/*
xnrg_03_pzem004t.ino - PZEM004T energy sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_PZEM004T
/*********************************************************************************************\
* PZEM004T - Energy
*
* Source: Victor Ferrer https://github.com/vicfergar/Sonoff-MQTT-OTA-Arduino
* Based on: PZEM004T library https://github.com/olehs/PZEM004T
*
* Hardware Serial will be selected if GPIO1 = [63 PZEM004 Rx] and GPIO3 = [62 PZEM0XX Tx]
\*********************************************************************************************/
#define XNRG_03 3
#include
TasmotaSerial *PzemSerial = nullptr;
#define PZEM_VOLTAGE (uint8_t)0xB0
#define RESP_VOLTAGE (uint8_t)0xA0
#define PZEM_CURRENT (uint8_t)0xB1
#define RESP_CURRENT (uint8_t)0xA1
#define PZEM_POWER (uint8_t)0xB2
#define RESP_POWER (uint8_t)0xA2
#define PZEM_ENERGY (uint8_t)0xB3
#define RESP_ENERGY (uint8_t)0xA3
#define PZEM_SET_ADDRESS (uint8_t)0xB4
#define RESP_SET_ADDRESS (uint8_t)0xA4
#define PZEM_POWER_ALARM (uint8_t)0xB5
#define RESP_POWER_ALARM (uint8_t)0xA5
#define PZEM_DEFAULT_READ_TIMEOUT 500
/*********************************************************************************************/
struct PZEMCommand {
uint8_t command;
uint8_t addr[4];
uint8_t data;
uint8_t crc;
};
IPAddress pzem_ip(192, 168, 1, 1);
uint8_t PzemCrc(uint8_t *data)
{
uint16_t crc = 0;
for (uint32_t i = 0; i < sizeof(PZEMCommand) -1; i++) crc += *data++;
return (uint8_t)(crc & 0xFF);
}
void PzemSend(uint8_t cmd)
{
PZEMCommand pzem;
pzem.command = cmd;
for (uint32_t i = 0; i < sizeof(pzem.addr); i++) pzem.addr[i] = pzem_ip[i];
pzem.data = 0;
uint8_t *bytes = (uint8_t*)&pzem;
pzem.crc = PzemCrc(bytes);
PzemSerial->flush();
PzemSerial->write(bytes, sizeof(pzem));
}
bool PzemReceiveReady(void)
{
return PzemSerial->available() >= (int)sizeof(PZEMCommand);
}
bool PzemRecieve(uint8_t resp, float *data)
{
// 0 1 2 3 4 5 6
// A4 00 00 00 00 00 A4 - Set address
// A0 00 D4 07 00 00 7B - Voltage (212.7V)
// A1 00 00 0A 00 00 AB - Current (0.1A)
// A1 00 00 00 00 00 A1 - No current
// A2 00 16 00 00 00 B8 - Power (22W)
// A2 00 00 00 00 00 A2 - No power
// A3 00 08 A4 00 00 4F - Energy (2.212kWh)
// A3 01 86 9F 00 00 C9 - Energy (99.999kWh)
uint8_t buffer[sizeof(PZEMCommand)] = { 0 };
unsigned long start = millis();
uint8_t len = 0;
while ((len < sizeof(PZEMCommand)) && (millis() - start < PZEM_DEFAULT_READ_TIMEOUT)) {
if (PzemSerial->available() > 0) {
uint8_t c = (uint8_t)PzemSerial->read();
if (!c && !len) {
continue; // skip 0 at startup
}
if ((1 == len) && (buffer[0] == c)) {
len--;
continue; // fix skewed data
}
buffer[len++] = c;
}
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, len);
if (len != sizeof(PZEMCommand)) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem comms timeout"));
return false;
}
if (buffer[6] != PzemCrc(buffer)) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem crc error"));
return false;
}
if (buffer[0] != resp) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem bad response"));
return false;
}
switch (resp) {
case RESP_VOLTAGE:
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 10.0); // 65535.x V
break;
case RESP_CURRENT:
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 100.0); // 65535.xx A
break;
case RESP_POWER:
*data = (float)(buffer[1] << 8) + buffer[2]; // 65535 W
break;
case RESP_ENERGY:
*data = (float)((uint32_t)buffer[1] << 16) + ((uint16_t)buffer[2] << 8) + buffer[3]; // 16777215 Wh
break;
}
return true;
}
/*********************************************************************************************/
const uint8_t pzem_commands[] { PZEM_SET_ADDRESS, PZEM_VOLTAGE, PZEM_CURRENT, PZEM_POWER, PZEM_ENERGY };
const uint8_t pzem_responses[] { RESP_SET_ADDRESS, RESP_VOLTAGE, RESP_CURRENT, RESP_POWER, RESP_ENERGY };
uint8_t pzem_read_state = 0;
uint8_t pzem_sendRetry = 0;
void PzemEvery200ms(void)
{
bool data_ready = PzemReceiveReady();
if (data_ready) {
float value = 0;
if (PzemRecieve(pzem_responses[pzem_read_state], &value)) {
Energy.data_valid = 0;
switch (pzem_read_state) {
case 1: // Voltage as 230.2V
Energy.voltage = value;
break;
case 2: // Current as 17.32A
Energy.current = value;
break;
case 3: // Power as 20W
Energy.active_power = value;
break;
case 4: // Total energy as 99999Wh
EnergyUpdateTotal(value, false);
break;
}
pzem_read_state++;
if (5 == pzem_read_state) pzem_read_state = 1;
}
}
if (0 == pzem_sendRetry || data_ready) {
pzem_sendRetry = 5;
PzemSend(pzem_commands[pzem_read_state]);
}
else {
pzem_sendRetry--;
}
}
void PzemSnsInit(void)
{
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
PzemSerial = new TasmotaSerial(pin[GPIO_PZEM004_RX], pin[GPIO_PZEM0XX_TX], 1);
if (PzemSerial->begin(9600)) {
if (PzemSerial->hardwareSerial()) { ClaimSerial(); }
} else {
energy_flg = ENERGY_NONE;
}
}
void PzemDrvInit(void)
{
if ((pin[GPIO_PZEM004_RX] < 99) && (pin[GPIO_PZEM0XX_TX] < 99)) { // Any device with a Pzem004T
energy_flg = XNRG_03;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg03(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_200_MSECOND:
if (PzemSerial) { PzemEvery200ms(); }
break;
case FUNC_INIT:
PzemSnsInit();
break;
case FUNC_PRE_INIT:
PzemDrvInit();
break;
}
return result;
}
#endif // USE_PZEM004T
#endif // USE_ENERGY_SENSOR