/* xsns_62_MI_HM10.ino - MI-BLE-sensors via HM-10 support for Tasmota Copyright (C) 2020 Christian Baars and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -------------------------------------------------------------------------------------------- Version yyyymmdd Action Description -------------------------------------------------------------------------------------------- 0.9.4.1 20200807 added - add ATC, some optimizations and a bit more error handling --- 0.9.4.0 20200807 added - multiple backports from the HM10-driver (NLIGHT,MJYD2S,YEERC,MHOC401,MHOC303), fixing Flora values, adding realtime-bridge, better battery for LYWSD03 and MHOC401 --- 0.9.3.1 20200412 added - clean ups, code shrink, battery bugfix --- 0.9.3.0 20200322 added - multi page web view, command HM10PAGE, polling for MJ_HT_V1, more stable readings, internal refactoring --- 0.9.2.0 20200317 added - MiBeacon-support, add Flora, MJ_HT_V1 and CGD1, add dew point, add AUTO(-scan), RULES-message --- 0.9.1.0 20200209 added - LYWSD02-support, including setting the time --- 0.9.0.0 20200130 started - initial development by Christian Baars (support LYWSD03 only) forked - from arendst/tasmota - https://github.com/arendst/Tasmota */ #ifdef ESP8266 // ESP8266 only. Use define USE_MI_ESP32 for ESP32 support #ifdef USE_HM10 #define XSNS_62 62 #include #include TasmotaSerial *HM10Serial; #define HM10_BAUDRATE 115200 // default with FW>700 is 115200 #define HM10_MAX_TASK_NUMBER 12 uint8_t HM10_TASK_LIST[HM10_MAX_TASK_NUMBER+1][2]; // first value: kind of task - second value: delay in x * 100ms #define HM10_MAX_RX_BUF 384 struct { uint8_t current_task_delay; // number of 100ms-cycles uint8_t last_command; uint16_t perPage = 4; uint16_t firmware; uint32_t period; // set manually in addition to TELE-period, is set to TELE-period after start uint32_t serialSpeed; union { uint32_t time; uint8_t timebuf[4]; }; uint16_t autoScanInterval; struct { uint32_t awaiting:8; uint32_t init:1; uint32_t pending_task:1; uint32_t connected:1; uint32_t subscribed:1; uint32_t autoScan:1; uint32_t shallTriggerTele:1; uint32_t triggeredTele:1; } mode; struct { uint8_t sensor; // points to to the number 0...255 // TODO: more to come } state; struct { uint32_t allwaysAggregate:1; uint32_t showRSSI:1; uint32_t ignoreBogusBattery:1; uint32_t noSummary:1; uint32_t minimalSummary:1; uint32_t noRealTime:1; } option; char *rxBuffer; } HM10; #pragma pack(1) // byte-aligned structures to read the sensor data struct LYWSD0x_HT_t{ uint16_t temp; uint8_t hum; uint16_t volt; }; struct CGD1_HT_t{ uint8_t spare; uint16_t temp; uint16_t hum; }; struct Flora_TLMF_t{ uint16_t temp; uint8_t spare; uint32_t lux; uint8_t moist; uint16_t fert; uint32_t ID; }; // temperature, lux, moisture, fertility struct mi_beacon_t{ uint16_t frame; uint16_t productID; uint8_t counter; uint8_t MAC[6]; uint8_t spare; uint8_t type; uint8_t ten; uint8_t size; union { struct{ //0d uint16_t temp; uint16_t hum; }HT; uint8_t bat; //0a uint16_t temp; //04 uint16_t hum; //06 uint32_t lux; //07 uint8_t moist; //08 uint16_t fert; //09 uint32_t NMT; //17 struct{ //01 uint16_t num; uint8_t longPress; }Btn; }; uint8_t padding[12]; }; struct ATCPacket_t{ uint8_t MAC[6]; int16_t temp; //sadly this is in wrong endianess uint8_t hum; uint8_t batPer; uint16_t batMV; uint8_t frameCnt; }; #pragma pack(0) struct mi_sensor_t{ uint8_t type; //Flora = 1; MI-HT_V1=2; LYWSD02=3; LYWSD03=4; CGG1=5; CGD1=6 uint8_t lastCnt; //device generated counter of the packet uint8_t shallSendMQTT; uint8_t showedUp; uint8_t MAC[6]; union { struct { uint32_t temp:1; uint32_t hum:1; uint32_t tempHum:1; //every hum sensor has temp too, easier to use Tasmota dew point functions uint32_t lux:1; uint32_t moist:1; uint32_t fert:1; uint32_t bat:1; uint32_t NMT:1; uint32_t PIR:1; uint32_t Btn:1; }; uint32_t raw; } feature; union { struct { uint32_t temp:1; uint32_t hum:1; uint32_t tempHum:1; //can be combined from the sensor uint32_t lux:1; uint32_t moist:1; uint32_t fert:1; uint32_t bat:1; uint32_t NMT:1; uint32_t motion:1; uint32_t noMotion:1; uint32_t Btn:1; }; uint32_t raw; } eventType; int rssi; uint32_t lastTime; uint32_t lux; float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx union { struct { uint8_t moisture; uint16_t fertility; char firmware[6]; // actually only for FLORA but hopefully we can add for more devices }; // Flora struct { float hum; }; // MJ_HT_V1, LYWSD0x struct { uint16_t events; //"alarms" since boot uint32_t NMT; // no motion time in seconds for the MJYD2S }; uint16_t Btn; }; union { uint8_t bat; // many values seem to be hard-coded garbage (LYWSD0x, GCD1) }; }; std::vector MIBLEsensors; /*********************************************************************************************\ * constants \*********************************************************************************************/ #define D_CMND_HM10 "HM10" const char S_JSON_HM10_COMMAND_NVALUE[] PROGMEM = "{\"" D_CMND_HM10 "%s\":%d}"; const char S_JSON_HM10_COMMAND[] PROGMEM = "{\"" D_CMND_HM10 "%s%s\"}"; const char kHM10_Commands[] PROGMEM = "Scan|AT|Period|Baud|Time|Auto|Page"; #define FLORA 1 #define MJ_HT_V1 2 #define LYWSD02 3 #define LYWSD03MMC 4 #define CGG1 5 #define CGD1 6 #define NLIGHT 7 #define MJYD2S 8 #define YEERC 9 #define MHOC401 10 #define MHOC303 11 #define ATC 12 #define HM10_TYPES 12 //count this manually const uint16_t kHM10SlaveID[HM10_TYPES]={ 0x0098, // Flora 0x01aa, // MJ_HT_V1 0x045b, // LYWSD02 0x055b, // LYWSD03 0x0347, // CGG1 0x0576, // CGD1 0x03dd, // NLIGHT 0x07f6, // MJYD2S 0x0153, // yee-rc 0x0387, // MHO-C401 0x06d3, // MHO-C303 0x0a1c // ATC -> this is a fake ID }; const char kHM10DeviceType1[] PROGMEM = "Flora"; const char kHM10DeviceType2[] PROGMEM = "MJ_HT_V1"; const char kHM10DeviceType3[] PROGMEM = "LYWSD02"; const char kHM10DeviceType4[] PROGMEM = "LYWSD03"; const char kHM10DeviceType5[] PROGMEM = "CGG1"; const char kHM10DeviceType6[] PROGMEM = "CGD1"; const char kHM10DeviceType7[] PROGMEM = "NLIGHT"; const char kHM10DeviceType8[] PROGMEM = "MJYD2S"; const char kHM10DeviceType9[] PROGMEM = "YEERC"; const char kHM10DeviceType10[] PROGMEM ="MHOC401"; const char kHM10DeviceType11[] PROGMEM ="MHOC303"; const char kHM10DeviceType12[] PROGMEM ="ATC"; const char * kHM10DeviceType[] PROGMEM = {kHM10DeviceType1,kHM10DeviceType2,kHM10DeviceType3,kHM10DeviceType4,kHM10DeviceType5,kHM10DeviceType6,kHM10DeviceType7,kHM10DeviceType8,kHM10DeviceType9,kHM10DeviceType10,kHM10DeviceType11,kHM10DeviceType12}; /*********************************************************************************************\ * enumerations \*********************************************************************************************/ enum HM10_Commands { // commands useable in console or rules CMND_HM10_DISC_SCAN, // re-scan for sensors CMND_HM10_AT, // send AT-command for debugging and special configuration CMND_HM10_PERIOD, // set period like TELE-period in seconds between read-cycles CMND_HM10_BAUD, // serial speed of ESP8266 (<-> HM10), does not change baud rate of HM10 CMND_HM10_TIME, // set LYWSD02-Time from ESP8266-time CMND_HM10_AUTO, // do discovery scans permanently to receive MiBeacons in seconds between read-cycles CMND_HM10_PAGE // sensor entries per web page, which will be shown alternated }; enum HM10_awaitData: uint8_t { none = 0, tempHumLY = 1, TLMF = 2, bat = 3, tempHumCGD1 = 4, discScan = 5, tempHumMJ = 6 }; /*********************************************************************************************\ * Task codes defines \*********************************************************************************************/ #define TASK_HM10_NOTASK 0 // nothing to be done #define TASK_HM10_ROLE1 1 // change role to 1 #define TASK_HM10_IMME1 2 // change imme to 1 #define TASK_HM10_RENEW 3 // device factory setting #define TASK_HM10_RESET 4 // device reset #define TASK_HM10_DISC 5 // device discovery scan: AT+DISA? #define TASK_HM10_CONN 6 // connect to given MAC #define TASK_HM10_VERSION 7 // query FW version #define TASK_HM10_NAME 8 // query device name #define TASK_HM10_FEEDBACK 9 // get device response #define TASK_HM10_DISCONN 10 // disconnect #define TASK_HM10_SUB_L3 11 // subscribe to service handle 37 #define TASK_HM10_SCAN9 13 // longest discovery scan possible #define TASK_HM10_UN_L3 14 // unsubscribe service handle 37 #define TASK_HM10_READ_BT_L3 16 // read from handle 3A -> Battery #define TASK_HM10_SUB_L2 17 // subscribe to service handle 3C #define TASK_HM10_UN_L2 18 // unsubscribe service handle 3C #define TASK_HM10_READ_BT_L2 19 // read from handle 43 -> Battery #define TASK_HM10_TIME_L2 20 // set time of LYWSD02 to system time #define TASK_HM10_SHOW0 21 // set verbositiy to minimum #define TASK_HM10_READ_BF_FL 22 // read battery and firmware from flower care #define TASK_HM10_CALL_TLMF_FL 23 // write 0xa01f to handle 0x33 to init sensor readings #define TASK_HM10_READ_TLMF_FL 24 // read temp,lux,moist and fert from flower care #define TASK_HM10_SUB_HT_CGD1 25 // subscribe to service handle 4b #define TASK_HM10_UN_HT_CGD1 26 // unsubscribe service handle 4b #define TASK_HM10_READ_B_CGD1 27 // read service handle 11 #define TASK_HM10_READ_B_MJ 29 // read service handle 18 #define TASK_HM10_SUB_HT_MJ 30 // subscribe to service handle 0f #define TASK_HM10_STATUS_EVENT 32 // process status for RULES #define TASK_HM10_DONE 99 // used, if there was a task in the slot or just to wait /*********************************************************************************************\ * Helper functions \*********************************************************************************************/ void HM10_Launchtask(uint8_t task, uint8_t slot, uint8_t delay){ HM10_TASK_LIST[slot][0] = task; HM10_TASK_LIST[slot][1] = delay; HM10_TASK_LIST[slot+1][0] = TASK_HM10_NOTASK; // the tasks must always be launched in ascending order!! HM10.current_task_delay = HM10_TASK_LIST[0][1]; } void HM10_TaskReplaceInSlot(uint8_t task, uint8_t slot){ HM10.last_command = HM10_TASK_LIST[slot][0]; // save command HM10_TASK_LIST[slot][0] = task; } void HM10_ReverseMAC(uint8_t _mac[]){ uint8_t _reversedMAC[6]; for (uint8_t i=0; i<6; i++){ _reversedMAC[5-i] = _mac[i]; } memcpy(_mac,_reversedMAC, sizeof(_reversedMAC)); } /*********************************************************************************************\ * chained tasks \*********************************************************************************************/ void HM10_Reset(void) { HM10_Launchtask(TASK_HM10_DISCONN,0,1); // disconnect HM10_Launchtask(TASK_HM10_ROLE1,1,1); // set role to 1 HM10_Launchtask(TASK_HM10_IMME1,2,1); // set imme to 1 HM10_Launchtask(TASK_HM10_RESET,3,1); // reset Device HM10_Launchtask(TASK_HM10_VERSION,4,10); // read SW Version HM10_Launchtask(TASK_HM10_SCAN9,5,2); // scan time 9 seconds HM10_Launchtask(TASK_HM10_DISC,6,2); // discovery HM10_Launchtask(TASK_HM10_STATUS_EVENT,7,2); // status } void HM10_Discovery_Scan(void) { HM10_Launchtask(TASK_HM10_DISCONN,0,1); // disconnect HM10_Launchtask(TASK_HM10_DISC,1,1); // discovery HM10_Launchtask(TASK_HM10_STATUS_EVENT,2,1); // status } void HM10_Read_LYWSD03(void) { //and MHO-C401 HM10_Launchtask(TASK_HM10_CONN,0,1); // connect HM10_Launchtask(TASK_HM10_FEEDBACK,1,35); // get OK+CONN HM10_Launchtask(TASK_HM10_SUB_L3,2,20); // subscribe HM10_Launchtask(TASK_HM10_UN_L3,3,80); // unsubscribe // HM10_Launchtask(TASK_HM10_READ_BT_L3,4,5); // read Battery HM10_Launchtask(TASK_HM10_DISCONN,4,5); // disconnect } void HM10_Read_LYWSD02(void) { //and MHO-C303 HM10_Launchtask(TASK_HM10_CONN,0,1); // connect HM10_Launchtask(TASK_HM10_FEEDBACK,1,35); // get OK+CONN HM10_Launchtask(TASK_HM10_SUB_L2,2,20); // subscribe HM10_Launchtask(TASK_HM10_UN_L2,3,80); // unsubscribe HM10_Launchtask(TASK_HM10_READ_BT_L2,4,5); // read Battery HM10_Launchtask(TASK_HM10_DISCONN,5,5); // disconnect } void HM10_Time_LYWSD02(void) { HM10_Launchtask(TASK_HM10_DISCONN,0,0); // disconnect HM10_Launchtask(TASK_HM10_CONN,1,5); // connect HM10_Launchtask(TASK_HM10_FEEDBACK,2,35); // get OK+CONN HM10_Launchtask(TASK_HM10_TIME_L2,3,20); // subscribe HM10_Launchtask(TASK_HM10_DISCONN,4,5); // disconnect } void HM10_Read_Flora(void) { HM10_Launchtask(TASK_HM10_DISCONN,0,0); // disconnect HM10_Launchtask(TASK_HM10_CONN,1,1); // connect HM10_Launchtask(TASK_HM10_FEEDBACK,2,5); // get OK+CONN HM10_Launchtask(TASK_HM10_READ_BF_FL,3,20); // read battery HM10_Launchtask(TASK_HM10_CALL_TLMF_FL,4,30); // read TLMF HM10_Launchtask(TASK_HM10_DISCONN,5,10); // disconnect } void HM10_Read_CGD1(void) { HM10_Launchtask(TASK_HM10_CONN,0,1); // connect HM10_Launchtask(TASK_HM10_FEEDBACK,1,35); // get OK+CONN HM10_Launchtask(TASK_HM10_SUB_HT_CGD1,2,20); // subscribe HM10_Launchtask(TASK_HM10_UN_HT_CGD1,3,10); // unsubscribe HM10_Launchtask(TASK_HM10_READ_B_CGD1,4,5); // read Battery HM10_Launchtask(TASK_HM10_DISCONN,5,5); // disconnect } void HM10_Read_MJ_HT_V1(void) { HM10_Launchtask(TASK_HM10_CONN,0,1); // connect HM10_Launchtask(TASK_HM10_FEEDBACK,1,35); // get OK+CONN HM10_Launchtask(TASK_HM10_READ_B_MJ,2,20); // battery HM10_Launchtask(TASK_HM10_SUB_HT_MJ,3,10); // temp hum HM10_Launchtask(TASK_HM10_DISCONN,4,5); // disconnect } /** * @brief Return the slot number of a known sensor or return create new sensor slot * * @param _MAC BLE address of the sensor * @param _type Type number of the sensor * @return uint32_t Known or new slot in the sensors-vector */ uint32_t MIBLEgetSensorSlot(uint8_t (&_MAC)[6], uint16_t _type, uint32_t _rssi){ DEBUG_SENSOR_LOG(PSTR("%s: will test ID-type: %x"),D_CMND_HM10, _type); bool _success = false; for (uint32_t i=0;ibegin(HM10.serialSpeed)) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s start serial communication fixed to 115200 baud"),D_CMND_HM10); if (HM10Serial->hardwareSerial()) { ClaimSerial(); DEBUG_SENSOR_LOG(PSTR("%s: claim HW"),D_CMND_HM10); } HM10_Reset(); HM10.mode.pending_task = 1; HM10.mode.init = 1; HM10.period = Settings.tele_period; DEBUG_SENSOR_LOG(PSTR("%s_TASK_LIST initialized, now return to main loop"),D_CMND_HM10); //test section for options - TODO: make a real interface for it HM10.option.noRealTime = 1; HM10.option.allwaysAggregate = 1; HM10.option.showRSSI = 0; HM10.option.ignoreBogusBattery = 1; HM10.option.noSummary = 0; HM10.option.minimalSummary = 0; HM10.rxBuffer = new char[HM10_MAX_RX_BUF]; } return; } /*********************************************************************************************\ * parse the response \*********************************************************************************************/ void HM10parseMiBeacon(char * _buf, uint32_t _slot){ float _tempFloat; mi_beacon_t _beacon; if (MIBLEsensors[_slot].type==MJ_HT_V1 || MIBLEsensors[_slot].type==CGG1){ memcpy((uint8_t*)&_beacon+1,(uint8_t*)_buf, sizeof(_beacon)-1); // shift by one byte for the MJ_HT_V1 memcpy((uint8_t*)&_beacon.MAC,(uint8_t*)&_beacon.MAC+1,6); // but shift back the MAC } else{ memcpy((void*)&_beacon,(void*)_buf, sizeof(_beacon)); } HM10_ReverseMAC(_beacon.MAC); if(memcmp(_beacon.MAC,MIBLEsensors[_slot].MAC,sizeof(_beacon.MAC))!=0){ if (MIBLEsensors[_slot].showedUp>3) return; // probably false alarm from a damaged packet AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: remove garbage sensor"),D_CMND_HM10); DEBUG_SENSOR_LOG(PSTR("%s i: %x %x %x %x %x %x"),D_CMND_HM10, MIBLEsensors[_slot].MAC[5], MIBLEsensors[_slot].MAC[4],MIBLEsensors[_slot].MAC[3],MIBLEsensors[_slot].MAC[2],MIBLEsensors[_slot].MAC[1],MIBLEsensors[_slot].MAC[0]); DEBUG_SENSOR_LOG(PSTR("%s n: %x %x %x %x %x %x"),D_CMND_HM10, _beacon.MAC[5], _beacon.MAC[4], _beacon.MAC[3],_beacon.MAC[2],_beacon.MAC[1],_beacon.MAC[0]); MIBLEsensors.erase(MIBLEsensors.begin()+_slot); return; } if (MIBLEsensors[_slot].showedUp<4) MIBLEsensors[_slot].showedUp++; DEBUG_SENSOR_LOG(PSTR("MiBeacon type:%02x: %02x %02x %02x %02x %02x %02x %02x %02x"),_beacon.type, (uint8_t)_buf[0],(uint8_t)_buf[1],(uint8_t)_buf[2],(uint8_t)_buf[3],(uint8_t)_buf[4],(uint8_t)_buf[5],(uint8_t)_buf[6],(uint8_t)_buf[7]); DEBUG_SENSOR_LOG(PSTR(" type:%02x: %02x %02x %02x %02x %02x %02x %02x %02x"),_beacon.type, (uint8_t)_buf[8],(uint8_t)_buf[9],(uint8_t)_buf[10],(uint8_t)_buf[11],(uint8_t)_buf[12],(uint8_t)_buf[13],(uint8_t)_buf[14],(uint8_t)_buf[15]); // MIBLEsensors[_slot].rssi = _rssi; if(MIBLEsensors[_slot].type==4 || MIBLEsensors[_slot].type==6){ DEBUG_SENSOR_LOG(PSTR("LYWSD03 and CGD1 no support for MiBeacon, type %u"),MIBLEsensors[_slot].type); return; } DEBUG_SENSOR_LOG(PSTR("%s at slot %u"), kHM10DeviceType[MIBLEsensors[_slot].type-1],_slot); switch(_beacon.type){ case 0x01: MIBLEsensors[_slot].Btn=_beacon.Btn.num + (_beacon.Btn.longPress/2)*6; MIBLEsensors[_slot].eventType.Btn = 1; // AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 1: U16: %u Button"), MIBLEsensors[_slot].Btn ); break; case 0x04: _tempFloat=(float)(_beacon.temp)/10.0f; if(_tempFloat<60){ MIBLEsensors[_slot].temp=_tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode 4: temp updated")); MIBLEsensors[_slot].eventType.temp = 1; } DEBUG_SENSOR_LOG(PSTR("Mode 4: U16: %u Temp"), _beacon.temp ); break; case 0x06: _tempFloat=(float)(_beacon.hum)/10.0f; if(_tempFloat<101){ MIBLEsensors[_slot].hum=_tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode 6: hum updated")); MIBLEsensors[_slot].eventType.hum = 1; } DEBUG_SENSOR_LOG(PSTR("Mode 6: U16: %u Hum"), _beacon.hum); break; case 0x07: if(MIBLEsensors[_slot].type==MJYD2S){ MIBLEsensors[_slot].eventType.noMotion = 1; } MIBLEsensors[_slot].lux=_beacon.lux & 0x00ffffff; DEBUG_SENSOR_LOG(PSTR("Mode 7: U24: %u Lux"), _beacon.lux & 0x00ffffff); break; case 0x08: if(_beacon.moist<101){ MIBLEsensors[_slot].moisture=_beacon.moist; DEBUG_SENSOR_LOG(PSTR("Mode 8: moisture updated")); MIBLEsensors[_slot].eventType.moist = 1; } DEBUG_SENSOR_LOG(PSTR("Mode 8: U8: %u Moisture"), _beacon.moist); break; case 0x09: if(_beacon.fert<65535){ MIBLEsensors[_slot].fertility=_beacon.fert; DEBUG_SENSOR_LOG(PSTR("Mode 9: fertility updated")); MIBLEsensors[_slot].eventType.fert = 1; } DEBUG_SENSOR_LOG(PSTR("Mode 9: U16: %u Fertility"), _beacon.fert); break; case 0x0a: if(_beacon.bat<101){ MIBLEsensors[_slot].bat = _beacon.bat; DEBUG_SENSOR_LOG(PSTR("Mode a: bat updated")); MIBLEsensors[_slot].eventType.bat = 1; } DEBUG_SENSOR_LOG(PSTR("Mode a: U8: %u %%"), _beacon.bat); break; case 0x0d: _tempFloat=(float)(_beacon.HT.temp)/10.0f; if(_tempFloat<60){ MIBLEsensors[_slot].temp = _tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode d: temp updated")); } _tempFloat=(float)(_beacon.HT.hum)/10.0f; if(_tempFloat<100){ MIBLEsensors[_slot].hum = _tempFloat; DEBUG_SENSOR_LOG(PSTR("Mode d: hum updated")); } MIBLEsensors[_slot].eventType.tempHum = 1; DEBUG_SENSOR_LOG(PSTR("Mode d: U16: %x Temp U16: %x Hum"), _beacon.HT.temp, _beacon.HT.hum); break; } if(MIBLEsensors[_slot].eventType.raw == 0) return; MIBLEsensors[_slot].shallSendMQTT = 1; HM10.mode.shallTriggerTele = 1; } void HM10parseATC(char * _buf, uint32_t _slot){ ATCPacket_t *_packet = (ATCPacket_t*)_buf; if(memcmp(_packet->MAC,MIBLEsensors.at(_slot).MAC,6)!=0) return; // data corruption MIBLEsensors.at(_slot).temp = (float)(__builtin_bswap16(_packet->temp))/10.0f; MIBLEsensors.at(_slot).hum = (float)_packet->hum; MIBLEsensors.at(_slot).bat = _packet->batPer; MIBLEsensors[_slot].shallSendMQTT = 1; } char* HM10ParseResponse(char *buf, uint16_t bufsize) { if (!strncmp(buf,"HMSoft",6)) { //8 const char* _fw = "000"; memcpy((void *)_fw,(void *)(buf+8),3); HM10.firmware = atoi(_fw); DEBUG_SENSOR_LOG(PSTR("%s: Firmware: %d"),D_CMND_HM10, HM10.firmware); return buf; } char * _pos = nullptr; uint32_t _idx = 0; char _subStr[] = "SA:"; while(_pos = (char*) memchr(buf+_idx, 'I', 60)){ //strstr() does miss too much _idx=_pos-buf; if(memcmp(&_pos+1,_subStr,3)){ break; } } if(_pos) { uint8_t _newMacArray[6] = {0}; memcpy((void *)_newMacArray,(void *)(_pos+4),6); uint32_t _rssi = 255- (uint8_t)(_pos[11]); HM10_ReverseMAC(_newMacArray); DEBUG_SENSOR_LOG(PSTR("%s: MAC-array: %02x%02x%02x%02x%02x%02x"),D_CMND_HM10,_newMacArray[0],_newMacArray[1],_newMacArray[2],_newMacArray[3],_newMacArray[4],_newMacArray[5]); uint16_t _type=0xffff; for (_idx =10;_idx<32;_idx++){ if((uint8_t)_pos[_idx] == 0xfe){ if((uint8_t)_pos[_idx-2] == 0x16 && (uint8_t)_pos[_idx-1] == 0x95){ _pos = _pos+_idx+1; _type = (uint8_t)_pos[3]*256 + (uint8_t)_pos[2]; DEBUG_SENSOR_LOG(PSTR("%s: type %04x _ %02x %02x"),D_CMND_HM10,_type, _pos[3],_pos[2]); break; } } else if ((uint8_t)_pos[_idx] == 0x1a){ if ((uint8_t)_pos[_idx+1] == 0x18){ if((uint8_t)_pos[_idx+4] == 0x95 && (uint8_t)_pos[_idx+3] == 0x16) continue; // LYWSD02 or MHO-C303 _type = 0xa1c; //ATC _pos = _pos+_idx+2; break; } } } uint16_t _slot = MIBLEgetSensorSlot(_newMacArray, _type, _rssi); if(_slot!=0xff){ if (_type==0xa1c) HM10parseATC(_pos,_slot); else HM10parseMiBeacon(_pos,_slot); } if(bufsize>64) return _pos+12; else return nullptr; } else if (strstr(buf, "LOST")){ HM10.current_task_delay = 0; HM10.mode.connected = false; } else if (strstr(buf, "CONNF")){ HM10.mode.connected = false; HM10.current_task_delay = 0; } else if (strstr(buf, "CONN")){ HM10.current_task_delay = 0; } else { DEBUG_SENSOR_LOG(PSTR("%s: empty response"),D_CMND_HM10); return buf; } return _pos; } void HM10readHT_LY(char *_buf){ // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)_buf,7); if(_buf[0]==0x4f && _buf[1]==0x4b) return; // "OK" if(_buf[0] != 0 && _buf[1] != 0){ LYWSD0x_HT_t *packet = (LYWSD0x_HT_t*)_buf; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 100: %u, H: %u"),D_CMND_HM10,packet->temp,packet->hum); uint32_t _slot = HM10.state.sensor; DEBUG_SENSOR_LOG(PSTR("MIBLE: Sensor slot: %u"), _slot); static float _tempFloat; _tempFloat=(float)(packet->temp)/100.0f; if(_tempFloat<60){ MIBLEsensors[_slot].temp=_tempFloat; HM10.mode.awaiting = none; HM10.current_task_delay = 0; MIBLEsensors[_slot].showedUp=255; // this sensor is real } _tempFloat=(float)packet->hum; if(_tempFloat<100){ MIBLEsensors[_slot].hum = _tempFloat; DEBUG_SENSOR_LOG(PSTR("LYWSD0x: hum updated")); } MIBLEsensors[_slot].eventType.tempHum = 1; if (MIBLEsensors[_slot].type == LYWSD03MMC || MIBLEsensors[_slot].type == MHOC401){ MIBLEsensors[_slot].bat = ((float)packet->volt-2100.0f)/12.0f; MIBLEsensors[_slot].eventType.bat = 1; } MIBLEsensors[_slot].shallSendMQTT = 1; HM10.mode.shallTriggerTele = 1; } } void HM10readHT_CGD1(char *_buf){ DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]); if(_buf[0]==0x4f && _buf[1]==0x4b) return; // "OK" if(_buf[0] == 0){ if(_buf[1]==0 && _buf[2]==0 && _buf[3]==0 && _buf[4]==0) return; CGD1_HT_t *_packet = (CGD1_HT_t*)_buf; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 100: %u, H * 100: %u"),D_CMND_HM10,_packet->temp,_packet->hum); uint32_t _slot = HM10.state.sensor; DEBUG_SENSOR_LOG(PSTR("MIBLE: Sensor slot: %u"), _slot); static float _tempFloat; _tempFloat=(float)(_packet->temp)/100.0f; if(_tempFloat<60){ MIBLEsensors[_slot].temp=_tempFloat; HM10.mode.awaiting = none; HM10.current_task_delay = 0; MIBLEsensors[_slot].showedUp=255; // this sensor is real } _tempFloat=(float)_packet->hum/100.0f; if(_tempFloat<100){ MIBLEsensors[_slot].hum = _tempFloat; DEBUG_SENSOR_LOG(PSTR("CGD1: hum updated")); } MIBLEsensors[_slot].eventType.tempHum = 1; MIBLEsensors[_slot].shallSendMQTT = 1; HM10.mode.shallTriggerTele = 1; } } void HM10readHT_MJ_HT_V1(char *_buf){ DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]); if(_buf[0]!=0x54 && _buf[1]!=0x3d) return; //"T=" // T=22.7 H=42.2 (response as ASCII) // 0123456789012 uint32_t _temp = (atoi(_buf+2) * 10) + atoi(_buf+5); uint32_t _hum = (atoi(_buf+9) * 10) + atoi(_buf+12); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 10: %u, H * 10: %u"),D_CMND_HM10,_temp,_hum); uint32_t _slot = HM10.state.sensor; DEBUG_SENSOR_LOG(PSTR("MIBLE: Sensor slot: %u"), _slot); static float _tempFloat; _tempFloat=(float)_temp/10.0f; if(_tempFloat<60){ MIBLEsensors[_slot].temp=_tempFloat; HM10.mode.awaiting = none; HM10.current_task_delay = 0; MIBLEsensors[_slot].showedUp=255; // this sensor is real } _tempFloat=(float)_hum/10.0f; if(_tempFloat<100){ MIBLEsensors[_slot].hum = _tempFloat; DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1: hum updated")); } MIBLEsensors[_slot].eventType.tempHum = 1; MIBLEsensors[_slot].shallSendMQTT = 1; HM10.mode.shallTriggerTele = 1; } void HM10readTLMF(char *_buf){ AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)_buf,16); Flora_TLMF_t *_packet = (Flora_TLMF_t*)_buf; if(_packet->ID==0xFB003C02){ // this is a magic word ... hopefully independent of FW version AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: T * 10: %u, L: %u, M: %u, F: %u"),D_CMND_HM10,_packet->temp,_packet->lux,_packet->moist,_packet->fert); uint32_t _slot = HM10.state.sensor; DEBUG_SENSOR_LOG(PSTR("MIBLE: Sensor slot: %u"), _slot); MIBLEsensors[_slot].showedUp=255; // this sensor is real static float _tempFloat; _tempFloat=(float)(_packet->temp)/10.0f; MIBLEsensors[_slot].temp=_tempFloat; MIBLEsensors[_slot].lux = _packet->lux; MIBLEsensors[_slot].moisture = _packet->moist; MIBLEsensors[_slot].fertility = _packet->fert; MIBLEsensors[_slot].eventType.temp = 1; MIBLEsensors[_slot].eventType.lux = 1; MIBLEsensors[_slot].eventType.moist = 1; MIBLEsensors[_slot].eventType.fert = 1; MIBLEsensors[_slot].shallSendMQTT = 1; HM10.mode.shallTriggerTele = 1; HM10.mode.awaiting = none; HM10.current_task_delay = 0; } } bool HM10readBat(char *_buf){ DEBUG_SENSOR_LOG(PSTR("%s: raw data: %x%x%x%x%x%x%x"),D_CMND_HM10,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]); if(_buf[0]==0x4f && _buf[1]==0x4b) return false; // "OK" uint32_t _slot = HM10.state.sensor; // if(HM10.option.ignoreBogusBattery){ // if (MIBLEsensors[_slot].type == LYWSD03MMC || MIBLEsensors[_slot].type == MHOC401) return true; // } if(_buf[0] != 0){ AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: Battery: %u"),D_CMND_HM10,_buf[0]); DEBUG_SENSOR_LOG(PSTR("MIBLE: Sensor slot: %u"), _slot); if(_buf[0]<101){ MIBLEsensors[_slot].bat=_buf[0]; MIBLEsensors[_slot].showedUp=255; // this sensor is real MIBLEsensors[_slot].eventType.bat = 1; MIBLEsensors[_slot].shallSendMQTT = 1; HM10.mode.shallTriggerTele = 1; return true; } } return false; } /*********************************************************************************************\ * handle the return value from the HM10 \*********************************************************************************************/ bool HM10SerialHandleFeedback(){ // every 50 milliseconds bool success = false; uint32_t i = 0; while(HM10Serial->available()) { if(iread(); } i++; success = true; } if(i==0){ if(HM10.mode.shallTriggerTele){ // let us use the spare time for other things HM10.mode.shallTriggerTele=0; if(HM10.option.noRealTime){ HM10.mode.triggeredTele=0; return success; } HM10.mode.triggeredTele=1; HM10triggerTele(); } return success; } switch (HM10.mode.awaiting){ case bat: if (HM10.mode.connected) { if (HM10readBat(HM10.rxBuffer)){ HM10.mode.awaiting = none; HM10.current_task_delay = 0; } } break; case tempHumLY: if (HM10.mode.connected) HM10readHT_LY(HM10.rxBuffer); break; case tempHumCGD1: if (HM10.mode.connected) HM10readHT_CGD1(HM10.rxBuffer); break; case TLMF: if (HM10.mode.connected) HM10readTLMF(HM10.rxBuffer); break; case discScan: if(success) { char *_src = HM10ParseResponse(HM10.rxBuffer,i); if(_src){ HM10ParseResponse(_src,i-(_src-HM10.rxBuffer)); // try a second parse } } break; case tempHumMJ: if (HM10.mode.connected) HM10readHT_MJ_HT_V1(HM10.rxBuffer); break; case none: if(success) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: response: %s"),D_CMND_HM10, (char *)HM10.rxBuffer); // for(uint32_t j = 0; jwrite("AT+ROLE1"); break; case TASK_HM10_IMME1: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: set imme to 1"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+IMME1"); break; case TASK_HM10_DISC: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: start discovery"),D_CMND_HM10); HM10.current_task_delay = 90; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10.mode.awaiting = discScan; HM10Serial->write("AT+DISA?"); break; case TASK_HM10_VERSION: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read version"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+VERR?"); break; case TASK_HM10_NAME: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read name"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+NAME?"); break; case TASK_HM10_CONN: char _con[20]; sprintf_P(_con,"AT+CON%02x%02x%02x%02x%02x%02x",MIBLEsensors[HM10.state.sensor].MAC[0],MIBLEsensors[HM10.state.sensor].MAC[1],MIBLEsensors[HM10.state.sensor].MAC[2],MIBLEsensors[HM10.state.sensor].MAC[3],MIBLEsensors[HM10.state.sensor].MAC[4],MIBLEsensors[HM10.state.sensor].MAC[5]); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: %s connect %s"),D_CMND_HM10,kHM10DeviceType[MIBLEsensors[HM10.state.sensor].type-1],_con); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write(_con); HM10.mode.awaiting = none; HM10.mode.connected = true; break; case TASK_HM10_DISCONN: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: disconnect"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT"); break; case TASK_HM10_RESET: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: Reset Device"),D_CMND_HM10); HM10Serial->write("AT+RESET"); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; break; case TASK_HM10_SUB_L3: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: subscribe"),D_CMND_HM10); HM10.current_task_delay = 25; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); HM10.mode.awaiting = tempHumLY; runningTaskLoop = false; HM10Serial->write("AT+NOTIFY_ON0037"); break; case TASK_HM10_UN_L3: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: un-subscribe"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10.mode.awaiting = none; HM10Serial->write("AT+NOTIFYOFF0037"); break; case TASK_HM10_SUB_L2: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: subscribe"),D_CMND_HM10); HM10.current_task_delay = 85; // set task delay HM10.mode.awaiting = tempHumLY; HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; if(MIBLEsensors[HM10.state.sensor].type == LYWSD02) HM10Serial->write("AT+NOTIFY_ON003C"); else HM10Serial->write("AT+NOTIFY_ON004B"); //MHO-C303 break; case TASK_HM10_UN_L2: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: un-subscribe"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10.mode.awaiting = none; if(MIBLEsensors[HM10.state.sensor].type == LYWSD02) HM10Serial->write("AT+NOTIFY_OFF003C"); else HM10Serial->write("AT+NOTIFY_OFF004B"); //MHO-C303 break; case TASK_HM10_TIME_L2: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: set time"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10.time = Rtc.utc_time; HM10Serial->write("AT+SEND_DATAWR002F"); HM10Serial->write(HM10.timebuf,4); HM10Serial->write(Rtc.time_timezone / 60); AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s Time-string: %x%x%x%x%x"),D_CMND_HM10, HM10.timebuf[0],HM10.timebuf[1],HM10.timebuf[2],HM10.timebuf[3],(Rtc.time_timezone /60)); break; // case TASK_HM10_READ_BT_L3: // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 003A"),D_CMND_HM10); // HM10.current_task_delay = 2; // set task delay // HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); // runningTaskLoop = false; // HM10Serial->write("AT+READDATA003A?"); // HM10.mode.awaiting = bat; // break; case TASK_HM10_READ_BT_L2: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 0043"),D_CMND_HM10); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; if(MIBLEsensors[HM10.state.sensor].type == LYWSD02) HM10Serial->write("AT+READDATA0043?"); else HM10Serial->write("AT+READDATA0052?"); //MHO-C303 HM10.mode.awaiting = bat; break; case TASK_HM10_READ_BF_FL: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 0038"),D_CMND_HM10); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+READDATA0038?"); HM10.mode.awaiting = bat; break; case TASK_HM10_CALL_TLMF_FL: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: write to handle 0033"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_READ_TLMF_FL,i); runningTaskLoop = false; HM10Serial->write("AT+SEND_DATAWR0033"); HM10Serial->write(0xa0); HM10Serial->write(0x1f); HM10.mode.awaiting = none; break; case TASK_HM10_READ_TLMF_FL: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 0035"),D_CMND_HM10); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+READDATA0035?"); HM10.mode.awaiting = TLMF; break; case TASK_HM10_READ_B_CGD1: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 0011"),D_CMND_HM10); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+READDATA0011?"); HM10.mode.awaiting = bat; break; case TASK_HM10_SUB_HT_CGD1: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: subscribe 4b"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10.mode.awaiting = tempHumCGD1; HM10Serial->write("AT+NOTIFY_ON004b"); break; case TASK_HM10_UN_HT_CGD1: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: un-subscribe 4b"),D_CMND_HM10); HM10.current_task_delay = 5; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10.mode.awaiting = none; HM10Serial->write("AT+NOTIFYOFF004b"); break; case TASK_HM10_SCAN9: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: scan time to 9"),D_CMND_HM10); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+SCAN9"); break; case TASK_HM10_READ_B_MJ: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: read handle 0x18"),D_CMND_HM10); HM10.current_task_delay = 2; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+READDATA0018?"); HM10.mode.awaiting = bat; break; case TASK_HM10_SUB_HT_MJ: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: subscribe to 0x0f"),D_CMND_HM10); HM10.current_task_delay = 10; // set task delay HM10_TaskReplaceInSlot(TASK_HM10_FEEDBACK,i); runningTaskLoop = false; HM10Serial->write("AT+NOTIFY_ON000F"); HM10.mode.awaiting = tempHumMJ; break; case TASK_HM10_FEEDBACK: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: get response"),D_CMND_HM10); HM10SerialHandleFeedback(); HM10.current_task_delay = HM10_TASK_LIST[i+1][1];; // set task delay HM10_TASK_LIST[i][0] = TASK_HM10_DONE; // no feedback for reset runningTaskLoop = false; break; case TASK_HM10_STATUS_EVENT: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: show status"),D_CMND_HM10); HM10StatusInfo(); HM10.current_task_delay = HM10_TASK_LIST[i+1][1];; // set task delay HM10_TASK_LIST[i][0] = TASK_HM10_DONE; // no feedback for reset runningTaskLoop = false; break; case TASK_HM10_DONE: // this entry was already handled // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%sFound done HM10_TASK"),D_CMND_HM10); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%snext slot:%u, i: %u"),D_CMND_HM10, HM10_TASK_LIST[i+1][0],i); if(HM10_TASK_LIST[i+1][0] == TASK_HM10_NOTASK) { // check the next entry and if there is none DEBUG_SENSOR_LOG(PSTR("%sno Tasks left"),D_CMND_HM10); DEBUG_SENSOR_LOG(PSTR("%sHM10_TASK_DONE current slot %u"),D_CMND_HM10, i); for (uint8_t j = 0; j < HM10_MAX_TASK_NUMBER+1; j++) { // do a clean-up: DEBUG_SENSOR_LOG(PSTR("%sHM10_TASK cleanup slot %u"),D_CMND_HM10, j); HM10_TASK_LIST[j][0] = TASK_HM10_NOTASK; // reset all task entries HM10_TASK_LIST[j][1] = 0; // reset all delays } runningTaskLoop = false; // return to main loop HM10.mode.pending_task = 0; // back to main loop control break; } } i++; } } else { HM10.current_task_delay--; // count down every 100 ms } } void HM10StatusInfo() { /* char stemp[20]; snprintf_P(stemp, sizeof(stemp),PSTR("{%s:{\"found\": %u}}"),D_CMND_HM10, MIBLEsensors.size()); AddLog_P2(LOG_LEVEL_INFO, stemp); RulesProcessEvent(stemp); */ Response_P(PSTR("{%s:{\"found\":%u}}"), D_CMND_HM10, MIBLEsensors.size()); XdrvRulesProcess(); } /** * @brief Main loop of the driver, "high level"-loop * */ void HM10EverySecond(bool restart){ static uint32_t _counter = 0; static uint32_t _nextSensorSlot = 0; static uint32_t _lastDiscovery = 0; if(restart){ _counter = 0; _lastDiscovery = 0; return; } if(HM10.firmware == 0) return; if(HM10.mode.pending_task == 1) return; if(MIBLEsensors.size()==0 && !HM10.mode.autoScan) return; if((HM10.period-_counter)>15 && HM10.mode.autoScan) { if(_counter-_lastDiscovery>HM10.autoScanInterval){ HM10_Discovery_Scan(); HM10.mode.pending_task = 1; _counter+=12; _lastDiscovery = _counter; return; } } if(_counter==0) { HM10.state.sensor = _nextSensorSlot; _nextSensorSlot++; HM10.mode.pending_task = 1; switch(MIBLEsensors[HM10.state.sensor].type){ case FLORA: HM10_Read_Flora(); break; case MJ_HT_V1: case CGG1: HM10_Read_MJ_HT_V1(); break; case LYWSD02: case MHOC303: HM10_Read_LYWSD02(); break; case LYWSD03MMC: case MHOC401: HM10_Read_LYWSD03(); break; case CGD1: HM10_Read_CGD1(); break; default: HM10.mode.pending_task = 0; } if (HM10.state.sensor==MIBLEsensors.size()-1) { _nextSensorSlot= 0; _counter++; } DEBUG_SENSOR_LOG(PSTR("%s: active sensor now: %u"),D_CMND_HM10, HM10.state.sensor); } else _counter++; if (_counter>HM10.period) { _counter = 0; _lastDiscovery = 0; } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ bool HM10Cmd(void) { char command[CMDSZ]; bool serviced = true; uint8_t disp_len = strlen(D_CMND_HM10); if (!strncasecmp_P(XdrvMailbox.topic, PSTR(D_CMND_HM10), disp_len)) { // prefix uint32_t command_code = GetCommandCode(command, sizeof(command), XdrvMailbox.topic + disp_len, kHM10_Commands); switch (command_code) { case CMND_HM10_PERIOD: if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.payload==1) { HM10EverySecond(true); XdrvMailbox.payload = HM10.period; } else { HM10.period = XdrvMailbox.payload; } } else { XdrvMailbox.payload = HM10.period; } Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload); break; case CMND_HM10_AUTO: if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.payload>0) { HM10.mode.autoScan = 1; HM10.autoScanInterval = XdrvMailbox.payload; } else { HM10.mode.autoScan = 0; HM10.autoScanInterval = 0; } } else { XdrvMailbox.payload = HM10.autoScanInterval; } Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload); break; case CMND_HM10_BAUD: if (XdrvMailbox.data_len > 0) { HM10.serialSpeed = XdrvMailbox.payload; HM10Serial->begin(HM10.serialSpeed); } else { XdrvMailbox.payload = HM10.serialSpeed; } Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload); break; case CMND_HM10_TIME: if (XdrvMailbox.data_len > 0) { if(MIBLEsensors.size()>XdrvMailbox.payload){ if(MIBLEsensors[XdrvMailbox.payload].type == LYWSD02){ HM10.state.sensor = XdrvMailbox.payload; HM10_Time_LYWSD02(); } } } Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload); break; case CMND_HM10_PAGE: if (XdrvMailbox.data_len > 0) { if (XdrvMailbox.payload == 0) XdrvMailbox.payload = HM10.perPage; // ignore 0 HM10.perPage = XdrvMailbox.payload; } else XdrvMailbox.payload = HM10.perPage; Response_P(S_JSON_HM10_COMMAND_NVALUE, command, XdrvMailbox.payload); break; case CMND_HM10_AT: HM10Serial->write("AT"); // without an argument this will disconnect if (strlen(XdrvMailbox.data)!=0) { HM10Serial->write("+"); HM10Serial->write(XdrvMailbox.data); // pass everything without checks Response_P(S_JSON_HM10_COMMAND, ":AT+",XdrvMailbox.data); } else Response_P(S_JSON_HM10_COMMAND, ":AT",XdrvMailbox.data); break; case CMND_HM10_DISC_SCAN: HM10_Discovery_Scan(); Response_P(S_JSON_HM10_COMMAND, command, ""); break; default: // else for Unknown command serviced = false; break; } } else { return false; } return serviced; } /** * @brief trigger real-time message * */ void HM10triggerTele(void){ HM10.mode.triggeredTele = 1; mqtt_data[0] = '\0'; if (MqttShowSensor()) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); #ifdef USE_RULES RulesTeleperiod(); // Allow rule based HA messages #endif // USE_RULES } } /*********************************************************************************************\ * Presentation \*********************************************************************************************/ const char HTTP_HM10[] PROGMEM = "{s}HM10 V%u{m}%u%s / %u{e}"; const char HTTP_HM10_MAC[] PROGMEM = "{s}%s %s{m}%s{e}"; const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u%%{e}"; const char HTTP_RSSI[] PROGMEM = "{s}%s " D_RSSI "{m}%d dBm{e}"; const char HTTP_HM10_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%u us/cm{e}"; const char HTTP_HM10_HL[] PROGMEM = "{s}
{m}
{e}"; void HM10Show(bool json) { if (json) { if(!HM10.mode.triggeredTele){ if(HM10.option.noSummary) return; // no message at TELEPERIOD } for (uint32_t i = 0; i < MIBLEsensors.size(); i++) { if(HM10.mode.triggeredTele && MIBLEsensors[i].eventType.raw == 0) continue; if(HM10.mode.triggeredTele && MIBLEsensors[i].shallSendMQTT==0) continue; ResponseAppend_P(PSTR(",\"%s-%02x%02x%02x\":"), // do not add the '{' now ... kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].MAC[3], MIBLEsensors[i].MAC[4], MIBLEsensors[i].MAC[5]); uint32_t _positionCurlyBracket = strlen(mqtt_data); // ... this will be a ',' first, but later be replaced if((!HM10.mode.triggeredTele && !HM10.option.minimalSummary)||HM10.mode.triggeredTele){ bool tempHumSended = false; if(MIBLEsensors[i].feature.tempHum){ if(MIBLEsensors[i].eventType.tempHum || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate){ if (!isnan(MIBLEsensors[i].hum) && !isnan(MIBLEsensors[i].temp)) { ResponseAppend_P(PSTR(",")); ResponseAppendTHD(MIBLEsensors[i].temp, MIBLEsensors[i].hum); tempHumSended = true; } } } if(MIBLEsensors[i].feature.temp && !tempHumSended){ if(MIBLEsensors[i].eventType.temp || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate) { if (!isnan(MIBLEsensors[i].temp)) { char temperature[FLOATSZ]; dtostrfd(MIBLEsensors[i].temp, Settings.flag2.temperature_resolution, temperature); ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%s"), temperature); } } } if(MIBLEsensors[i].feature.hum && !tempHumSended){ if(MIBLEsensors[i].eventType.hum || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate) { if (!isnan(MIBLEsensors[i].hum)) { char hum[FLOATSZ]; dtostrfd(MIBLEsensors[i].hum, Settings.flag2.humidity_resolution, hum); ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), hum); } } } if (MIBLEsensors[i].feature.lux){ if(MIBLEsensors[i].eventType.lux || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate){ if (MIBLEsensors[i].lux!=0x0ffffff) { // this is the error code -> no lux ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%u"), MIBLEsensors[i].lux); } } } if (MIBLEsensors[i].feature.moist){ if(MIBLEsensors[i].eventType.moist || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate){ if (MIBLEsensors[i].moisture!=0xff) { ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%u"), MIBLEsensors[i].moisture); } } } if (MIBLEsensors[i].feature.fert){ if(MIBLEsensors[i].eventType.fert || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate){ if (MIBLEsensors[i].fertility!=0xffff) { ResponseAppend_P(PSTR(",\"Fertility\":%u"), MIBLEsensors[i].fertility); } } } if (MIBLEsensors[i].feature.Btn){ if(MIBLEsensors[i].eventType.Btn){ ResponseAppend_P(PSTR(",\"Btn\":%u"),MIBLEsensors[i].Btn); } } } // minimal summary if (MIBLEsensors[i].feature.PIR){ if(MIBLEsensors[i].eventType.motion || !HM10.mode.triggeredTele){ if(HM10.mode.triggeredTele) ResponseAppend_P(PSTR(",\"PIR\":1")); // only real-time ResponseAppend_P(PSTR(",\"Events\":%u"),MIBLEsensors[i].events); } else if(MIBLEsensors[i].eventType.noMotion && HM10.mode.triggeredTele){ ResponseAppend_P(PSTR(",\"PIR\":0")); } } if (MIBLEsensors[i].type == FLORA && !HM10.mode.triggeredTele) { if (MIBLEsensors[i].firmware[0] != '\0') { // this is the error code -> no firmware ResponseAppend_P(PSTR(",\"Firmware\":\"%s\""), MIBLEsensors[i].firmware); } } if (MIBLEsensors[i].feature.NMT || !HM10.mode.triggeredTele){ if(MIBLEsensors[i].eventType.NMT){ ResponseAppend_P(PSTR(",\"NMT\":%u"), MIBLEsensors[i].NMT); } } if (MIBLEsensors[i].feature.bat){ if(MIBLEsensors[i].eventType.bat || !HM10.mode.triggeredTele || HM10.option.allwaysAggregate){ if (MIBLEsensors[i].bat != 0x00) { // this is the error code -> no battery ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors[i].bat); } } } if (HM10.option.showRSSI && HM10.mode.triggeredTele) ResponseAppend_P(PSTR(",\"RSSI\":%d"), MIBLEsensors[i].rssi); if(_positionCurlyBracket==strlen(mqtt_data)) ResponseAppend_P(PSTR(",")); // write some random char, to be overwritten in the next step ResponseAppend_P(PSTR("}")); mqtt_data[_positionCurlyBracket] = '{'; MIBLEsensors[i].eventType.raw = 0; if(MIBLEsensors[i].shallSendMQTT==1){ MIBLEsensors[i].shallSendMQTT = 0; continue; } } HM10.mode.triggeredTele = 0; #ifdef USE_WEBSERVER } else { static uint16_t _page = 0; static uint16_t _counter = 0; int32_t i = _page * HM10.perPage; uint32_t j = i + HM10.perPage; if (j+1>MIBLEsensors.size()){ j = MIBLEsensors.size(); } char stemp[5] ={0}; if (MIBLEsensors.size()-(_page*HM10.perPage)>1 && HM10.perPage!=1) { sprintf_P(stemp,"-%u",j); } if (MIBLEsensors.size()==0) i=-1; // only for the GUI WSContentSend_PD(HTTP_HM10, HM10.firmware, i+1,stemp,MIBLEsensors.size()); for (i; i no valid value WSContentSend_PD(HTTP_SNS_ILLUMINANCE, kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].lux); } if(MIBLEsensors[i].moisture!=0xff){ WSContentSend_PD(HTTP_SNS_MOISTURE, kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].moisture); } if(MIBLEsensors[i].fertility!=0xffff){ WSContentSend_PD(HTTP_HM10_FLORA_DATA, kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].fertility); } } if (MIBLEsensors[i].type>FLORA){ // everything "above" Flora if(!isnan(MIBLEsensors[i].hum) && !isnan(MIBLEsensors[i].temp)){ WSContentSend_THD(kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].temp, MIBLEsensors[i].hum); } } if(MIBLEsensors[i].bat!=0x00){ WSContentSend_PD(HTTP_BATTERY, kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].bat); } WSContentSend_PD(HTTP_RSSI, kHM10DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].rssi); } _counter++; if(_counter>3) { _page++; _counter=0; } if(MIBLEsensors.size()%HM10.perPage==0 && _page==MIBLEsensors.size()/HM10.perPage) _page=0; if(_page>MIBLEsensors.size()/HM10.perPage) _page=0; #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns62(uint8_t function) { bool result = false; if (PinUsed(GPIO_HM10_RX) && PinUsed(GPIO_HM10_TX)) { switch (function) { case FUNC_INIT: HM10SerialInit(); // init and start communication break; case FUNC_EVERY_50_MSECOND: HM10SerialHandleFeedback(); // check for device feedback very often break; case FUNC_EVERY_100_MSECOND: if (HM10_TASK_LIST[0][0] != TASK_HM10_NOTASK) { HM10_TaskEvery100ms(); // something has to be done, we'll check in the next step } break; case FUNC_EVERY_SECOND: HM10EverySecond(false); break; case FUNC_COMMAND: result = HM10Cmd(); break; case FUNC_JSON_APPEND: HM10Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: HM10Show(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_HM10 #endif // ESP8266