Settings->ledpwm_off = 0; Settings->ledpwm_on = 255; // Settings->ledpwm_mask = 0; Settings->pulse_timer[0] = APP_PULSETIME; // for (uint32_t i = 1; i < MAX_PULSETIMERS; i++) { Settings->pulse_timer[i] = 0; } // Serial Settings->serial_config = TS_SERIAL_8N1; Settings->baudrate = APP_BAUDRATE / 300; Settings->sbaudrate = SOFT_BAUDRATE / 300; Settings->serial_delimiter = 0xff; Settings->seriallog_level = SERIAL_LOG_LEVEL; // Ethernet flag4.network_ethernet |= 1; #ifdef ESP32 Settings->eth_type = ETH_TYPE; Settings->eth_clk_mode = ETH_CLKMODE; Settings->eth_address = ETH_ADDRESS; #endif // ESP32 // Wifi flag4.network_wifi |= 1; flag3.use_wifi_scan |= WIFI_SCAN_AT_RESTART; flag3.use_wifi_rescan |= WIFI_SCAN_REGULARLY; Settings->wifi_output_power = 170; Settings->param[P_ARP_GRATUITOUS] = WIFI_ARP_INTERVAL; ParseIPv4(&Settings->ipv4_address[0], PSTR(WIFI_IP_ADDRESS)); ParseIPv4(&Settings->ipv4_address[1], PSTR(WIFI_GATEWAY)); ParseIPv4(&Settings->ipv4_address[2], PSTR(WIFI_SUBNETMASK)); ParseIPv4(&Settings->ipv4_address[3], PSTR(WIFI_DNS)); ParseIPv4(&Settings->ipv4_address[4], PSTR(WIFI_DNS2)); ParseIPv4(&Settings->ipv4_rgx_address, PSTR(WIFI_RGX_IP_ADDRESS)); ParseIPv4(&Settings->ipv4_rgx_subnetmask, PSTR(WIFI_RGX_SUBNETMASK)); Settings->sta_config = WIFI_CONFIG_TOOL; // Settings->sta_active = 0; SettingsUpdateText(SET_STASSID1, PSTR(STA_SSID1)); SettingsUpdateText(SET_STASSID2, PSTR(STA_SSID2)); SettingsUpdateText(SET_STAPWD1, PSTR(STA_PASS1)); SettingsUpdateText(SET_STAPWD2, PSTR(STA_PASS2)); SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME); SettingsUpdateText(SET_RGX_SSID, PSTR(WIFI_RGX_SSID)); SettingsUpdateText(SET_RGX_PASSWORD, PSTR(WIFI_RGX_PASSWORD)); Settings->sbflag1.range_extender = WIFI_RGX_STATE; Settings->sbflag1.range_extender_napt = WIFI_RGX_NAPT; // Syslog SettingsUpdateText(SET_SYSLOG_HOST, PSTR(SYS_LOG_HOST)); Settings->syslog_port = SYS_LOG_PORT; Settings->syslog_level = SYS_LOG_LEVEL; // Webserver flag2.emulation |= EMULATION; flag4.alexa_gen_1 |= EMULATION_HUE_1ST_GEN; flag3.gui_hostname_ip |= GUI_SHOW_HOSTNAME; flag3.mdns_enabled |= MDNS_ENABLED; Settings->webserver = WEB_SERVER; Settings->weblog_level = WEB_LOG_LEVEL; SettingsUpdateText(SET_WEBPWD, PSTR(WEB_PASSWORD)); SettingsUpdateText(SET_CORS, PSTR(CORS_DOMAIN)); #ifdef DISABLE_REFERER_CHK flag5.disable_referer_chk |= false; #else flag5.disable_referer_chk |= true; #endif // Button flag.button_restrict |= KEY_DISABLE_MULTIPRESS; flag.button_swap |= KEY_SWAP_DOUBLE_PRESS; flag.button_single |= KEY_ONLY_SINGLE_PRESS; Settings->param[P_HOLD_TIME] = KEY_HOLD_TIME; // Default 4 seconds hold time // Switch for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) { Settings->switchmode[i] = SWITCH_MODE; } // MQTT flag.mqtt_enabled |= MQTT_USE; flag.mqtt_response |= MQTT_RESULT_COMMAND; flag.mqtt_offline |= MQTT_LWT_MESSAGE; flag.mqtt_power_retain |= MQTT_POWER_RETAIN; flag.mqtt_button_retain |= MQTT_BUTTON_RETAIN; flag.mqtt_switch_retain |= MQTT_SWITCH_RETAIN; flag.mqtt_sensor_retain |= MQTT_SENSOR_RETAIN; flag5.mqtt_info_retain |= MQTT_INFO_RETAIN; flag5.mqtt_state_retain |= MQTT_STATE_RETAIN; flag5.mqtt_switches |= MQTT_SWITCHES; // flag.mqtt_serial |= 0; flag.device_index_enable |= MQTT_POWER_FORMAT; flag3.time_append_timezone |= MQTT_APPEND_TIMEZONE; flag3.button_switch_force_local |= MQTT_BUTTON_SWITCH_FORCE_LOCAL; flag3.no_hold_retain |= MQTT_NO_HOLD_RETAIN; flag3.use_underscore |= MQTT_INDEX_SEPARATOR; flag3.grouptopic_mode |= MQTT_GROUPTOPIC_FORMAT; SettingsUpdateText(SET_MQTT_HOST, MQTT_HOST); Settings->mqtt_port = MQTT_PORT; SettingsUpdateText(SET_MQTT_CLIENT, PSTR(MQTT_CLIENT_ID)); SettingsUpdateText(SET_MQTT_USER, PSTR(MQTT_USER)); SettingsUpdateText(SET_MQTT_PWD, PSTR(MQTT_PASS)); SettingsUpdateText(SET_MQTT_TOPIC, PSTR(MQTT_TOPIC)); SettingsUpdateText(SET_MQTT_BUTTON_TOPIC, PSTR(MQTT_BUTTON_TOPIC)); SettingsUpdateText(SET_MQTT_SWITCH_TOPIC, PSTR(MQTT_SWITCH_TOPIC)); SettingsUpdateText(SET_MQTT_GRP_TOPIC, PSTR(MQTT_GRPTOPIC)); SettingsUpdateText(SET_MQTT_FULLTOPIC, PSTR(MQTT_FULLTOPIC)); Settings->mqtt_retry = MQTT_RETRY_SECS; SettingsUpdateText(SET_MQTTPREFIX1, PSTR(SUB_PREFIX)); SettingsUpdateText(SET_MQTTPREFIX2, PSTR(PUB_PREFIX)); SettingsUpdateText(SET_MQTTPREFIX3, PSTR(PUB_PREFIX2)); SettingsUpdateText(SET_STATE_TXT1, PSTR(MQTT_STATUS_OFF)); SettingsUpdateText(SET_STATE_TXT2, PSTR(MQTT_STATUS_ON)); SettingsUpdateText(SET_STATE_TXT3, PSTR(MQTT_CMND_TOGGLE)); SettingsUpdateText(SET_STATE_TXT4, PSTR(MQTT_CMND_HOLD)); memcpy_P(Settings->mqtt_fingerprint[0], default_fingerprint1, sizeof(default_fingerprint1)); memcpy_P(Settings->mqtt_fingerprint[1], default_fingerprint2, sizeof(default_fingerprint2)); Settings->tele_period = TELE_PERIOD; Settings->mqttlog_level = MQTT_LOG_LEVEL; Settings->mqtt_keepalive = MQTT_KEEPALIVE; Settings->mqtt_socket_timeout = MQTT_SOCKET_TIMEOUT; Settings->mqtt_wifi_timeout = MQTT_WIFI_CLIENT_TIMEOUT / 100; // Energy flag.no_power_on_check |= ENERGY_VOLTAGE_ALWAYS; flag2.current_resolution |= 3; // flag2.voltage_resolution |= 0; // flag2.wattage_resolution |= 0; flag2.energy_resolution |= ENERGY_RESOLUTION; flag3.dds2382_model |= ENERGY_DDS2382_MODE; flag3.hardware_energy_total |= ENERGY_HARDWARE_TOTALS; Settings->param[P_MAX_POWER_RETRY] = MAX_POWER_RETRY; // Settings->energy_power_delta[0] = 0; // Settings->energy_power_delta[1] = 0; // Settings->energy_power_delta[2] = 0; Settings->energy_power_calibration = HLW_PREF_PULSE; Settings->energy_voltage_calibration = HLW_UREF_PULSE; Settings->energy_current_calibration = HLW_IREF_PULSE; // Settings->energy_kWhtoday = 0; // Settings->energy_kWhyesterday = 0; // Settings->energy_kWhdoy = 0; // Settings->energy_min_power = 0; // Settings->energy_max_power = 0; // Settings->energy_min_voltage = 0; // Settings->energy_max_voltage = 0; // Settings->energy_min_current = 0; // Settings->energy_max_current = 0; // Settings->energy_max_power_limit = 0; // MaxPowerLimit Settings->energy_max_power_limit_hold = MAX_POWER_HOLD; Settings->energy_max_power_limit_window = MAX_POWER_WINDOW; // Settings->energy_max_power_safe_limit = 0; // MaxSafePowerLimit Settings->energy_max_power_safe_limit_hold = SAFE_POWER_HOLD; Settings->energy_max_power_safe_limit_window = SAFE_POWER_WINDOW; // Settings->energy_max_energy = 0; // MaxEnergy // Settings->energy_max_energy_start = 0; // MaxEnergyStart // Settings->energy_kWhtotal = 0; RtcSettings.energy_kWhtotal = 0; // memset((char*)&Settings->energy_usage, 0x00, sizeof(Settings->energy_usage)); memset((char*)&RtcSettings.energy_usage, 0x00, sizeof(RtcSettings.energy_usage)); Settings->param[P_OVER_TEMP] = ENERGY_OVERTEMP; // IRRemote flag.ir_receive_decimal |= IR_DATA_RADIX; flag3.receive_raw |= IR_ADD_RAW_DATA; Settings->param[P_IR_UNKNOW_THRESHOLD] = IR_RCV_MIN_UNKNOWN_SIZE; // RF Bridge flag.rf_receive_decimal |= RF_DATA_RADIX; // for (uint32_t i = 0; i < 17; i++) { Settings->rf_code[i][0] = 0; } memcpy_P(Settings->rf_code[0], kDefaultRfCode, 9); // Domoticz Settings->domoticz_update_timer = DOMOTICZ_UPDATE_TIMER; // for (uint32_t i = 0; i < MAX_DOMOTICZ_IDX; i++) { // Settings->domoticz_relay_idx[i] = 0; // Settings->domoticz_key_idx[i] = 0; // Settings->domoticz_switch_idx[i] = 0; // } // for (uint32_t i = 0; i < MAX_DOMOTICZ_SNS_IDX; i++) { // Settings->domoticz_sensor_idx[i] = 0; // } // Sensor flag.temperature_conversion |= TEMP_CONVERSION; flag.pressure_conversion |= PRESSURE_CONVERSION; flag2.pressure_resolution |= PRESSURE_RESOLUTION; flag2.humidity_resolution |= HUMIDITY_RESOLUTION; flag2.temperature_resolution |= TEMP_RESOLUTION; flag3.ds18x20_internal_pullup |= DS18X20_PULL_UP; flag3.counter_reset_on_tele |= COUNTER_RESET; // Settings->altitude = 0; // Rules // Settings->rule_enabled = 0; // Settings->rule_once = 0; // for (uint32_t i = 1; i < MAX_RULE_SETS; i++) { Settings->rules[i][0] = '\0'; } flag2.calc_resolution |= CALC_RESOLUTION; // Timer flag3.timers_enable |= TIMERS_ENABLED; // Home Assistant flag.hass_light |= HASS_AS_LIGHT; flag.hass_discovery |= HOME_ASSISTANT_DISCOVERY_ENABLE; flag3.hass_tele_on_power |= TELE_ON_POWER; // Knx flag.knx_enabled |= KNX_ENABLED; flag.knx_enable_enhancement |= KNX_ENHANCED; // Light flag.pwm_control |= LIGHT_MODE; flag.ws_clock_reverse |= LIGHT_CLOCK_DIRECTION; flag.light_signal |= LIGHT_PAIRS_CO2; flag.not_power_linked |= LIGHT_POWER_CONTROL; flag.decimal_text |= LIGHT_COLOR_RADIX; flag3.pwm_multi_channels |= LIGHT_CHANNEL_MODE; flag3.slider_dimmer_stay_on |= LIGHT_SLIDER_POWER; flag4.alexa_ct_range |= LIGHT_ALEXA_CT_RANGE; flag4.pwm_ct_mode |= LIGHT_PWM_CT_MODE; flag4.white_blend_mode |= LIGHT_WHITE_BLEND_MODE; flag4.virtual_ct |= LIGHT_VIRTUAL_CT; flag4.virtual_ct_cw |= LIGHT_VIRTUAL_CT_CW; Settings->pwm_frequency = PWM_FREQ; Settings->pwm_range = PWM_RANGE; for (uint32_t i = 0; i < MAX_PWMS; i++) { Settings->light_color[i] = DEFAULT_LIGHT_COMPONENT; // Settings->pwm_value[i] = 0; } Settings->light_correction = 1; Settings->light_dimmer = DEFAULT_LIGHT_DIMMER; // Settings->light_fade = 0; Settings->light_speed = 1; // Settings->light_scheme = 0; Settings->light_width = 1; // Settings->light_wakeup = 0; Settings->light_pixels = WS2812_LEDS; // Settings->light_rotation = 0; Settings->ws_width[WS_SECOND] = 1; Settings->ws_color[WS_SECOND][WS_RED] = 255; // Settings->ws_color[WS_SECOND][WS_GREEN] = 0; Settings->ws_color[WS_SECOND][WS_BLUE] = 255; Settings->ws_width[WS_MINUTE] = 3; // Settings->ws_color[WS_MINUTE][WS_RED] = 0; Settings->ws_color[WS_MINUTE][WS_GREEN] = 255; // Settings->ws_color[WS_MINUTE][WS_BLUE] = 0; Settings->ws_width[WS_HOUR] = 5; Settings->ws_color[WS_HOUR][WS_RED] = 255; // Settings->ws_color[WS_HOUR][WS_GREEN] = 0; // Settings->ws_color[WS_HOUR][WS_BLUE] = 0; Settings->dimmer_hw_max = DEFAULT_DIMMER_MAX; Settings->dimmer_hw_min = DEFAULT_DIMMER_MIN; Settings->dimmer_step = DEFAULT_DIMMER_STEP; // Device Groups *(uint32_t *)&Settings->device_group_tie = 0x04030201; // Display // Settings->display_model = 0; Settings->display_mode = 1; Settings->display_refresh = 2; Settings->display_rows = 2; Settings->display_cols[0] = 16; Settings->display_cols[1] = 8; Settings->display_dimmer_protected = -10; // 10% Settings->display_size = 1; Settings->display_font = 1; // Settings->display_rotate = 0; Settings->display_address[0] = MTX_ADDRESS1; Settings->display_address[1] = MTX_ADDRESS2; Settings->display_address[2] = MTX_ADDRESS3; Settings->display_address[3] = MTX_ADDRESS4; Settings->display_address[4] = MTX_ADDRESS5; Settings->display_address[5] = MTX_ADDRESS6; Settings->display_address[6] = MTX_ADDRESS7; Settings->display_address[7] = MTX_ADDRESS8; // Time if (((APP_TIMEZONE > -14) && (APP_TIMEZONE < 15)) || (99 == APP_TIMEZONE)) { Settings->timezone = APP_TIMEZONE; Settings->timezone_minutes = 0; } else { Settings->timezone = APP_TIMEZONE / 60; Settings->timezone_minutes = abs(APP_TIMEZONE % 60); } SettingsUpdateText(SET_NTPSERVER1, PSTR(NTP_SERVER1)); SettingsUpdateText(SET_NTPSERVER2, PSTR(NTP_SERVER2)); SettingsUpdateText(SET_NTPSERVER3, PSTR(NTP_SERVER3)); for (uint32_t i = 0; i < MAX_NTP_SERVERS; i++) { SettingsUpdateText(SET_NTPSERVER1 +i, ReplaceCommaWithDot(SettingsText(SET_NTPSERVER1 +i))); } Settings->latitude = (int)((double)LATITUDE * 1000000); Settings->longitude = (int)((double)LONGITUDE * 1000000); SettingsResetStd(); SettingsResetDst(); Settings->button_debounce = KEY_DEBOUNCE_TIME; Settings->switch_debounce = SWITCH_DEBOUNCE_TIME; for (uint32_t j = 0; j < 5; j++) { Settings->rgbwwTable[j] = 255; } Settings->novasds_startingoffset = STARTING_OFFSET; SettingsDefaultWebColor(); memset(&Settings->sensors, 0xFF, 32); // Enable all possible sensors SettingsEnableAllI2cDrivers(); // Tuya flag3.tuya_apply_o20 |= TUYA_SETOPTION_20; flag3.tuya_serial_mqtt_publish |= MQTT_TUYA_RECEIVED; mbflag2.temperature_set_res |= TUYA_TEMP_SET_RES; flag3.buzzer_enable |= BUZZER_ENABLE; flag3.shutter_mode |= SHUTTER_SUPPORT; flag3.pcf8574_ports_inverted |= PCF8574_INVERT_PORTS; flag4.zigbee_use_names |= ZIGBEE_FRIENDLY_NAMES; flag4.zigbee_distinct_topics |= ZIGBEE_DISTINCT_TOPICS; flag4.remove_zbreceived |= ZIGBEE_RMV_ZBRECEIVED; flag4.zb_index_ep |= ZIGBEE_INDEX_EP; flag4.mqtt_tls |= MQTT_TLS_ENABLED; flag4.mqtt_no_retain |= MQTT_NO_RETAIN; Settings->flag = flag; Settings->flag2 = flag2; Settings->flag3 = flag3; Settings->flag4 = flag4; Settings->flag5 = flag5; } void SettingsDefaultSet3(void) { #ifdef USER_TEMPLATE String user_template = USER_TEMPLATE; JsonTemplate((char*)user_template.c_str()); user_template = (const char*) nullptr; // Force deallocation of the String internal memory #endif #ifdef USE_RULES #ifdef USER_RULE1 String user_rule1 = F("Rule1 "); user_rule1 += USER_RULE1; ExecuteCommand((char*)user_rule1.c_str(), SRC_RESTART); user_rule1 = (const char*) nullptr; // Force deallocation of the String internal memory #endif #ifdef USER_RULE2 String user_rule2 = F("Rule2 "); user_rule2 += USER_RULE2; ExecuteCommand((char*)user_rule2.c_str(), SRC_RESTART); user_rule2 = (const char*) nullptr; // Force deallocation of the String internal memory #endif #ifdef USER_RULE3 String user_rule3 = F("Rule3 "); user_rule3 += USER_RULE3; ExecuteCommand((char*)user_rule3.c_str(), SRC_RESTART); user_rule3 = (const char*) nullptr; // Force deallocation of the String internal memory #endif #endif // USE_RULES #ifdef USER_BACKLOG String user_backlog = F("Backlog0 "); user_backlog += USER_BACKLOG; ExecuteCommand((char*)user_backlog.c_str(), SRC_RESTART); user_backlog = (const char*) nullptr; // Force deallocation of the String internal memory #endif } /********************************************************************************************/ void SettingsResetStd(void) { Settings->tflag[0].hemis = TIME_STD_HEMISPHERE; Settings->tflag[0].week = TIME_STD_WEEK; Settings->tflag[0].dow = TIME_STD_DAY; Settings->tflag[0].month = TIME_STD_MONTH; Settings->tflag[0].hour = TIME_STD_HOUR; Settings->toffset[0] = TIME_STD_OFFSET; } void SettingsResetDst(void) { Settings->tflag[1].hemis = TIME_DST_HEMISPHERE; Settings->tflag[1].week = TIME_DST_WEEK; Settings->tflag[1].dow = TIME_DST_DAY; Settings->tflag[1].month = TIME_DST_MONTH; Settings->tflag[1].hour = TIME_DST_HOUR; Settings->toffset[1] = TIME_DST_OFFSET; } void SettingsDefaultWebColor(void) { char scolor[10]; for (uint32_t i = 0; i < COL_LAST; i++) { WebHexCode(i, GetTextIndexed(scolor, sizeof(scolor), i, kWebColors)); } } void SettingsEnableAllI2cDrivers(void) { Settings->i2c_drivers[0] = I2CDRIVERS_0_31; Settings->i2c_drivers[1] = I2CDRIVERS_32_63; Settings->i2c_drivers[2] = I2CDRIVERS_64_95; } /********************************************************************************************/ void SettingsDelta(void) { if (Settings->version != VERSION) { // Fix version dependent changes #ifdef ESP8266 #ifndef UPGRADE_V8_MIN // Although no direct upgrade is supported try to make a viable environment if (Settings->version < 0x08000000) { // Save SSIDs and Passwords char temp31[strlen(Settings->ex_sta_ssid[0]) +1]; strncpy(temp31, Settings->ex_sta_ssid[0], sizeof(temp31)); char temp32[strlen(Settings->ex_sta_ssid[1]) +1]; strncpy(temp32, Settings->ex_sta_ssid[1], sizeof(temp32)); char temp41[strlen(Settings->ex_sta_pwd[0]) +1]; strncpy(temp41, Settings->ex_sta_pwd[0], sizeof(temp41)); char temp42[strlen(Settings->ex_sta_pwd[1]) +1]; strncpy(temp42, Settings->ex_sta_pwd[1], sizeof(temp42)); char temp7[strlen(Settings->ex_mqtt_host) +1]; strncpy(temp7, Settings->ex_mqtt_host, sizeof(temp7)); char temp9[strlen(Settings->ex_mqtt_user) +1]; strncpy(temp9, Settings->ex_mqtt_user, sizeof(temp9)); char temp10[strlen(Settings->ex_mqtt_pwd) +1]; strncpy(temp10, Settings->ex_mqtt_pwd, sizeof(temp10)); char temp11[strlen(Settings->ex_mqtt_topic) +1]; strncpy(temp11, Settings->ex_mqtt_topic, sizeof(temp11)); SettingsDefault(); // Restore current SSIDs and Passwords SettingsUpdateText(SET_STASSID1, temp31); SettingsUpdateText(SET_STASSID2, temp32); SettingsUpdateText(SET_STAPWD1, temp41); SettingsUpdateText(SET_STAPWD2, temp42); #if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT) if (!strlen(Settings->ex_mqtt_user)) { SettingsUpdateText(SET_MQTT_HOST, temp7); SettingsUpdateText(SET_MQTT_USER, temp9); } else { char aws_mqtt_host[66]; snprintf_P(aws_mqtt_host, sizeof(aws_mqtt_host), PSTR("%s%s"), temp9, temp7); SettingsUpdateText(SET_MQTT_HOST, aws_mqtt_host); SettingsUpdateText(SET_MQTT_USER, ""); } #else // No USE_MQTT_TLS and USE_MQTT_AWS_IOT SettingsUpdateText(SET_MQTT_HOST, temp7); SettingsUpdateText(SET_MQTT_USER, temp9); #endif // USE_MQTT_TLS and USE_MQTT_AWS_IOT SettingsUpdateText(SET_MQTT_PWD, temp10); SettingsUpdateText(SET_MQTT_TOPIC, temp11); } #endif // UPGRADE_V8_MIN if (Settings->version < 0x08020003) { SettingsUpdateText(SET_TEMPLATE_NAME, Settings->user_template_name); Settings->zb_channel = 0; // set channel to zero to force reinit of zigbee parameters } #endif // ESP8266 if (Settings->version < 0x08020004) { Settings->flag3.mqtt_buttons = 0; // SetOption73 (0) - Decouple button from relay and send just mqtt topic #ifdef ESP8266 Settings->config_version = 0; // ESP8266 (Has been 0 for long time) #endif // ESP8266 #ifdef ESP32 Settings->config_version = 1; // ESP32 #endif // ESP32 } if (Settings->version < 0x08020006) { #ifdef ESP32 Settings->module = WEMOS; ModuleDefault(WEMOS); #endif // ESP32 // make sure the empty rules have two consecutive NULLs, to be compatible with compressed rules if (Settings->rules[0][0] == 0) { Settings->rules[0][1] = 0; } if (Settings->rules[1][0] == 0) { Settings->rules[1][1] = 0; } if (Settings->rules[2][0] == 0) { Settings->rules[2][1] = 0; } } if (Settings->version < 0x08030002) { SettingsUpdateText(SET_DEVICENAME, SettingsText(SET_FRIENDLYNAME1)); Settings->ledpwm_off = 0; Settings->ledpwm_on = 255; Settings->ledpwm_mask = 0; } if (Settings->version < 0x08030104) { Settings->flag4.network_wifi = 1; Settings->flag4.network_ethernet = 1; } #ifdef ESP32 if (Settings->version < 0x08030105) { Settings->eth_type = ETH_TYPE; Settings->eth_clk_mode = ETH_CLKMODE; Settings->eth_address = ETH_ADDRESS; } #endif // ESP32 if (Settings->version < 0x08030106) { Settings->fallback_module = FALLBACK_MODULE; } if (Settings->version < 0x08040003) { Settings->energy_power_delta[0] = Settings->hass_new_discovery; // replaced ex2_energy_power_delta on 8.5.0.1 Settings->energy_power_delta[1] = 0; Settings->energy_power_delta[2] = 0; } #ifdef ESP8266 if (Settings->version < 0x09000002) { char parameters[32]; snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"), Settings->influxdb_version, Settings->sensors[0][0], Settings->sensors[0][1], (int)Settings->sensors[0][2], Settings->mbflag2.data); SettingsUpdateText(SET_ADC_PARAM1, parameters); } #endif // ESP8266 if (Settings->version < 0x09010000) { Settings->dimmer_step = DEFAULT_DIMMER_STEP; } if (Settings->version < 0x09020003) { Settings->flag3.use_wifi_rescan = true; // As a result of #10395 } if (Settings->version < 0x09020006) { for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) { Settings->switchmode[i] = (i < 8) ? Settings->ex_switchmode[i] : SWITCH_MODE; } for (uint32_t i = 0; i < MAX_INTERLOCKS_SET; i++) { Settings->interlock[i] = (i < 4) ? Settings->ex_interlock[i] : 0; } } if (Settings->version < 0x09020007) { *(uint32_t *)&Settings->device_group_tie = 0x04030201; } if (Settings->version < 0x09030102) { Settings->mqtt_keepalive = MQTT_KEEPALIVE; Settings->mqtt_socket_timeout = MQTT_SOCKET_TIMEOUT; } if (Settings->version < 0x09030104) { Settings->mbflag2.data = 0; } if (Settings->version < 0x09040002) { Settings->sbflag1.data = 0; } if (Settings->version < 0x09040006) { Settings->mqtt_wifi_timeout = MQTT_WIFI_CLIENT_TIMEOUT / 100; } #ifdef CONFIG_IDF_TARGET_ESP32C3 if (Settings->version < 0x09050002) { if (Settings->cfg_size != sizeof(TSettings)) { // Fix onetime Settings layout due to changed ESP32-C3 myio and mytmplt types sizes memmove_P((uint8_t*)&Settings->user_template, (uint8_t*)&Settings->free_esp32c3_3D8, sizeof(TSettings) - 0x3FC); memmove_P((uint8_t*)&Settings->eth_type, (uint8_t*)&Settings->free_esp32c3_42A, sizeof(TSettings) - 0x446); // Reset for future use memset(&Settings->free_esp32c3_3D8, 0x00, sizeof(Settings->free_esp32c3_3D8)); memset(&Settings->free_esp32c3_42A, 0x00, sizeof(Settings->free_esp32c3_42A)); } } #endif if (Settings->version < 0x09050003) { memset(&Settings->sensors, 0xFF, 16); // Enable all possible sensors } if (Settings->version < 0x09050004) { Settings->energy_kWhtotal = Settings->ipv4_address[4]; ParseIPv4(&Settings->ipv4_address[4], PSTR(WIFI_DNS2)); } if (Settings->version < 0x09050005) { Settings->sbflag1.range_extender = WIFI_RGX_STATE; Settings->sbflag1.range_extender_napt = WIFI_RGX_NAPT; ParseIPv4(&Settings->ipv4_rgx_address, PSTR(WIFI_RGX_IP_ADDRESS)); ParseIPv4(&Settings->ipv4_rgx_subnetmask, PSTR(WIFI_RGX_SUBNETMASK)); SettingsUpdateText(SET_RGX_SSID, PSTR(WIFI_RGX_SSID)); SettingsUpdateText(SET_RGX_PASSWORD, PSTR(WIFI_RGX_PASSWORD)); } if (Settings->version < 0x09050007) { #ifdef DISABLE_REFERER_CHK Settings->flag5.disable_referer_chk |= false; #else Settings->flag5.disable_referer_chk |= true; #endif } if (Settings->version < 0x09050009) { memset(&Settings->energy_kWhtoday_ph, 0, 36); memset(&RtcSettings.energy_kWhtoday_ph, 0, 24); } Settings->version = VERSION; SettingsSave(1); } }