/* xdrv_04_light.ino - PWM, WS2812 and sonoff led support for Sonoff-Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_LIGHT /*********************************************************************************************\ * PWM, WS2812, Sonoff B1, AiLight, Sonoff Led and BN-SZ01, H801, MagicHome and Arilux * * light_type Module Color ColorTemp Modules * ---------- --------- ----- --------- ---------------------------- * 0 - no (Sonoff Basic) * 1 PWM1 W no (Sonoff BN-SZ) * 2 PWM2 CW yes (Sonoff Led) * 3 PWM3 RGB no (H801, MagicHome and Arilux LC01) * 4 PWM4 RGBW no (H801, MagicHome and Arilux) * 5 PWM5 RGBCW yes (H801, Arilux LC11) * 9 reserved no * 10 reserved yes * 11 +WS2812 RGB(W) no (One WS2812 RGB or RGBW ledstrip) * 12 AiLight RGBW no * 13 Sonoff B1 RGBCW yes * 19 SM16716 RGB no * 20 SM16716+W RGBW no * 21 SM16716+CW RGBCW yes * * light_scheme WS2812 3+ Colors 1+2 Colors Effect * ------------ ------ --------- ---------- ----------------- * 0 yes yes yes Color On/Off * 1 yes yes yes Wakeup light * 2 yes yes no Color cycle RGB * 3 yes yes no Color cycle RBG * 4 yes yes no Random RGB colors * 5 yes no no Clock * 6 yes no no Incandescent * 7 yes no no RGB * 8 yes no no Christmas * 9 yes no no Hanukkah * 10 yes no no Kwanzaa * 11 yes no no Rainbow * 12 yes no no Fire * \*********************************************************************************************/ /*********************************************************************************************\ * * Light management has been refactored to provide a cleaner class-based interface. * Also, now all values are stored as integer, no more floats that could generate * rounding errors. * * Two singletons are now used to control the state of the light. * - light_state (LightStateClass) stores the color / white temperature and * brightness. Use this object to READ only. * - light_controller (LightControllerClass) is used to change light state * and adjust all Settings and levels accordingly. * Always use this object to change light status. * * As there have been lots of changes in light control, here is a summary out * the whole flow from setting colors to drving the PMW pins. * * 1. To change colors, always use 'light_controller' object. * 'light_state' is only to be used to read current state. * .a For color bulbs, set color via changeRGB() or changeHS() for Hue/Sat. * Set the overall brightness changeBri(0..255) or changeDimmer(0..100%) * RGB and Hue/Sat are always kept in sync. Internally, RGB are stored at * full range (max brightness) so that when you reduce brightness and * raise it back again, colors don't change due to rounding errors. * .b For white bulbs with Cold/Warm colortone, use changeCW() or changeCT() * to change color-tone. Set overall brightness separately. * Color-tone temperature can range from 153 (Cold) to 500 (Warm). * CW channels are stored at full brightness to avoid rounding errors. * .c Alternatively, you can set all 5 channels at once with changeChannels(), * in this case it will also set the corresponding brightness. * * 2.a After any change, the Settings object is updated so that changes * survive a reboot and can be stored in flash - in saveSettings() * .b Actual channel values are computed from RGB or CT combined with brightness. * Range is still 0..255 (8 bits) - in getActualRGBCW() * .c The 5 internal channels RGBWC are mapped to the actual channels supproted * by the light_type: in calcLevels() * 1 channel - 0:Brightness * 2 channels - 0:Coldwhite 1:Warmwhite * 3 channels - 0:Red 1:Green 2:Blue * 4 chennels - 0:Red 1:Green 2:Blue 3:White * 5 chennels - 0:Red 1:Green 2:Blue 3:ColdWhite 4:Warmwhite * * 3. In LightAnimate(), final PWM values are computed at next tick. * .a If color did not change since last tick - ignore. * .b Extend resolution from 8 bits to 10 bits, which makes a significant * difference when applying gamma correction at low brightness. * .c Apply Gamma Correction if LedTable==1 (by default). * Gamma Correction uses an adaptative resolution table from 11 to 8 bits. * .d For Warm/Cold-white channels, Gamma correction is calculated in combined mode. * Ie. total white brightness (C+W) is used for Gamma correction and gives * the overall light power required. Then this light power is split among * Wamr/Cold channels. * .e Gamma correction is still applied to 8 bits channels for compatibility * with other non-PMW modules. * .f Apply color balance correction from rgbwwTable[]. * Note: correction is done after Gamma correction, it is meant * to adjust leds with different power * .g If rgbwwTable[4] is zero, blend RGB with White and adjust the level of * White channel according to rgbwwTable[3] * .h Avoid PMW values between 1008 and 1022, issue #1146 * .i Scale ranges from 10 bits to 0..PWMRange (by default 1023) so no change * by default. * .j Apply port remapping from Option37 * .k Invert PWM value if port is of type PMWxi instead of PMWx * .l Apply PWM value with analogWrite() - if pin is configured * \*********************************************************************************************/ #define XDRV_04 4 //#define DEBUG_LIGHT const uint8_t LIGHT_COLOR_SIZE = 25; // Char array scolor size const uint8_t WS2812_SCHEMES = 7; // Number of additional WS2812 schemes supported by xdrv_ws2812.ino const char kLightCommands[] PROGMEM = #ifdef USE_WS2812 D_CMND_LED "|" D_CMND_PIXELS "|" D_CMND_ROTATION "|" D_CMND_WIDTH "|" #endif // USE_WS2812 D_CMND_COLOR "|" D_CMND_COLORTEMPERATURE "|" D_CMND_DIMMER "|" D_CMND_LEDTABLE "|" D_CMND_FADE "|" D_CMND_RGBWWTABLE "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|" D_CMND_WHITE "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR "|UNDOCA" ; void (* const LightCommand[])(void) PROGMEM = { #ifdef USE_WS2812 &CmndLed, &CmndPixels, &CmndRotation, &CmndWidth, #endif // USE_WS2812 &CmndColor, &CmndColorTemperature, &CmndDimmer, &CmndLedTable, &CmndFade, &CmndRgbwwTable, &CmndScheme, &CmndSpeed, &CmndWakeup, &CmndWakeupDuration, &CmndWhite, &CmndChannel, &CmndHsbColor, &CmndUndocA }; // Light color mode, either RGB alone, or white-CT alone, or both only available if ct_rgb_linked is false enum LightColorModes { LCM_RGB = 1, LCM_CT = 2, LCM_BOTH = 3 }; struct LRgbColor { uint8_t R, G, B; }; const uint8_t MAX_FIXED_COLOR = 12; const LRgbColor kFixedColor[MAX_FIXED_COLOR] PROGMEM = { 255,0,0, 0,255,0, 0,0,255, 228,32,0, 0,228,32, 0,32,228, 188,64,0, 0,160,96, 160,32,240, 255,255,0, 255,0,170, 255,255,255 }; struct LWColor { uint8_t W; }; const uint8_t MAX_FIXED_WHITE = 4; const LWColor kFixedWhite[MAX_FIXED_WHITE] PROGMEM = { 0, 255, 128, 32 }; struct LCwColor { uint8_t C, W; }; const uint8_t MAX_FIXED_COLD_WARM = 4; const LCwColor kFixedColdWarm[MAX_FIXED_COLD_WARM] PROGMEM = { 0,0, 255,0, 0,255, 128,128 }; // New version of Gamma correction table, with adaptative resolution // from 11 bits (lower values) to 8 bits (upper values). // We're using the fact that lower values are small and can fit within 8 bits // To save flash space, the array is only 8 bits uint const uint8_t _ledTable[] = { // 11 bits resolution 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, // 11 bits, 0..2047 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, // 11 bits, 0..2047 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, // 11 bits, 0..2047 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 35, 37, 38, 40, 42, // 11 bits, 0..2047 // 10 bits resolution 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, // 10 bits, 0..1023 41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 62, 64, 65, // 10 bits, 0..1023 67, 69, 71, 73, 75, 78, 80, 82, 84, 86, 89, 91, 93, 96, 98,101, // 10 bits, 0..1023 103,106,108,111,114,116,119,122,125,128,131,134,137,140,143,146, // 10 bits, 0..1023 // 9 bits resolution 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 93, 94, 96, 98,100,102, // 9 bits, 0..511 104,106,108,110,112,115,117,119,121,123,125,128,130,132,135,137, // 9 bits, 0..511 140,142,144,147,149,152,155,157,160,163,165,168,171,173,176,179, // 9 bits, 0..511 182,185,188,191,194,197,200,203,206,209,212,215,219,222,225,229, // 9 bits, 0..511 // 8 bits resolution 116,118,120,121,123,125,127,128,130,132,134,136,138,139,141,143, // 8 bits, 0..255 145,147,149,151,153,155,157,159,161,163,165,168,170,172,174,176, // 8 bits, 0..255 178,181,183,185,187,190,192,194,197,199,201,204,206,209,211,214, // 8 bits, 0..255 216,219,221,224,226,229,232,234,237,240,242,245,248,250,253,255 // 8 bits, 0..255 }; // For reference, below are the computed gamma tables, via ledGamma() // for 8 bits output: // 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, // 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, // 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, // 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, // 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, // 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, // 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, // 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, // 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90, // 91, 93, 94, 96, 97, 99,100,102,103,105,106,108,110,111,113,115, //116,118,120,121,123,125,127,128,130,132,134,136,138,139,141,143, //145,147,149,151,153,155,157,159,161,163,165,168,170,172,174,176, //178,181,183,185,187,190,192,194,197,199,201,204,206,209,211,214, //216,219,221,224,226,229,232,234,237,240,242,245,248,250,253,255 // // and for 10 bits output: // 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, // 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10, // 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 19, 20, 21, // 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, // 41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 62, 64, 65, // 67, 69, 71, 73, 75, 78, 80, 82, 84, 86, 89, 91, 93, 96, 98,101, //103,106,108,111,114,116,119,122,125,128,131,134,137,140,143,146, //151,155,157,161,165,169,171,175,179,183,187,189,193,197,201,205, //209,213,217,221,225,231,235,239,243,247,251,257,261,265,271,275, //281,285,289,295,299,305,311,315,321,327,331,337,343,347,353,359, //365,371,377,383,389,395,401,407,413,419,425,431,439,445,451,459, //467,475,483,487,495,503,511,515,523,531,539,547,555,559,567,575, //583,591,599,607,615,623,631,639,647,655,663,675,683,691,699,707, //715,727,735,743,751,763,771,779,791,799,807,819,827,839,847,859, //867,879,887,899,907,919,931,939,951,963,971,983,995,1003,1015,1023 uint8_t light_entry_color[LST_MAX]; uint8_t light_current_color[LST_MAX]; uint8_t light_new_color[LST_MAX]; uint8_t light_last_color[LST_MAX]; uint8_t light_color_remap[LST_MAX]; uint8_t light_wheel = 0; uint8_t light_subtype = 0; // LST_ subtype uint8_t light_device = 0; uint8_t light_power = 0; uint8_t light_old_power = 1; uint8_t light_update = 1; uint8_t light_wakeup_active = 0; uint8_t light_wakeup_dimmer = 0; uint16_t light_wakeup_counter = 0; uint8_t light_fixed_color_index = 1; unsigned long strip_timer_counter = 0; // Bars and Gradient static uint32_t min3(uint32_t a, uint32_t b, uint32_t c) { return (a < b && a < c) ? a : (b < c) ? b : c; } // // changeUIntScale // Change a value for range a..b to c..d, using only unsigned int math // // PRE-CONDITIONS (if not satisfied, you may 'halt and catch fire') // from_min < from_max (not checked) // to_min < to_max (not checked) // from_min <= num <= from-max (chacked) // POST-CONDITIONS // to_min <= result <= to_max // uint16_t changeUIntScale(uint16_t inum, uint16_t ifrom_min, uint16_t ifrom_max, uint16_t ito_min, uint16_t ito_max) { // guard-rails if ((ito_min >= ito_max) || (ifrom_min >= ifrom_max)) { return ito_min; // invalid input, return arbitrary value } // convert to uint31, it's more verbose but code is more compact uint32_t num = inum; uint32_t from_min = ifrom_min; uint32_t from_max = ifrom_max; uint32_t to_min = ito_min; uint32_t to_max = ito_max; // check source range num = (num > from_max ? from_max : (num < from_min ? from_min : num)); uint32_t numerator = (num - from_min) * (to_max - to_min); uint32_t result; if (numerator >= 0x80000000L) { // don't do rounding as it would create an overflow result = numerator / (from_max - from_min) + to_min; } else { result = (((numerator * 2) / (from_max - from_min)) + 1) / 2 + to_min; } return (uint32_t) (result > to_max ? to_max : (result < to_min ? to_min : result)); } // // LightStateClass // This class is an abstraction of the current light state. // It allows for b/w, full colors, or white colortone // // This class has 2 independant slots // 1/ Brightness 0.255, dimmer controls both RGB and WC (warm-cold) // 1/ RGB and Hue/Sat - always kept in sync and stored at full brightness, // i.e. R G or B are 255 // briRGB specifies the brightness for the RGB slot. // If Brightness is 0, it is equivalent to Off (for compatibility) // Dimmer is Brightness converted to range 0..100 // 2/ White with colortone - or CW (Cold / Warm) // ct is 153..500 temperature (153=cold, 500=warm) // briCT specifies the brightness for white channel // // Dimmer (0.100) is automatically derived from brightness // // INVARIANTS: // 1. RGB components are always stored at full brightness and modulated with briRGB // ((R == 255) || (G == 255) || (B == 255)) // 2. RGB and Hue/Sat are always kept in sync whether you use setRGB() or setHS() // 3. Warm/Cold white channels are always stored at full brightness // ((WW == 255) || (WC == 255)) // 4. WC/WW and CT are always kept in sync. // Note: if you use setCT() then WC+WW == 255 (both channels are linked) // but if you use setCW() both channels can be set independantly // 5. If RGB or CT channels are deactivated, then corresponding brightness is zero // if (colot_tone == LCM_RGB) then briCT = 0 // if (color_tone == LCM_CT) then briRGB = 0 // if (colot_tone == LCM_BOTH) then briRGB and briCT can have any values // // Note: If you want the actual RGB, you need to multiply with Bri, or use getActualRGBCW() // Note: all values are stored as unsigned integer, no floats. // Note: you can query vaules from this singleton. But to change values, // use the LightController - changing this object will have no effect on actual light. // class LightStateClass { private: uint16_t _hue = 0; // 0..359 uint8_t _sat = 255; // 0..255 uint8_t _briRGB = 255; // 0..255 // dimmer is same as _bri but with a range of 0%-100% uint8_t _r = 255; // 0..255 uint8_t _g = 255; // 0..255 uint8_t _b = 255; // 0..255 uint8_t _subtype = 0; // local copy of light_subtype, if we need multiple lights uint16_t _ct = 153; // 153..500, default to 153 (cold white) uint8_t _wc = 255; // white cold channel uint8_t _ww = 0; // white warm channel uint8_t _briCT = 255; uint8_t _color_mode = LCM_RGB; // RGB by default public: LightStateClass() { //AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::Constructor RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); } void setSubType(uint8_t sub_type) { _subtype = sub_type; // set sub_type at initialization, shoudln't be changed afterwards } // This function is a bit hairy, it will try to match the rerquired // colormode with the features of the device: // LST_NONE: LCM_RGB // LST_SINGLE: LCM_RGB // LST_COLDWARM: LCM_CT // LST_RGB: LCM_RGB // LST_RGBW: LCM_RGB, LCM_CT or LCM_BOTH // LST_RGBWC: LCM_RGB, LCM_CT or LCM_BOTH uint8_t setColorMode(uint8_t cm) { uint8_t prev_cm = _color_mode; if (cm < LCM_RGB) { cm = LCM_RGB; } if (cm > LCM_BOTH) { cm = LCM_BOTH; } uint8_t maxbri = (_briRGB >= _briCT) ? _briRGB : _briCT; switch (_subtype) { case LST_COLDWARM: _color_mode = LCM_CT; break; case LST_NONE: case LST_SINGLE: case LST_RGB: default: _color_mode = LCM_RGB; break; case LST_RGBW: case LST_RGBWC: _color_mode = cm; break; } if (LCM_RGB == _color_mode) { _briCT = 0; if (0 == _briRGB) { _briRGB = maxbri; } } if (LCM_CT == _color_mode) { _briRGB = 0; if (0 == _briCT) { _briCT = maxbri; } } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setColorMode prev_cm (%d) req_cm (%d) new_cm (%d)", prev_cm, cm, _color_mode); #endif return prev_cm; } inline uint8_t getColorMode() { return _color_mode; } void addRGBMode() { setColorMode(_color_mode | LCM_RGB); } void addCTMode() { setColorMode(_color_mode | LCM_CT); } // Get RGB color, always at full brightness (ie. one of the components is 255) void getRGB(uint8_t *r, uint8_t *g, uint8_t *b) { if (r) { *r = _r; } if (g) { *g = _g; } if (b) { *b = _b; } } // get full brightness values for wamr and cold channels. // either w=c=0 (off) or w+c >= 255 void getCW(uint8_t *rc, uint8_t *rw) { if (rc) { *rc = _wc; } if (rw) { *rw = _ww; } } // Get the actual values for each channel, ie multiply with brightness void getActualRGBCW(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *c, uint8_t *w) { bool rgb_channels_on = _color_mode & LCM_RGB; bool ct_channels_on = _color_mode & LCM_CT; if (r) { *r = rgb_channels_on ? changeUIntScale(_r, 0, 255, 0, _briRGB) : 0; } if (g) { *g = rgb_channels_on ? changeUIntScale(_g, 0, 255, 0, _briRGB) : 0; } if (b) { *b = rgb_channels_on ? changeUIntScale(_b, 0, 255, 0, _briRGB) : 0; } if (c) { *c = ct_channels_on ? changeUIntScale(_wc, 0, 255, 0, _briCT) : 0; } if (w) { *w = ct_channels_on ? changeUIntScale(_ww, 0, 255, 0, _briCT) : 0; } } uint8_t getChannels(uint8_t *channels) { getActualRGBCW(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]); } void getHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) { if (hue) { *hue = _hue; } if (sat) { *sat = _sat; } if (bri) { *bri = _briRGB; } } // getBri() is guaranteed to give the same result as setBri() - no rounding errors. uint8_t getBri(void) { // return the max of _briCT and _briRGB return (_briRGB >= _briCT) ? _briRGB : _briCT; } // get the white Brightness inline uint8_t getBriCT() { return _briCT; } static inline uint8_t DimmerToBri(uint8_t dimmer) { return changeUIntScale(dimmer, 0, 100, 0, 255); // 0..255 } static uint8_t BriToDimmer(uint8_t bri) { uint8_t dimmer = changeUIntScale(bri, 0, 255, 0, 100); // if brightness is non zero, force dimmer to be non-zero too if ((dimmer == 0) && (bri > 0)) { dimmer = 1; } return dimmer; } uint8_t getDimmer() { return BriToDimmer(getBri()); } inline uint16_t getCT() { return _ct; // 153..500 } // get current color in XY format void getXY(float *x, float *y) { RgbToXy(_r, _g, _b, x, y); } // setters -- do not use directly, use the light_controller instead // sets both master Bri and whiteBri void setBri(uint8_t bri) { setBriRGB(_color_mode & LCM_RGB ? bri : 0); setBriCT(_color_mode & LCM_CT ? bri : 0); #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setBri RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB); #endif } // changes the RGB brightness alone uint8_t setBriRGB(uint8_t bri_rgb) { uint8_t prev_bri = _briRGB; _briRGB = bri_rgb; if (bri_rgb > 0) { addRGBMode(); } return prev_bri; } // changes the white brightness alone uint8_t setBriCT(uint8_t bri_ct) { uint8_t prev_bri = _briCT; _briCT = bri_ct; if (bri_ct > 0) { addCTMode(); } return prev_bri; } inline uint8_t getBriRGB() { return _briRGB; } void setDimmer(uint8_t dimmer) { setBri(DimmerToBri(dimmer)); } void setCT(uint16_t ct) { if (0 == ct) { // disable ct mode setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal } else { ct = (ct < 153 ? 153 : (ct > 500 ? 500 : ct)); _ww = changeUIntScale(ct, 153, 500, 0, 255); _wc = 255 - _ww; _ct = ct; addCTMode(); } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCT RGB raw (%d %d %d) HS (%d %d) briRGB (%d) briCT (%d) CT (%d)", _r, _g, _b, _hue, _sat, _briRGB, _briCT, _ct); #endif } // Manually set Cold/Warm channels. // There are two modes: // 1. (free_range == false, default) // In this mode there is only one virtual white channel with color temperature // As a side effect, WC+WW = 255. It means also that the sum of light power // from white LEDs is always equal to briCT. It is not possible here // to set both white LEDs at full power, hence protecting power supplies // from overlaoding. // 2. (free_range == true) // In this mode, values of WC and WW are free -- both channels can be set // at full power. // In this mode, we always scale both channels so that one at least is 255. // // We automatically adjust briCT to have the right values of channels void setCW(uint8_t c, uint8_t w, bool free_range = false) { uint16_t max = (w > c) ? w : c; // 0..255 uint16_t sum = c + w; if (0 == max) { _briCT = 0; // brightness set to null setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal } else { if (!free_range) { // we need to normalize to sum = 255 _ww = changeUIntScale(w, 0, sum, 0, 255); _wc = 255 - _ww; } else { // we normalize to max = 255 _ww = changeUIntScale(w, 0, max, 0, 255); _wc = changeUIntScale(c, 0, max, 0, 255); } _ct = changeUIntScale(w, 0, sum, 153, 500); addCTMode(); // activate CT mode if needed if (_color_mode & LCM_CT) { _briCT = free_range ? max : (sum > 255 ? 255 : sum); } } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCW CW (%d %d) CT (%d) briCT (%d)", c, w, _ct, _briCT); #endif } // sets RGB and returns the Brightness. Bri is updated unless keep_bri is true uint8_t setRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) { uint16_t hue; uint8_t sat; #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB input (%d %d %d)", r, g, b); #endif uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255 if (0 == max) { r = g = b = 255; setColorMode(LCM_CT); // try deactivating RGB, setColorMode() will check if this is legal } else { if (255 > max) { // we need to normalize rgb r = changeUIntScale(r, 0, max, 0, 255); g = changeUIntScale(g, 0, max, 0, 255); b = changeUIntScale(b, 0, max, 0, 255); } addRGBMode(); } if (!keep_bri) { _briRGB = (_color_mode & LCM_RGB) ? max : 0; } RgbToHsb(r, g, b, &hue, &sat, nullptr); _r = r; _g = g; _b = b; _hue = hue; _sat = sat; #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB); #endif return max; } void setHS(uint16_t hue, uint8_t sat) { uint8_t r, g, b; HsToRgb(hue, sat, &r, &g, &b); _r = r; _g = g; _b = b; _hue = hue; _sat = sat; addRGBMode(); #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS HS (%d %d) rgb (%d %d %d)", hue, sat, r, g, b); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB); #endif } // set all 5 channels at once. // Channels are: R G B CW WW // Brightness is automatically recalculated to adjust channels to the desired values void setChannels(uint8_t *channels) { setRGB(channels[0], channels[1], channels[2]); setCW(channels[3], channels[4], true); // free range for WC and WW #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels (%d %d %d %d %d)", channels[0], channels[1], channels[2], channels[3], channels[4]); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels CT (%d) briRGB (%d) briCT (%d)", _ct, _briRGB, _briCT); #endif } // new version of RGB to HSB with only integer calculation static void RgbToHsb(uint8_t r, uint8_t g, uint8_t b, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri); static void HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b); static void RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y); static void XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb); }; /*********************************************************************************************\ * LightStateClass implementation \*********************************************************************************************/ // new version with only integer computing // brightness is not needed, it is controlled via Dimmer void LightStateClass::RgbToHsb(uint8_t ir, uint8_t ig, uint8_t ib, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri) { uint32_t r = ir; uint32_t g = ig; uint32_t b = ib; uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255 uint32_t min = (r < g && r < b) ? r : (g < b) ? g : b; // 0..255 uint32_t d = max - min; // 0..255 uint16_t hue = 0; // hue value in degrees ranges from 0 to 359 uint8_t sat = 0; // 0..255 uint8_t bri = max; // 0..255 if (d != 0) { sat = changeUIntScale(d, 0, max, 0, 255); if (r == max) { hue = (g > b) ? changeUIntScale(g-b,0,d,0,60) : 360 - changeUIntScale(b-g,0,d,0,60); } else if (g == max) { hue = (b > r) ? 120 + changeUIntScale(b-r,0,d,0,60) : 120 - changeUIntScale(r-b,0,d,0,60); } else { hue = (r > g) ? 240 + changeUIntScale(r-g,0,d,0,60) : 240 - changeUIntScale(g-r,0,d,0,60); } hue = hue % 360; // 0..359 } if (r_hue) *r_hue = hue; if (r_sat) *r_sat = sat; if (r_bri) *r_bri = bri; //AddLog_P2(LOG_LEVEL_DEBUG_MORE, "RgbToHsb rgb (%d %d %d) hsb (%d %d %d)", r, g, b, hue, sat, bri); } void LightStateClass::HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b) { uint32_t r = 255; // default to white uint32_t g = 255; uint32_t b = 255; // we take brightness at 100%, brightness should be set separately hue = hue % 360; // normalize to 0..359 if (sat > 0) { uint32_t i = hue / 60; // quadrant 0..5 uint32_t f = hue % 60; // 0..59 uint32_t q = 255 - changeUIntScale(f, 0, 60, 0, sat); // 0..59 uint32_t p = 255 - sat; uint32_t t = 255 - changeUIntScale(60 - f, 0, 60, 0, sat); switch (i) { case 0: //r = 255; g = t; b = p; break; case 1: r = q; //g = 255; b = p; break; case 2: r = p; //g = 255; b = t; break; case 3: r = p; g = q; //b = 255; break; case 4: r = t; g = p; //b = 255; break; default: //r = 255; g = p; b = q; break; } } if (r_r) *r_r = r; if (r_g) *r_g = g; if (r_b) *r_b = b; } #define POW FastPrecisePowf void LightStateClass::RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y) { float x = 0.31271f; // default medium white float y = 0.32902f; if (i_r + i_b + i_g > 0) { float r = (float)i_r / 255.0f; float g = (float)i_g / 255.0f; float b = (float)i_b / 255.0f; // https://gist.github.com/popcorn245/30afa0f98eea1c2fd34d // Gamma correction r = (r > 0.04045f) ? POW((r + 0.055f) / (1.0f + 0.055f), 2.4f) : (r / 12.92f); g = (g > 0.04045f) ? POW((g + 0.055f) / (1.0f + 0.055f), 2.4f) : (g / 12.92f); b = (b > 0.04045f) ? POW((b + 0.055f) / (1.0f + 0.055f), 2.4f) : (b / 12.92f); // conversion to X, Y, Z // Y is also the Luminance float X = r * 0.649926f + g * 0.103455f + b * 0.197109f; float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f; float Z = r * 0.000000f + g * 0.053077f + b * 1.035763f; x = X / (X + Y + Z); y = Y / (X + Y + Z); // we keep the raw gamut, one nice thing could be to convert to a narrower gamut } if (r_x) *r_x = x; if (r_y) *r_y = y; } void LightStateClass::XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb) { x = (x > 0.99f ? 0.99f : (x < 0.01f ? 0.01f : x)); y = (y > 0.99f ? 0.99f : (y < 0.01f ? 0.01f : y)); float z = 1.0f - x - y; //float Y = 1.0f; float X = x / y; float Z = z / y; // float r = X * 1.4628067f - 0.1840623f - Z * 0.2743606f; // float g = -X * 0.5217933f + 1.4472381f + Z * 0.0677227f; // float b = X * 0.0349342f - 0.0968930f + Z * 1.2884099f; float r = X * 3.2406f - 1.5372f - Z * 0.4986f; float g = -X * 0.9689f + 1.8758f + Z * 0.0415f; float b = X * 0.0557f - 0.2040f + Z * 1.0570f; float max = (r > g && r > b) ? r : (g > b) ? g : b; r = r / max; // normalize to max == 1.0 g = g / max; b = b / max; r = (r <= 0.0031308f) ? 12.92f * r : 1.055f * POW(r, (1.0f / 2.4f)) - 0.055f; g = (g <= 0.0031308f) ? 12.92f * g : 1.055f * POW(g, (1.0f / 2.4f)) - 0.055f; b = (b <= 0.0031308f) ? 12.92f * b : 1.055f * POW(b, (1.0f / 2.4f)) - 0.055f; // // AddLog_P2(LOG_LEVEL_DEBUG_MORE, "XyToRgb XZ (%s %s) rgb (%s %s %s)", // String(X,5).c_str(), String(Z,5).c_str(), // String(r,5).c_str(), String(g,5).c_str(),String(b,5).c_str()); int32_t ir = r * 255.0f + 0.5f; int32_t ig = g * 255.0f + 0.5f; int32_t ib = b * 255.0f + 0.5f; if (rr) { *rr = (ir > 255 ? 255: (ir < 0 ? 0 : ir)); } if (rg) { *rg = (ig > 255 ? 255: (ig < 0 ? 0 : ig)); } if (rb) { *rb = (ib > 255 ? 255: (ib < 0 ? 0 : ib)); } } class LightControllerClass { private: LightStateClass *_state; // are RGB and CT linked, i.e. if we set CT then RGB channels are off bool _ct_rgb_linked = true; public: LightControllerClass(LightStateClass& state) { _state = &state; } void setSubType(uint8_t sub_type) { _state->setSubType(sub_type); } inline bool setCTRGBLinked(bool ct_rgb_linked) { bool prev = _ct_rgb_linked; _ct_rgb_linked = ct_rgb_linked; return prev; } inline bool isCTRGBLinked() { return _ct_rgb_linked; } #ifdef DEBUG_LIGHT void debugLogs() { uint8_t r,g,b,c,w; _state->getActualRGBCW(&r,&g,&b,&c,&w); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs rgb (%d %d %d) cw (%d %d)", r, g, b, c, w); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs lightCurrent (%d %d %d %d %d)", light_current_color[0], light_current_color[1], light_current_color[2], light_current_color[3], light_current_color[4]); } #endif void loadSettings() { #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings Settings.light_color (%d %d %d %d %d - %d)", Settings.light_color[0], Settings.light_color[1], Settings.light_color[2], Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings light_type/sub (%d %d)", light_type, light_subtype); #endif // first try setting CW, if zero, it select RGB mode _state->setCW(Settings.light_color[3], Settings.light_color[4], true); _state->setRGB(Settings.light_color[0], Settings.light_color[1], Settings.light_color[2]); // We apply dimmer in priority to RGB uint8_t bri = _state->DimmerToBri(Settings.light_dimmer); if (Settings.light_color[0] + Settings.light_color[1] + Settings.light_color[2] > 0) { _state->setBriRGB(bri); } else { _state->setBriCT(bri); } } void changeCTB(uint16_t new_ct, uint8_t briCT) { /* Color Temperature (https://developers.meethue.com/documentation/core-concepts) * * ct = 153 = 2000K = Warm = CCWW = 00FF * ct = 500 = 6500K = Cold = CCWW = FF00 */ // don't set CT if not supported if ((LST_COLDWARM != light_subtype) && (LST_RGBW > light_subtype)) { return; } _state->setCT(new_ct); _state->setBriCT(briCT); if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT saveSettings(); calcLevels(); //debugLogs(); } void changeDimmer(uint8_t dimmer) { uint8_t bri = changeUIntScale(dimmer, 0, 100, 0, 255); changeBri(bri); } void changeBri(uint8_t bri) { _state->setBri(bri); saveSettings(); calcLevels(); } void changeRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) { _state->setRGB(r, g, b, keep_bri); if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB saveSettings(); calcLevels(); } // calculate the levels for each channel void calcLevels() { uint8_t r,g,b,c,w,briRGB,briCT; _state->getActualRGBCW(&r,&g,&b,&c,&w); briRGB = _state->getBriRGB(); briCT = _state->getBriCT(); light_current_color[0] = light_current_color[1] = light_current_color[2] = 0; light_current_color[3] = light_current_color[4] = 0; switch (light_subtype) { case LST_NONE: light_current_color[0] = 255; break; case LST_SINGLE: light_current_color[0] = briRGB; break; case LST_COLDWARM: light_current_color[0] = c; light_current_color[1] = w; break; case LST_RGBW: case LST_RGBWC: if (LST_RGBWC == light_subtype) { light_current_color[3] = c; light_current_color[4] = w; } else { light_current_color[3] = briCT; } // continue case LST_RGB: light_current_color[0] = r; light_current_color[1] = g; light_current_color[2] = b; break; } } void changeHSB(uint16_t hue, uint8_t sat, uint8_t briRGB) { _state->setHS(hue, sat); _state->setBriRGB(briRGB); if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB saveSettings(); calcLevels(); } // save the current light state to Settings. void saveSettings() { uint8_t cm = _state->getColorMode(); memset(&Settings.light_color[0], 0, sizeof(Settings.light_color)); if (LCM_RGB & cm) { // can be either LCM_RGB or LCM_BOTH _state->getRGB(&Settings.light_color[0], &Settings.light_color[1], &Settings.light_color[2]); Settings.light_dimmer = _state->BriToDimmer(_state->getBriRGB()); // anyways we always store RGB with BrightnessRGB if (LCM_BOTH == cm) { // then store at actual brightness CW/WW if dual mode _state->getActualRGBCW(nullptr, nullptr, nullptr, &Settings.light_color[3], &Settings.light_color[4]); } } else if (LCM_CT == cm) { // cm can only be LCM_CT _state->getCW(&Settings.light_color[3], &Settings.light_color[4]); Settings.light_dimmer = _state->BriToDimmer(_state->getBriCT()); } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::saveSettings Settings.light_color (%d %d %d %d %d - %d)", Settings.light_color[0], Settings.light_color[1], Settings.light_color[2], Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer); #endif } // set all 5 channels at once. // Channels are: R G B CW WW // Brightness is automatically recalculated to adjust channels to the desired values void changeChannels(uint8_t *channels) { if (LST_COLDWARM == light_subtype) { // remap channels 0-1 to 3-4 if cold/warm uint8_t remapped_channels[5] = {0,0,0,channels[0],channels[1]}; _state->setChannels(remapped_channels); } else { _state->setChannels(channels); } saveSettings(); calcLevels(); } }; // the singletons for light state and Light Controller LightStateClass light_state = LightStateClass(); LightControllerClass light_controller = LightControllerClass(light_state); /*********************************************************************************************\ * Gamma correction \*********************************************************************************************/ // Calculate the gamma corrected value for LEDS // You can request 11, 10, 9 or 8 bits resolution via 'bits_out' parameter uint16_t ledGamma(uint8_t v, uint16_t bits_out = 8) { uint16_t result; // bits_resolution: the resolution of _ledTable[v], between 8 and 11 uint32_t bits_resolution = 11 - (v / 64); // 8..11 int32_t bits_correction = bits_out - bits_resolution; // -3..3 uint32_t uncorrected_value = _ledTable[v]; // 0..255 if (0 == bits_correction) { // we already match the required resolution, no change result = uncorrected_value; } else if (bits_correction > 0) { // the output resolution is higher than our value, we need to extrapolate // we shift by bits_correction, and force last bits to 1 uint32_t bits_mask = (1 << bits_correction) - 1; // 1, 3, 7 result = (uncorrected_value << bits_correction) | bits_mask; } else { // bits_correction < 0 // our resolution is too high, we need to remove bits // we add 1, 3 or 7 to force rouding to the nearest high value uint32_t bits_mask = (1 << -bits_correction) - 1; // 1, 3, 7 result = ((uncorrected_value + bits_mask) >> -bits_correction); } return result; } #ifdef USE_ARILUX_RF /*********************************************************************************************\ * Arilux LC11 Rf support stripped from RCSwitch library \*********************************************************************************************/ const uint32_t ARILUX_RF_TIME_AVOID_DUPLICATE = 1000; // Milliseconds const uint8_t ARILUX_RF_MAX_CHANGES = 51; // Pulses (sync + 2 x 24 bits) const uint32_t ARILUX_RF_SEPARATION_LIMIT = 4300; // Microseconds const uint32_t ARILUX_RF_RECEIVE_TOLERANCE = 60; // Percentage unsigned int arilux_rf_timings[ARILUX_RF_MAX_CHANGES]; unsigned long arilux_rf_received_value = 0; unsigned long arilux_rf_last_received_value = 0; unsigned long arilux_rf_last_time = 0; unsigned long arilux_rf_lasttime = 0; unsigned int arilux_rf_change_count = 0; unsigned int arilux_rf_repeat_count = 0; uint8_t arilux_rf_toggle = 0; #ifndef ARDUINO_ESP8266_RELEASE_2_3_0 // Fix core 2.5.x ISR not in IRAM Exception #ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves RF misses void AriluxRfInterrupt(void) ICACHE_RAM_ATTR; // As iram is tight and it works this way too #endif // USE_WS2812_DMA #endif // ARDUINO_ESP8266_RELEASE_2_3_0 void AriluxRfInterrupt(void) { unsigned long time = micros(); unsigned int duration = time - arilux_rf_lasttime; if (duration > ARILUX_RF_SEPARATION_LIMIT) { if (abs(duration - arilux_rf_timings[0]) < 200) { arilux_rf_repeat_count++; if (arilux_rf_repeat_count == 2) { unsigned long code = 0; const unsigned int delay = arilux_rf_timings[0] / 31; const unsigned int delayTolerance = delay * ARILUX_RF_RECEIVE_TOLERANCE / 100; for (unsigned int i = 1; i < arilux_rf_change_count -1; i += 2) { code <<= 1; if (abs(arilux_rf_timings[i] - (delay *3)) < delayTolerance && abs(arilux_rf_timings[i +1] - delay) < delayTolerance) { code |= 1; } } if (arilux_rf_change_count > 49) { // Need 1 sync bit and 24 data bits arilux_rf_received_value = code; } arilux_rf_repeat_count = 0; } } arilux_rf_change_count = 0; } if (arilux_rf_change_count >= ARILUX_RF_MAX_CHANGES) { arilux_rf_change_count = 0; arilux_rf_repeat_count = 0; } arilux_rf_timings[arilux_rf_change_count++] = duration; arilux_rf_lasttime = time; } void AriluxRfHandler(void) { unsigned long now = millis(); if (arilux_rf_received_value && !((arilux_rf_received_value == arilux_rf_last_received_value) && (now - arilux_rf_last_time < ARILUX_RF_TIME_AVOID_DUPLICATE))) { arilux_rf_last_received_value = arilux_rf_received_value; arilux_rf_last_time = now; uint16_t hostcode = arilux_rf_received_value >> 8 & 0xFFFF; if (Settings.rf_code[1][6] == Settings.rf_code[1][7]) { Settings.rf_code[1][6] = hostcode >> 8 & 0xFF; Settings.rf_code[1][7] = hostcode & 0xFF; } uint16_t stored_hostcode = Settings.rf_code[1][6] << 8 | Settings.rf_code[1][7]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_RFR D_HOST D_CODE " 0x%04X, " D_RECEIVED " 0x%06X"), stored_hostcode, arilux_rf_received_value); if (hostcode == stored_hostcode) { char command[33]; char value = '-'; command[0] = '\0'; uint8_t keycode = arilux_rf_received_value & 0xFF; switch (keycode) { case 1: // Power On case 3: // Power Off snprintf_P(command, sizeof(command), PSTR(D_CMND_POWER " %d"), (1 == keycode) ? 1 : 0); break; case 2: // Toggle arilux_rf_toggle++; arilux_rf_toggle &= 0x3; snprintf_P(command, sizeof(command), PSTR(D_CMND_COLOR " %d"), 200 + arilux_rf_toggle); break; case 4: // Speed + value = '+'; case 7: // Speed - snprintf_P(command, sizeof(command), PSTR(D_CMND_SPEED " %c"), value); break; case 5: // Scheme + value = '+'; case 8: // Scheme - snprintf_P(command, sizeof(command), PSTR(D_CMND_SCHEME " %c"), value); break; case 6: // Dimmer + value = '+'; case 9: // Dimmer - snprintf_P(command, sizeof(command), PSTR(D_CMND_DIMMER " %c"), value); break; default: { if ((keycode >= 10) && (keycode <= 21)) { snprintf_P(command, sizeof(command), PSTR(D_CMND_COLOR " %d"), keycode -9); } } } if (strlen(command)) { ExecuteCommand(command, SRC_LIGHT); } } } arilux_rf_received_value = 0; } void AriluxRfInit(void) { if ((pin[GPIO_ARIRFRCV] < 99) && (pin[GPIO_ARIRFSEL] < 99)) { if (Settings.last_module != Settings.module) { Settings.rf_code[1][6] = 0; Settings.rf_code[1][7] = 0; Settings.last_module = Settings.module; } arilux_rf_received_value = 0; digitalWrite(pin[GPIO_ARIRFSEL], 0); // Turn on RF attachInterrupt(pin[GPIO_ARIRFRCV], AriluxRfInterrupt, CHANGE); } } void AriluxRfDisable(void) { if ((pin[GPIO_ARIRFRCV] < 99) && (pin[GPIO_ARIRFSEL] < 99)) { detachInterrupt(pin[GPIO_ARIRFRCV]); digitalWrite(pin[GPIO_ARIRFSEL], 1); // Turn off RF } } #endif // USE_ARILUX_RF /*********************************************************************************************\ * Sonoff B1 and AiLight inspired by OpenLight https://github.com/icamgo/noduino-sdk \*********************************************************************************************/ extern "C" { void os_delay_us(unsigned int); } uint8_t light_pdi_pin; uint8_t light_pdcki_pin; void LightDiPulse(uint8_t times) { for (uint32_t i = 0; i < times; i++) { digitalWrite(light_pdi_pin, HIGH); digitalWrite(light_pdi_pin, LOW); } } void LightDckiPulse(uint8_t times) { for (uint32_t i = 0; i < times; i++) { digitalWrite(light_pdcki_pin, HIGH); digitalWrite(light_pdcki_pin, LOW); } } void LightMy92x1Write(uint8_t data) { for (uint32_t i = 0; i < 4; i++) { // Send 8bit Data digitalWrite(light_pdcki_pin, LOW); digitalWrite(light_pdi_pin, (data & 0x80)); digitalWrite(light_pdcki_pin, HIGH); data = data << 1; digitalWrite(light_pdi_pin, (data & 0x80)); digitalWrite(light_pdcki_pin, LOW); digitalWrite(light_pdi_pin, LOW); data = data << 1; } } void LightMy92x1Init(void) { uint8_t chips = 1; // 1 (AiLight) if (LT_RGBWC == light_type) { chips = 2; // 2 (Sonoff B1) } LightDckiPulse(chips * 32); // Clear all duty register os_delay_us(12); // TStop > 12us. // Send 12 DI pulse, after 6 pulse's falling edge store duty data, and 12 // pulse's rising edge convert to command mode. LightDiPulse(12); os_delay_us(12); // Delay >12us, begin send CMD data for (uint32_t n = 0; n < chips; n++) { // Send CMD data LightMy92x1Write(0x18); // ONE_SHOT_DISABLE, REACTION_FAST, BIT_WIDTH_8, FREQUENCY_DIVIDE_1, SCATTER_APDM } os_delay_us(12); // TStart > 12us. Delay 12 us. // Send 16 DI pulse, at 14 pulse's falling edge store CMD data, and // at 16 pulse's falling edge convert to duty mode. LightDiPulse(16); os_delay_us(12); // TStop > 12us. } void LightMy92x1Duty(uint8_t duty_r, uint8_t duty_g, uint8_t duty_b, uint8_t duty_w, uint8_t duty_c) { uint8_t channels[2] = { 4, 6 }; uint8_t didx = 0; // 0 (AiLight) if (LT_RGBWC == light_type) { didx = 1; // 1 (Sonoff B1) } uint8_t duty[2][6] = {{ duty_r, duty_g, duty_b, duty_w, 0, 0 }, // Definition for RGBW channels { duty_w, duty_c, 0, duty_g, duty_r, duty_b }}; // Definition for RGBWC channels os_delay_us(12); // TStop > 12us. for (uint32_t channel = 0; channel < channels[didx]; channel++) { LightMy92x1Write(duty[didx][channel]); // Send 8bit Data } os_delay_us(12); // TStart > 12us. Ready for send DI pulse. LightDiPulse(8); // Send 8 DI pulse. After 8 pulse falling edge, store old data. os_delay_us(12); // TStop > 12us. } #ifdef USE_SM16716 /*********************************************************************************************\ * SM16716 - Controlling RGB over a synchronous serial line * Copyright (C) 2019 Gabor Simon * * Source: https://community.home-assistant.io/t/cheap-uk-wifi-bulbs-with-tasmota-teardown-help-tywe3s/40508/27 * \*********************************************************************************************/ // Enable this for debug logging //#define D_LOG_SM16716 "SM16716: " uint8_t sm16716_pin_clk = 100; uint8_t sm16716_pin_dat = 100; uint8_t sm16716_pin_sel = 100; uint8_t sm16716_enabled = 0; void SM16716_SendBit(uint8_t v) { /* NOTE: * According to the spec sheet, max freq is 30 MHz, that is 16.6 ns per high/low half of the * clk square wave. That is less than the overhead of 'digitalWrite' at this clock rate, * so no additional delays are needed yet. */ digitalWrite(sm16716_pin_dat, (v != 0) ? HIGH : LOW); //delayMicroseconds(1); digitalWrite(sm16716_pin_clk, HIGH); //delayMicroseconds(1); digitalWrite(sm16716_pin_clk, LOW); } void SM16716_SendByte(uint8_t v) { uint8_t mask; for (mask = 0x80; mask; mask >>= 1) { SM16716_SendBit(v & mask); } } void SM16716_Update(uint8_t duty_r, uint8_t duty_g, uint8_t duty_b) { if (sm16716_pin_sel < 99) { uint8_t sm16716_should_enable = (duty_r | duty_g | duty_b); if (!sm16716_enabled && sm16716_should_enable) { #ifdef D_LOG_SM16716 AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_SM16716 "turning color on")); #endif // D_LOG_SM16716 sm16716_enabled = 1; digitalWrite(sm16716_pin_sel, HIGH); // in testing I found it takes a minimum of ~380us to wake up the chip // tested on a Merkury RGBW with an SM726EB delayMicroseconds(1000); SM16716_Init(); } else if (sm16716_enabled && !sm16716_should_enable) { #ifdef D_LOG_SM16716 AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_SM16716 "turning color off")); #endif // D_LOG_SM16716 sm16716_enabled = 0; digitalWrite(sm16716_pin_sel, LOW); } } #ifdef D_LOG_SM16716 AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_SM16716 "Update; rgb=%02x%02x%02x"), duty_r, duty_g, duty_b); #endif // D_LOG_SM16716 // send start bit SM16716_SendBit(1); SM16716_SendByte(duty_r); SM16716_SendByte(duty_g); SM16716_SendByte(duty_b); // send a 'do it' pulse // (if multiple chips are chained, each one processes the 1st '1rgb' 25-bit block and // passes on the rest, right until the one starting with 0) //SM16716_Init(); SM16716_SendBit(0); SM16716_SendByte(0); SM16716_SendByte(0); SM16716_SendByte(0); } bool SM16716_ModuleSelected(void) { sm16716_pin_clk = pin[GPIO_SM16716_CLK]; sm16716_pin_dat = pin[GPIO_SM16716_DAT]; sm16716_pin_sel = pin[GPIO_SM16716_SEL]; #ifdef D_LOG_SM16716 AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_SM16716 "ModuleSelected; clk_pin=%d, dat_pin=%d)"), sm16716_pin_clk, sm16716_pin_dat); #endif // D_LOG_SM16716 return (sm16716_pin_clk < 99) && (sm16716_pin_dat < 99); } void SM16716_Init(void) { for (uint32_t t_init = 0; t_init < 50; ++t_init) { SM16716_SendBit(0); } } #endif // ifdef USE_SM16716 /********************************************************************************************/ void LightInit(void) { uint8_t max_scheme = LS_MAX -1; light_device = devices_present; light_subtype = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); // Always 0 - LST_MAX (5) #if defined(USE_WS2812) && (USE_WS2812_CTYPE > NEO_3LED) if (LT_WS2812 == light_type) { light_subtype++; // from RGB to RGBW } #endif light_controller.setSubType(light_subtype); light_controller.loadSettings(); if (LST_SINGLE == light_subtype) { Settings.light_color[0] = 255; // One channel only supports Dimmer but needs max color } if (light_type < LT_PWM6) { // PWM for (uint32_t i = 0; i < light_type; i++) { Settings.pwm_value[i] = 0; // Disable direct PWM control if (pin[GPIO_PWM1 +i] < 99) { pinMode(pin[GPIO_PWM1 +i], OUTPUT); } } if (SONOFF_LED == my_module_type) { // Fix Sonoff Led instabilities if (!my_module.io[4]) { pinMode(4, OUTPUT); // Stop floating outputs digitalWrite(4, LOW); } if (!my_module.io[5]) { pinMode(5, OUTPUT); // Stop floating outputs digitalWrite(5, LOW); } if (!my_module.io[14]) { pinMode(14, OUTPUT); // Stop floating outputs digitalWrite(14, LOW); } } if (pin[GPIO_ARIRFRCV] < 99) { if (pin[GPIO_ARIRFSEL] < 99) { pinMode(pin[GPIO_ARIRFSEL], OUTPUT); digitalWrite(pin[GPIO_ARIRFSEL], 1); // Turn off RF } } } #ifdef USE_WS2812 // ************************************************************************ else if (LT_WS2812 == light_type) { Ws2812Init(); max_scheme = LS_MAX + WS2812_SCHEMES; } #endif // USE_WS2812 ************************************************************************ #ifdef USE_SM16716 else if (LT_SM16716 == light_type - light_subtype) { // init PWM for (uint32_t i = 0; i < light_subtype; i++) { Settings.pwm_value[i] = 0; // Disable direct PWM control if (pin[GPIO_PWM1 +i] < 99) { pinMode(pin[GPIO_PWM1 +i], OUTPUT); } } // init sm16716 pinMode(sm16716_pin_clk, OUTPUT); digitalWrite(sm16716_pin_clk, LOW); pinMode(sm16716_pin_dat, OUTPUT); digitalWrite(sm16716_pin_dat, LOW); if (sm16716_pin_sel < 99) { pinMode(sm16716_pin_sel, OUTPUT); digitalWrite(sm16716_pin_sel, LOW); // no need to call SM16716_Init here, it will be called after sel goes HIGH } else { // no sel pin means you have an 'always on' chip, so init right away SM16716_Init(); } } #endif // ifdef USE_SM16716 else { light_pdi_pin = pin[GPIO_DI]; light_pdcki_pin = pin[GPIO_DCKI]; pinMode(light_pdi_pin, OUTPUT); pinMode(light_pdcki_pin, OUTPUT); digitalWrite(light_pdi_pin, LOW); digitalWrite(light_pdcki_pin, LOW); LightMy92x1Init(); } if (light_subtype < LST_RGB) { max_scheme = LS_POWER; } if ((LS_WAKEUP == Settings.light_scheme) || (Settings.light_scheme > max_scheme)) { Settings.light_scheme = LS_POWER; } light_power = 0; light_update = 1; light_wakeup_active = 0; LightUpdateColorMapping(); } void LightUpdateColorMapping(void) { uint8_t param = Settings.param[P_RGB_REMAP] & 127; if (param > 119){ param = 0; } uint8_t tmp[] = {0,1,2,3,4}; light_color_remap[0] = tmp[param / 24]; for (uint32_t i = param / 24; i<4; ++i){ tmp[i] = tmp[i+1]; } param = param % 24; light_color_remap[1] = tmp[(param / 6)]; for (uint32_t i = param / 6; i<3; ++i){ tmp[i] = tmp[i+1]; } param = param % 6; light_color_remap[2] = tmp[(param / 2)]; for (uint32_t i = param / 2; i<2; ++i){ tmp[i] = tmp[i+1]; } param = param % 2; light_color_remap[3] = tmp[param]; light_color_remap[4] = tmp[1-param]; // do not allow independant RGV and WC colors bool ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128); light_controller.setCTRGBLinked(ct_rgb_linked); light_update = 1; //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%d colors: %d %d %d %d %d") ,Settings.param[P_RGB_REMAP], light_color_remap[0],light_color_remap[1],light_color_remap[2],light_color_remap[3],light_color_remap[4]); } void LightSetDimmer(uint8_t dimmer) { light_controller.changeDimmer(dimmer); } void LightSetColorTemp(uint16_t ct) { /* Color Temperature (https://developers.meethue.com/documentation/core-concepts) * * ct = 153 = 2000K = Warm = CCWW = 00FF * ct = 500 = 6500K = Cold = CCWW = FF00 */ // don't set CT if not supported if ((LST_COLDWARM != light_subtype) && (LST_RGBWC != light_subtype)) { return; } light_controller.changeCTB(ct, light_state.getBriCT()); } uint16_t LightGetColorTemp(void) { // don't calculate CT for unsupported devices if ((LST_COLDWARM != light_subtype) && (LST_RGBWC != light_subtype)) { return 0; } return (light_state.getColorMode() & LCM_CT) ? light_state.getCT() : 0; } void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value) { /* lo - below lo is green hi - above hi is red */ if (Settings.flag.light_signal) { uint16_t signal = changeUIntScale(value, lo, hi, 0, 255); // 0..255 // AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Light signal %d"), signal); light_controller.changeRGB(signal, 255 - signal, 0, true); // keep bri Settings.light_scheme = 0; if (0 == light_state.getBri()) { light_controller.changeBri(50); } } } // convert channels to string, use Option 17 to foce decimal, unless force_hex char* LightGetColor(char* scolor, boolean force_hex = false) { light_controller.calcLevels(); scolor[0] = '\0'; for (uint32_t i = 0; i < light_subtype; i++) { if (!force_hex && Settings.flag.decimal_text) { snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", light_current_color[i]); } else { snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%02X"), scolor, light_current_color[i]); } } return scolor; } void LightPowerOn(void) { if (light_state.getBri() && !(light_power)) { ExecuteCommandPower(light_device, POWER_ON, SRC_LIGHT); } } void LightState(uint8_t append) { char scolor[LIGHT_COLOR_SIZE]; char scommand[33]; if (append) { ResponseAppend_P(PSTR(",")); } else { Response_P(PSTR("{")); } GetPowerDevice(scommand, light_device, sizeof(scommand), Settings.flag.device_index_enable); ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_DIMMER "\":%d"), scommand, GetStateText(light_power), light_state.getDimmer()); if (light_subtype > LST_SINGLE) { ResponseAppend_P(PSTR(",\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor)); uint16_t hue; uint8_t sat, bri; light_state.getHSB(&hue, &sat, &bri); sat = changeUIntScale(sat, 0, 255, 0, 100); bri = changeUIntScale(bri, 0, 255, 0, 100); ResponseAppend_P(PSTR(",\"" D_CMND_HSBCOLOR "\":\"%d,%d,%d\""), hue,sat,bri); // Add status for each channel ResponseAppend_P(PSTR(",\"" D_CMND_CHANNEL "\":[" )); for (uint32_t i = 0; i < light_subtype; i++) { uint8_t channel_raw = light_current_color[i]; uint8_t channel = changeUIntScale(channel_raw,0,255,0,100); // if non null, force to be at least 1 if ((0 == channel) && (channel_raw > 0)) { channel = 1; } ResponseAppend_P(PSTR("%s%d" ), (i > 0 ? "," : ""), channel); } ResponseAppend_P(PSTR("]")); } if ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype)) { ResponseAppend_P(PSTR(",\"" D_CMND_COLORTEMPERATURE "\":%d"), light_state.getCT()); } if (append) { if (light_subtype >= LST_RGB) { ResponseAppend_P(PSTR(",\"" D_CMND_SCHEME "\":%d"), Settings.light_scheme); } if (LT_WS2812 == light_type) { ResponseAppend_P(PSTR(",\"" D_CMND_WIDTH "\":%d"), Settings.light_width); } ResponseAppend_P(PSTR(",\"" D_CMND_FADE "\":\"%s\",\"" D_CMND_SPEED "\":%d,\"" D_CMND_LEDTABLE "\":\"%s\""), GetStateText(Settings.light_fade), Settings.light_speed, GetStateText(Settings.light_correction)); } else { ResponseJsonEnd(); } } void LightPreparePower(void) { if (light_state.getBri() && !(light_power)) { if (!Settings.flag.not_power_linked) { ExecuteCommandPower(light_device, POWER_ON_NO_STATE, SRC_LIGHT); } } else if (!light_state.getBri() && light_power) { ExecuteCommandPower(light_device, POWER_OFF_NO_STATE, SRC_LIGHT); } #ifdef USE_DOMOTICZ DomoticzUpdatePowerState(light_device); #endif // USE_DOMOTICZ if (Settings.flag3.hass_tele_on_power) { MqttPublishTeleState(); } LightState(0); } void LightFade(void) { if (0 == Settings.light_fade) { for (uint32_t i = 0; i < light_subtype; i++) { light_new_color[i] = light_current_color[i]; } } else { uint8_t shift = Settings.light_speed; if (Settings.light_speed > 6) { shift = (strip_timer_counter % (Settings.light_speed -6)) ? 0 : 8; } if (shift) { for (uint32_t i = 0; i < light_subtype; i++) { if (light_new_color[i] != light_current_color[i]) { if (light_new_color[i] < light_current_color[i]) { light_new_color[i] += ((light_current_color[i] - light_new_color[i]) >> shift) +1; } if (light_new_color[i] > light_current_color[i]) { light_new_color[i] -= ((light_new_color[i] - light_current_color[i]) >> shift) +1; } } } } } } void LightWheel(uint8_t wheel_pos) { wheel_pos = 255 - wheel_pos; if (wheel_pos < 85) { light_entry_color[0] = 255 - wheel_pos * 3; light_entry_color[1] = 0; light_entry_color[2] = wheel_pos * 3; } else if (wheel_pos < 170) { wheel_pos -= 85; light_entry_color[0] = 0; light_entry_color[1] = wheel_pos * 3; light_entry_color[2] = 255 - wheel_pos * 3; } else { wheel_pos -= 170; light_entry_color[0] = wheel_pos * 3; light_entry_color[1] = 255 - wheel_pos * 3; light_entry_color[2] = 0; } light_entry_color[3] = 0; light_entry_color[4] = 0; float dimmer = 100 / (float)Settings.light_dimmer; for (uint32_t i = 0; i < LST_RGB; i++) { float temp = (float)light_entry_color[i] / dimmer + 0.5f; light_entry_color[i] = (uint8_t)temp; } } void LightCycleColor(int8_t direction) { if (strip_timer_counter % (Settings.light_speed * 2)) { return; } light_wheel += direction; LightWheel(light_wheel); memcpy(light_new_color, light_entry_color, sizeof(light_new_color)); } void LightRandomColor(void) { uint8_t light_update = 0; for (uint32_t i = 0; i < LST_RGB; i++) { if (light_new_color[i] != light_current_color[i]) { light_update = 1; } } if (!light_update) { light_wheel = random(255); LightWheel(light_wheel); memcpy(light_current_color, light_entry_color, sizeof(light_current_color)); } LightFade(); } void LightSetPower(void) { // light_power = XdrvMailbox.index; light_old_power = light_power; light_power = bitRead(XdrvMailbox.index, light_device -1); if (light_wakeup_active) { light_wakeup_active--; } if (light_power && !light_old_power) { light_update = 1; } LightAnimate(); } void LightAnimate(void) { uint8_t cur_col[LST_MAX]; uint16_t light_still_on = 0; strip_timer_counter++; if (!light_power) { // Power Off sleep = Settings.sleep; strip_timer_counter = 0; for (uint32_t i = 0; i < light_subtype; i++) { light_still_on += light_new_color[i]; } if (light_still_on && Settings.light_fade && (Settings.light_scheme < LS_MAX)) { uint8_t speed = Settings.light_speed; if (speed > 6) { speed = 6; } for (uint32_t i = 0; i < light_subtype; i++) { if (light_new_color[i] > 0) { light_new_color[i] -= (light_new_color[i] >> speed) +1; } } } else { for (uint32_t i = 0; i < light_subtype; i++) { light_new_color[i] = 0; } } } else { #ifdef PWM_LIGHTSCHEME0_IGNORE_SLEEP sleep = (LS_POWER == Settings.light_scheme) ? Settings.sleep : 0; // If no animation then use sleep as is #else sleep = 0; #endif // PWM_LIGHTSCHEME0_IGNORE_SLEEP switch (Settings.light_scheme) { case LS_POWER: light_controller.calcLevels(); LightFade(); break; case LS_WAKEUP: if (2 == light_wakeup_active) { light_wakeup_active = 1; for (uint32_t i = 0; i < light_subtype; i++) { light_new_color[i] = 0; } light_wakeup_counter = 0; light_wakeup_dimmer = 0; } light_wakeup_counter++; if (light_wakeup_counter > ((Settings.light_wakeup * STATES) / Settings.light_dimmer)) { light_wakeup_counter = 0; light_wakeup_dimmer++; if (light_wakeup_dimmer <= Settings.light_dimmer) { light_state.setDimmer(light_wakeup_dimmer); light_controller.calcLevels(); for (uint32_t i = 0; i < light_subtype; i++) { light_new_color[i] = light_current_color[i]; } } else { Response_P(PSTR("{\"" D_CMND_WAKEUP "\":\"" D_JSON_DONE "\"}")); MqttPublishPrefixTopic_P(TELE, PSTR(D_CMND_WAKEUP)); light_wakeup_active = 0; Settings.light_scheme = LS_POWER; } } break; case LS_CYCLEUP: LightCycleColor(1); break; case LS_CYCLEDN: LightCycleColor(-1); break; case LS_RANDOM: LightRandomColor(); break; #ifdef USE_WS2812 // ************************************************************************ default: if (LT_WS2812 == light_type) { Ws2812ShowScheme(Settings.light_scheme -LS_MAX); } #endif // USE_WS2812 ************************************************************************ } } if ((Settings.light_scheme < LS_MAX) || !light_power) { if (memcmp(light_last_color, light_new_color, light_subtype)) { light_update = 1; } if (light_update) { uint16_t cur_col_10bits[LST_MAX]; // 10 bits version of cur_col for PWM light_update = 0; // first set 8 and 10 bits channels for (uint32_t i = 0; i < LST_MAX; i++) { cur_col[i] = light_last_color[i] = light_new_color[i]; // Extend from 8 to 10 bits if no correction (in case no gamma correction is required) cur_col_10bits[i] = changeUIntScale(cur_col[i], 0, 255, 0, 1023); } if (PHILIPS == my_module_type) { // Xiaomi Philips bulbs follow a different scheme: uint8_t cold; // channel 1 is the color tone, mapped to cold channel (0..255) light_state.getCW(&cold, nullptr); cur_col[1] = cold; cur_col_10bits[1] = changeUIntScale(cur_col[1], 0, 255, 0, 1023); // now set channel 0 to overall brightness uint8_t pxBri = light_state.getBriCT(); // channel 0=intensity, channel1=temperature if (Settings.light_correction) { // gamma correction cur_col[0] = ledGamma(pxBri); cur_col_10bits[0] = ledGamma(pxBri, 10); // 10 bits gamma correction } else { cur_col[0] = pxBri; cur_col_10bits[0] = changeUIntScale(pxBri, 0, 255, 0, 1023); // no gamma, extend to 10 bits } } else { // PHILIPS != my_module_type // Apply gamma correction for 8 and 10 bits resolutions, if needed if (Settings.light_correction) { // First apply combined correction to the overall white power if ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype)) { uint8_t w_idx[2] = {0, 1}; // if LST_COLDWARM, channels 0 and 1 if (LST_RGBWC == light_subtype) { // if LST_RGBWC, channels 3 and 4 w_idx[0] = 3; w_idx[1] = 4; } uint16_t white_bri = cur_col[w_idx[0]] + cur_col[w_idx[1]]; // if sum of both channels is > 255, then channels are probablu uncorrelated if (white_bri <= 255) { // we calculate the gamma corrected sum of CW + WW uint16_t white_bri_10bits = ledGamma(white_bri, 10); uint8_t white_bri_8bits = ledGamma(white_bri); // then we split the total energy among the cold and warm leds cur_col_10bits[w_idx[0]] = changeUIntScale(cur_col[w_idx[0]], 0, white_bri, 0, white_bri_10bits); cur_col_10bits[w_idx[1]] = changeUIntScale(cur_col[w_idx[1]], 0, white_bri, 0, white_bri_10bits); cur_col[w_idx[0]] = changeUIntScale(cur_col[w_idx[0]], 0, white_bri, 0, white_bri_8bits); cur_col[w_idx[1]] = changeUIntScale(cur_col[w_idx[1]], 0, white_bri, 0, white_bri_8bits); } else { cur_col_10bits[w_idx[0]] = ledGamma(cur_col[w_idx[0]], 10); cur_col_10bits[w_idx[1]] = ledGamma(cur_col[w_idx[1]], 10); cur_col[w_idx[0]] = ledGamma(cur_col[w_idx[0]]); cur_col[w_idx[1]] = ledGamma(cur_col[w_idx[1]]); } } // then apply gamma correction to RGB channels if (LST_RGB <= light_subtype) { for (uint32_t i = 0; i < 3; i++) { cur_col_10bits[i] = ledGamma(cur_col[i], 10); cur_col[i] = ledGamma(cur_col[i]); } } // If RGBW or Single channel, also adjust White channel if (LST_COLDWARM != light_subtype) { cur_col_10bits[3] = ledGamma(cur_col[3], 10); cur_col[3] = ledGamma(cur_col[3]); } } // Now see if we need to mix RGB and True White // Valid only for LST_RGBW, LST_RGBWC, rgbwwTable[4] is zero, and white is zero (see doc) if ((LST_RGBW <= light_subtype) && (0 == Settings.rgbwwTable[4]) && (0 == cur_col[3]+cur_col[4])) { uint32_t min_rgb_10 = min3(cur_col_10bits[0], cur_col_10bits[1], cur_col_10bits[2]); uint8_t min_rgb = min3(cur_col[0], cur_col[1], cur_col[2]); for (uint32_t i=0; i<3; i++) { // substract white and adjust according to rgbwwTable cur_col_10bits[i] = changeUIntScale(cur_col_10bits[i] - min_rgb_10, 0, 255, 0, Settings.rgbwwTable[i]); cur_col[i] = changeUIntScale(cur_col[i] - min_rgb, 0, 255, 0, Settings.rgbwwTable[i]); } // compute the adjusted white levels for 10 and 8 bits uint32_t white_10 = changeUIntScale(min_rgb_10, 0, 255, 0, Settings.rgbwwTable[3]); // set white power down corrected with rgbwwTable[3] uint32_t white = changeUIntScale(min_rgb, 0, 255, 0, Settings.rgbwwTable[3]); // set white power down corrected with rgbwwTable[3] if (LST_RGBW == light_subtype) { // we simply set the white channel cur_col_10bits[3] = white_10; cur_col[3] = white; } else { // LST_RGBWC // we distribute white between cold and warm according to CT value uint32_t ct = light_state.getCT(); cur_col_10bits[4] = changeUIntScale(ct, 153, 500, 0, white_10); cur_col_10bits[3] = white_10 - cur_col_10bits[4]; cur_col[4] = changeUIntScale(ct, 153, 500, 0, white); cur_col[3] = white - cur_col[4]; } } } // final adjusments for PMW, post-gamma correction for (uint32_t i = 0; i < LST_MAX; i++) { #if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2) // Fix unwanted blinking and PWM watchdog errors for values close to pwm_range (H801, Arilux and BN-SZ01) // but keep value 1023 if full range (PWM will be deactivated in this case) if ((cur_col_10bits[i] > 1008) && (cur_col_10bits[i] < 1023)) { cur_col_10bits[i] = 1008; } #endif // scale from 0..1023 to 0..pwm_range, but keep any non-zero value to at least 1 cur_col_10bits[i] = (cur_col_10bits[i] > 0) ? changeUIntScale(cur_col_10bits[i], 1, 1023, 1, Settings.pwm_range) : 0; } // apply port remapping on both 8 bits and 10 bits versions uint8_t orig_col[LST_MAX]; uint16_t orig_col_10bits[LST_MAX]; memcpy(orig_col, cur_col, sizeof(orig_col)); memcpy(orig_col_10bits, cur_col_10bits, sizeof(orig_col_10bits)); for (uint32_t i = 0; i < LST_MAX; i++) { cur_col[i] = orig_col[light_color_remap[i]]; cur_col_10bits[i] = orig_col_10bits[light_color_remap[i]]; } // now apply the actual PWM values, adjusted and remapped 10-bits range if (light_type < LT_PWM6) { // only for direct PWM lights, not for Tuya, Armtronix... for (uint32_t i = 0; i < light_subtype; i++) { if (pin[GPIO_PWM1 +i] < 99) { //AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "Cur_Col%d 10 bits %d, Pwm%d %d"), i, cur_col_10bits[i], i+1, cur_col[i]); analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - cur_col_10bits[i] : cur_col_10bits[i]); } } } char *tmp_data = XdrvMailbox.data; uint16_t tmp_data_len = XdrvMailbox.data_len; XdrvMailbox.data = (char*)cur_col; XdrvMailbox.data_len = sizeof(cur_col); if (XdrvCall(FUNC_SET_CHANNELS)) { // Serviced } #ifdef USE_WS2812 // ************************************************************************ else if (LT_WS2812 == light_type) { Ws2812SetColor(0, cur_col[0], cur_col[1], cur_col[2], cur_col[3]); } #endif // USE_ES2812 ************************************************************************ #ifdef USE_SM16716 else if (LT_SM16716 == light_type - light_subtype) { // handle any PWM pins, skipping the first 3 values for sm16716 for (uint32_t i = 3; i < light_subtype; i++) { if (pin[GPIO_PWM1 +i-3] < 99) { //AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "Cur_Col%d 10 bits %d, Pwm%d %d"), i, cur_col[i], i+1, curcol); analogWrite(pin[GPIO_PWM1 +i-3], bitRead(pwm_inverted, i-3) ? Settings.pwm_range - cur_col_10bits[i] : cur_col_10bits[i]); } } // handle sm16716 update SM16716_Update(cur_col[0], cur_col[1], cur_col[2]); } #endif // ifdef USE_SM16716 else if (light_type > LT_WS2812) { //AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION "Cur_Col %d,%d,%d,%d,%d"), cur_col[0], cur_col[1], cur_col[2], cur_col[3], cur_col[4]); LightMy92x1Duty(cur_col[0], cur_col[1], cur_col[2], cur_col[3], cur_col[4]); } XdrvMailbox.data = tmp_data; XdrvMailbox.data_len = tmp_data_len; } } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ bool LightColorEntry(char *buffer, uint32_t buffer_length) { char scolor[10]; char *p; char *str; uint32_t entry_type = 0; // Invalid uint8_t value = light_fixed_color_index; if (buffer[0] == '#') { // Optional hexadecimal entry buffer++; buffer_length--; } if (light_subtype >= LST_RGB) { char option = (1 == buffer_length) ? buffer[0] : '\0'; if (('+' == option) && (light_fixed_color_index < MAX_FIXED_COLOR)) { value++; } else if (('-' == option) && (light_fixed_color_index > 1)) { value--; } else { value = atoi(buffer); } } memset(&light_entry_color, 0x00, sizeof(light_entry_color)); if (strstr(buffer, ",") != nullptr) { // Decimal entry int8_t i = 0; for (str = strtok_r(buffer, ",", &p); str && i < 6; str = strtok_r(nullptr, ",", &p)) { if (i < LST_MAX) { light_entry_color[i++] = atoi(str); } } entry_type = 2; // Decimal } else if (((2 * light_subtype) == buffer_length) || (buffer_length > 3)) { // Hexadecimal entry for (uint32_t i = 0; i < tmin((uint)(buffer_length / 2), sizeof(light_entry_color)); i++) { strlcpy(scolor, buffer + (i *2), 3); light_entry_color[i] = (uint8_t)strtol(scolor, &p, 16); } entry_type = 1; // Hexadecimal } else if ((light_subtype >= LST_RGB) && (value > 0) && (value <= MAX_FIXED_COLOR)) { light_fixed_color_index = value; memcpy_P(&light_entry_color, &kFixedColor[value -1], 3); entry_type = 1; // Hexadecimal } else if ((value > 199) && (value <= 199 + MAX_FIXED_COLD_WARM)) { if (LST_RGBW == light_subtype) { memcpy_P(&light_entry_color[3], &kFixedWhite[value -200], 1); entry_type = 1; // Hexadecimal } else if (LST_COLDWARM == light_subtype) { memcpy_P(&light_entry_color, &kFixedColdWarm[value -200], 2); entry_type = 1; // Hexadecimal } else if (LST_RGBWC == light_subtype) { memcpy_P(&light_entry_color[3], &kFixedColdWarm[value -200], 2); entry_type = 1; // Hexadecimal } } if (entry_type) { Settings.flag.decimal_text = entry_type -1; } return (entry_type); } /********************************************************************************************/ void CmndSupportColor(void) { bool valid_entry = false; bool coldim = false; if (XdrvMailbox.data_len > 0) { valid_entry = LightColorEntry(XdrvMailbox.data, XdrvMailbox.data_len); if (valid_entry) { if (XdrvMailbox.index <= 2) { // Color(1), 2 uint32_t old_bri = light_state.getBri(); // change all channels to specified values light_controller.changeChannels(light_entry_color); if (2 == XdrvMailbox.index) { // If Color2, set back old brightness light_controller.changeBri(old_bri); } Settings.light_scheme = 0; coldim = true; } else { // Color3, 4, 5 and 6 for (uint32_t i = 0; i < LST_RGB; i++) { Settings.ws_color[XdrvMailbox.index -3][i] = light_entry_color[i]; } } } } char scolor[LIGHT_COLOR_SIZE]; if (!valid_entry && (XdrvMailbox.index <= 2)) { Response_P(S_JSON_COMMAND_SVALUE, XdrvMailbox.command, LightGetColor(scolor)); } if (XdrvMailbox.index >= 3) { scolor[0] = '\0'; for (uint32_t i = 0; i < LST_RGB; i++) { if (Settings.flag.decimal_text) { snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.ws_color[XdrvMailbox.index -3][i]); } else { snprintf_P(scolor, sizeof(scolor), PSTR("%s%02X"), scolor, Settings.ws_color[XdrvMailbox.index -3][i]); } } Response_P(S_JSON_COMMAND_INDEX_SVALUE, XdrvMailbox.command, XdrvMailbox.index, scolor); } if (coldim) { LightPreparePower(); } } void CmndColor(void) { if ((light_subtype > LST_SINGLE) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 6)) { CmndSupportColor(); } } void CmndWhite(void) { if ((light_subtype == LST_RGBW) && (XdrvMailbox.index == 1)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { uint32_t whiteBri = changeUIntScale(XdrvMailbox.payload,0,100,0,255); char scolor[LIGHT_COLOR_SIZE]; snprintf_P(scolor, sizeof(scolor), PSTR("0,0,0,%d"), whiteBri); light_state.setBri(whiteBri); // save target Bri, will be confirmed below XdrvMailbox.data = scolor; XdrvMailbox.data_len = strlen(scolor); } else { XdrvMailbox.data_len = 0; } CmndSupportColor(); } } void CmndChannel(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= light_subtype )) { bool coldim = false; // Set "Channel" directly - this allows Color and Direct PWM control to coexist if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { light_current_color[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload,0,100,0,255); // if we change channels 1,2,3 then turn off CT mode (unless non-linked) if ((XdrvMailbox.index <= 3) && (light_controller.isCTRGBLinked())) { light_current_color[3] = light_current_color[4] = 0; } light_controller.changeChannels(light_current_color); coldim = true; } Response_P(S_JSON_COMMAND_INDEX_NVALUE, XdrvMailbox.command, XdrvMailbox.index, light_current_color[XdrvMailbox.index -1] * 100 / 255); if (coldim) { LightPreparePower(); } } } void CmndHsbColor(void) { if (light_subtype >= LST_RGB) { bool validHSB = (XdrvMailbox.data_len > 0); if (validHSB) { uint16_t HSB[3]; if (strstr(XdrvMailbox.data, ",") != nullptr) { // Command with 3 comma separated parameters, Hue (0 1) && (XdrvMailbox.index < 4)) { HSB[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload,0,100,0,255); } else { validHSB = false; } } if (validHSB) { light_controller.changeHSB(HSB[0], HSB[1], HSB[2]); LightPreparePower(); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_COLOR)); } } else { LightState(0); } } } #ifdef USE_WS2812 // *********************************************************************** void CmndLed(void) { if ((LT_WS2812 == light_type) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= Settings.light_pixels)) { if (XdrvMailbox.data_len > 0) { char *p; uint16_t idx = XdrvMailbox.index; Ws2812ForceSuspend(); for (char *color = strtok_r(XdrvMailbox.data, " ", &p); color; color = strtok_r(nullptr, " ", &p)) { if (LightColorEntry(color, strlen(color))) { Ws2812SetColor(idx, light_entry_color[0], light_entry_color[1], light_entry_color[2], light_entry_color[3]); idx++; if (idx > Settings.light_pixels) { break; } } else { break; } } Ws2812ForceUpdate(); } char scolor[LIGHT_COLOR_SIZE]; Response_P(S_JSON_COMMAND_INDEX_SVALUE, XdrvMailbox.command, XdrvMailbox.index, Ws2812GetColor(XdrvMailbox.index, scolor)); } } void CmndPixels(void) { if (LT_WS2812 == light_type) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= WS2812_MAX_LEDS)) { Settings.light_pixels = XdrvMailbox.payload; Settings.light_rotation = 0; Ws2812Clear(); light_update = 1; } Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_pixels); } } void CmndRotation(void) { if (LT_WS2812 == light_type) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < Settings.light_pixels)) { Settings.light_rotation = XdrvMailbox.payload; } Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_rotation); } } void CmndWidth(void) { if ((LT_WS2812 == light_type) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 4)) { if (1 == XdrvMailbox.index) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 4)) { Settings.light_width = XdrvMailbox.payload; } Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_width); } else { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32)) { Settings.ws_width[XdrvMailbox.index -2] = XdrvMailbox.payload; } Response_P(S_JSON_COMMAND_INDEX_NVALUE, XdrvMailbox.command, XdrvMailbox.index, Settings.ws_width[XdrvMailbox.index -2]); } } } #endif // USE_WS2812 ************************************************************************ void CmndScheme(void) { if (light_subtype >= LST_RGB) { uint32_t max_scheme = (LT_WS2812 == light_type) ? LS_MAX + WS2812_SCHEMES : LS_MAX -1; if (1 == XdrvMailbox.data_len) { if (('+' == XdrvMailbox.data[0]) && (Settings.light_scheme < max_scheme)) { XdrvMailbox.payload = Settings.light_scheme + ((0 == Settings.light_scheme) ? 2 : 1); // Skip wakeup } else if (('-' == XdrvMailbox.data[0]) && (Settings.light_scheme > 0)) { XdrvMailbox.payload = Settings.light_scheme - ((2 == Settings.light_scheme) ? 2 : 1); // Skip wakeup } } if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_scheme)) { Settings.light_scheme = XdrvMailbox.payload; if (LS_WAKEUP == Settings.light_scheme) { light_wakeup_active = 3; } LightPowerOn(); strip_timer_counter = 0; // Publish state message for Hass if (Settings.flag3.hass_tele_on_power) { MqttPublishTeleState(); } } Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_scheme); } } void CmndWakeup(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { Settings.light_dimmer = XdrvMailbox.payload; } light_wakeup_active = 3; Settings.light_scheme = LS_WAKEUP; LightPowerOn(); Response_P(S_JSON_COMMAND_SVALUE, XdrvMailbox.command, D_JSON_STARTED); } void CmndColorTemperature(void) { if ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype)) { // ColorTemp uint32_t ct = light_state.getCT(); if (1 == XdrvMailbox.data_len) { if ('+' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (ct > (500-34)) ? 500 : ct + 34; } else if ('-' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (ct < (153+34)) ? 153 : ct - 34; } } if ((XdrvMailbox.payload >= 153) && (XdrvMailbox.payload <= 500)) { // https://developers.meethue.com/documentation/core-concepts light_controller.changeCTB(XdrvMailbox.payload, light_state.getBri()); LightPreparePower(); } else { Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, ct); } } } void CmndDimmer(void) { uint32_t dimmer = light_state.getDimmer(); if (1 == XdrvMailbox.data_len) { if ('+' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (dimmer > 89) ? 100 : dimmer + 10; } else if ('-' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (dimmer < 11) ? 1 : dimmer - 10; } } if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { light_controller.changeDimmer(XdrvMailbox.payload); light_update = 1; LightPreparePower(); } else { Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_dimmer); } } void CmndLedTable(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 2)) { switch (XdrvMailbox.payload) { case 0: // Off case 1: // On Settings.light_correction = XdrvMailbox.payload; break; case 2: // Toggle Settings.light_correction ^= 1; break; } light_update = 1; } Response_P(S_JSON_COMMAND_SVALUE, XdrvMailbox.command, GetStateText(Settings.light_correction)); } void CmndRgbwwTable(void) { if ((XdrvMailbox.data_len > 0)) { if (strstr(XdrvMailbox.data, ",") != nullptr) { // Command with up to 5 comma separated parameters for (uint32_t i = 0; i < LST_RGBWC; i++) { char *substr; if (0 == i) { substr = strtok(XdrvMailbox.data, ","); } else { substr = strtok(nullptr, ","); } if (substr != nullptr) { Settings.rgbwwTable[i] = atoi(substr); } } } light_update = 1; } char scolor[LIGHT_COLOR_SIZE]; scolor[0] = '\0'; for (uint32_t i = 0; i < LST_RGBWC; i++) { snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.rgbwwTable[i]); } Response_P(S_JSON_COMMAND_INDEX_SVALUE, XdrvMailbox.command, XdrvMailbox.index, scolor); } void CmndFade(void) { switch (XdrvMailbox.payload) { case 0: // Off case 1: // On Settings.light_fade = XdrvMailbox.payload; break; case 2: // Toggle Settings.light_fade ^= 1; break; } Response_P(S_JSON_COMMAND_SVALUE, XdrvMailbox.command, GetStateText(Settings.light_fade)); } void CmndSpeed(void) { // 1 - fast, 20 - very slow if (1 == XdrvMailbox.data_len) { if (('+' == XdrvMailbox.data[0]) && (Settings.light_speed > 1)) { XdrvMailbox.payload = Settings.light_speed -1; } else if (('-' == XdrvMailbox.data[0]) && (Settings.light_speed < STATES)) { XdrvMailbox.payload = Settings.light_speed +1; } } if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= STATES)) { Settings.light_speed = XdrvMailbox.payload; } Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_speed); } void CmndWakeupDuration(void) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3001)) { Settings.light_wakeup = XdrvMailbox.payload; light_wakeup_active = 0; } Response_P(S_JSON_COMMAND_NVALUE, XdrvMailbox.command, Settings.light_wakeup); } void CmndUndocA(void) { // Theos legacy status char scolor[LIGHT_COLOR_SIZE]; LightGetColor(scolor, true); // force hex whatever Option 17 scolor[6] = '\0'; // RGB only Response_P(PSTR("%s,%d,%d,%d,%d,%d"), scolor, Settings.light_fade, Settings.light_correction, Settings.light_scheme, Settings.light_speed, Settings.light_width); MqttPublishPrefixTopic_P(STAT, XdrvMailbox.topic); mqtt_data[0] = '\0'; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv04(uint8_t function) { bool result = false; if (light_type) { switch (function) { case FUNC_PRE_INIT: LightInit(); break; case FUNC_EVERY_50_MSECOND: LightAnimate(); #ifdef USE_ARILUX_RF if (pin[GPIO_ARIRFRCV] < 99) { AriluxRfHandler(); } #endif // USE_ARILUX_RF break; #ifdef USE_ARILUX_RF case FUNC_EVERY_SECOND: if (10 == uptime) { AriluxRfInit(); } // Needs rest before enabling RF interrupts break; #endif // USE_ARILUX_RF case FUNC_SET_POWER: LightSetPower(); break; case FUNC_COMMAND: result = DecodeCommand(kLightCommands, LightCommand); break; } } return result; } #endif // USE_LIGHT