/* xdrv_03_energy.ino - Energy sensor support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR /*********************************************************************************************\ * Energy \*********************************************************************************************/ #define XDRV_03 3 #define XSNS_03 3 //#define USE_ENERGY_MARGIN_DETECTION // #define USE_ENERGY_POWER_LIMIT #define ENERGY_NONE 0 #define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present #define ENERGY_MAX_PHASES 3 #include #define D_CMND_POWERCAL "PowerCal" #define D_CMND_VOLTAGECAL "VoltageCal" #define D_CMND_CURRENTCAL "CurrentCal" #define D_CMND_FREQUENCYCAL "FrequencyCal" #define D_CMND_TARIFF "Tariff" #define D_CMND_MODULEADDRESS "ModuleAddress" enum EnergyCommands { CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL, CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG }; const char kEnergyCommands[] PROGMEM = "|" // No prefix D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|" D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|" #ifdef USE_ENERGY_MARGIN_DETECTION D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|" #ifdef USE_ENERGY_POWER_LIMIT D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|" D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|" D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW "|" #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|" D_CMND_TARIFF; void (* const EnergyCommand[])(void) PROGMEM = { &CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal, &CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig, #ifdef USE_ENERGY_MARGIN_DETECTION &CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh, #ifdef USE_ENERGY_POWER_LIMIT &CmndMaxEnergy, &CmndMaxEnergyStart, &CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow, &CmndSafePower, &CmndSafePowerHold, &CmndSafePowerWindow, #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION &CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyUsage, &CmndEnergyExport, &CmndTariff}; const char kEnergyPhases[] PROGMEM = "|%*_f / %*_f|%*_f / %*_f / %*_f||[%*_f,%*_f]|[%*_f,%*_f,%*_f]"; struct ENERGY { float voltage[ENERGY_MAX_PHASES]; // 123.1 V float current[ENERGY_MAX_PHASES]; // 123.123 A float active_power[ENERGY_MAX_PHASES]; // 123.1 W float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr float power_factor[ENERGY_MAX_PHASES]; // 0.12 float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh float start_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous float daily[ENERGY_MAX_PHASES]; // 123.123 kWh float total[ENERGY_MAX_PHASES]; // 12345.12345 kWh total energy float daily_sum; // 123.123 kWh float total_sum; // 12345.12345 kWh total energy float yesterday_sum; // 123.123 kWh int32_t kWhtoday_delta[ENERGY_MAX_PHASES]; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only) int32_t kWhtoday_offset[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily int32_t kWhtoday[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily int32_t period[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily uint8_t fifth_second; uint8_t command_code; uint8_t data_valid[ENERGY_MAX_PHASES]; uint8_t phase_count; // Number of phases active bool voltage_common; // Use single voltage bool frequency_common; // Use single frequency bool use_overtemp; // Use global temperature as overtemp trigger on internal energy monitor hardware bool kWhtoday_offset_init; bool voltage_available; // Enable if voltage is measured bool current_available; // Enable if current is measured bool type_dc; bool power_on; #ifdef USE_ENERGY_MARGIN_DETECTION uint16_t power_history[ENERGY_MAX_PHASES][3]; uint8_t power_steady_counter; // Allow for power on stabilization bool min_power_flag; bool max_power_flag; bool min_voltage_flag; bool max_voltage_flag; bool min_current_flag; bool max_current_flag; #ifdef USE_ENERGY_POWER_LIMIT uint16_t mplh_counter; uint16_t mplw_counter; uint8_t mplr_counter; uint8_t max_energy_state; #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION } Energy; Ticker ticker_energy; /********************************************************************************************/ char* EnergyFormatIndex(char* result, float* input, uint32_t resolution, bool json, uint32_t index, bool single = false) { char layout[20]; GetTextIndexed(layout, sizeof(layout), (index -1) + (ENERGY_MAX_PHASES * json), kEnergyPhases); switch (index) { case 2: ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, resolution, &input[0], resolution, &input[1]); break; case 3: ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, resolution, &input[0], resolution, &input[1], resolution, &input[2]); break; default: ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, PSTR("%*_f"), resolution, &input[0]); } return result; } char* EnergyFormat(char* result, float* input, uint32_t resolution, bool json, bool single = false) { uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3 return EnergyFormatIndex(result, input, resolution, json, index, single); } char* EnergyFormatSum(char* result, float* input, uint32_t resolution, bool json, bool single = false) { uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3 float input_sum = 0.0; if (!Settings->flag5.energy_phase) { for (uint32_t i = 0; i < index; i++) { input_sum += input[i]; } input = &input_sum; index = 1; } return EnergyFormatIndex(result, input, resolution, json, index, single); } /********************************************************************************************/ bool EnergyTariff1Active() // Off-Peak hours { uint8_t dst = 0; if (IsDst() && (Settings->tariff[0][1] != Settings->tariff[1][1])) { dst = 1; } if (Settings->tariff[0][dst] != Settings->tariff[1][dst]) { if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF (RtcTime.day_of_week == 7))) { return true; } uint32_t minutes = MinutesPastMidnight(); if (Settings->tariff[0][dst] > Settings->tariff[1][dst]) { // {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}} return ((minutes >= Settings->tariff[0][dst]) || (minutes < Settings->tariff[1][dst])); } else { // {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}} return ((minutes >= Settings->tariff[0][dst]) && (minutes < Settings->tariff[1][dst])); } } else { return false; } } void EnergyUpdateToday(void) { Energy.total_sum = 0.0; Energy.yesterday_sum = 0.0; Energy.daily_sum = 0.0; for (uint32_t i = 0; i < Energy.phase_count; i++) { if (abs(Energy.kWhtoday_delta[i]) > 1000) { int32_t delta = Energy.kWhtoday_delta[i] / 1000; Energy.kWhtoday_delta[i] -= (delta * 1000); Energy.kWhtoday[i] += delta; } RtcSettings.energy_kWhtoday_ph[i] = Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]; Energy.daily[i] = (float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000; Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + RtcSettings.energy_kWhtoday_ph[i]) / 100000; Energy.total_sum += Energy.total[i]; Energy.yesterday_sum += (float)Settings->energy_kWhyesterday_ph[i] / 100000; Energy.daily_sum += Energy.daily[i]; } if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time. uint32_t energy_diff = (uint32_t)(Energy.total_sum * 100000) - RtcSettings.energy_usage.last_usage_kWhtotal; RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total_sum * 100000); uint32_t return_diff = 0; if (!isnan(Energy.export_active[0])) { // return_diff = (uint32_t)(Energy.export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal; // RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy.export_active * 100000); float export_active = 0.0; for (uint32_t i = 0; i < Energy.phase_count; i++) { if (!isnan(Energy.export_active[i])) { export_active += Energy.export_active[i]; } } return_diff = (uint32_t)(export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal; RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(export_active * 100000); } if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak RtcSettings.energy_usage.usage1_kWhtotal += energy_diff; RtcSettings.energy_usage.return1_kWhtotal += return_diff; } else { RtcSettings.energy_usage.usage2_kWhtotal += energy_diff; RtcSettings.energy_usage.return2_kWhtotal += return_diff; } } } void EnergyUpdateTotal(void) { // Provide total import active energy as float Energy.import_active[phase] in kWh: 98Wh = 0.098kWh for (uint32_t i = 0; i < Energy.phase_count; i++) { AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy.import_active[i]); if (0 == Energy.start_energy[i] || (Energy.import_active[i] < Energy.start_energy[i])) { Energy.start_energy[i] = Energy.import_active[i]; // Init after restart and handle roll-over if any } else if (Energy.import_active[i] != Energy.start_energy[i]) { Energy.kWhtoday[i] = (int32_t)((Energy.import_active[i] - Energy.start_energy[i]) * 100000); } if ((Energy.total[i] < (Energy.import_active[i] - 0.01)) && // We subtract a little offset to avoid continuous updates Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561) RtcSettings.energy_kWhtotal_ph[i] = (int32_t)((Energy.import_active[i] * 100000) - Energy.kWhtoday_offset[i] - Energy.kWhtoday[i]); Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i]; Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]) / 100000; Settings->energy_kWhtotal_time = (!Energy.kWhtoday_offset[i]) ? LocalTime() : Midnight(); // AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value")); } } EnergyUpdateToday(); } /*********************************************************************************************/ void Energy200ms(void) { Energy.power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check; // SetOption21 - Show voltage even if powered off Energy.fifth_second++; if (5 == Energy.fifth_second) { Energy.fifth_second = 0; XnrgCall(FUNC_ENERGY_EVERY_SECOND); if (RtcTime.valid) { if (!Energy.kWhtoday_offset_init && (RtcTime.day_of_year == Settings->energy_kWhdoy)) { for (uint32_t i = 0; i < 3; i++) { Energy.kWhtoday_offset[i] = Settings->energy_kWhtoday_ph[i]; } Energy.kWhtoday_offset_init = true; } if (LocalTime() == Midnight()) { for (uint32_t i = 0; i < 3; i++) { Settings->energy_kWhyesterday_ph[i] = RtcSettings.energy_kWhtoday_ph[i]; RtcSettings.energy_kWhtotal_ph[i] += RtcSettings.energy_kWhtoday_ph[i]; Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i]; Energy.period[i] -= RtcSettings.energy_kWhtoday_ph[i]; // this becomes a large unsigned, effectively a negative for EnergyShow calculation Energy.kWhtoday[i] = 0; Energy.kWhtoday_offset[i] = 0; RtcSettings.energy_kWhtoday_ph[i] = 0; Energy.start_energy[i] = 0; // Energy.kWhtoday_delta = 0; // dont zero this, we need to carry the remainder over to tomorrow } EnergyUpdateToday(); #if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT) Energy.max_energy_state = 3; #endif // USE_ENERGY_POWER_LIMIT } #if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT) if ((RtcTime.hour == Settings->energy_max_energy_start) && (3 == Energy.max_energy_state )) { Energy.max_energy_state = 0; } #endif // USE_ENERGY_POWER_LIMIT } } XnrgCall(FUNC_EVERY_200_MSECOND); } void EnergySaveState(void) { Settings->energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0; for (uint32_t i = 0; i < 3; i++) { Settings->energy_kWhtoday_ph[i] = RtcSettings.energy_kWhtoday_ph[i]; Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i]; } Settings->energy_usage = RtcSettings.energy_usage; } #ifdef USE_ENERGY_MARGIN_DETECTION bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag) { bool change; if (!margin) return false; change = save_flag; if (type) { flag = (value > margin); } else { flag = (value < margin); } save_flag = flag; return (change != save_flag); } void EnergyMarginCheck(void) { if (Energy.power_steady_counter) { Energy.power_steady_counter--; return; } bool jsonflg = false; Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{")); int16_t power_diff[ENERGY_MAX_PHASES] = { 0 }; for (uint32_t phase = 0; phase < Energy.phase_count; phase++) { uint16_t active_power = (uint16_t)(Energy.active_power[phase]); // AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy.power_history[phase][0], Energy.power_history[phase][1], Energy.power_history[phase][2]); if (Settings->energy_power_delta[phase]) { power_diff[phase] = active_power - Energy.power_history[phase][0]; uint16_t delta = abs(power_diff[phase]); bool threshold_met = false; if (delta > 0) { if (Settings->energy_power_delta[phase] < 101) { // 1..100 = Percentage uint16_t min_power = (Energy.power_history[phase][0] > active_power) ? active_power : Energy.power_history[phase][0]; if (0 == min_power) { min_power++; } // Fix divide by 0 exception (#6741) delta = (delta * 100) / min_power; if (delta > Settings->energy_power_delta[phase]) { threshold_met = true; } } else { // 101..32000 = Absolute if (delta > (Settings->energy_power_delta[phase] -100)) { threshold_met = true; } } } if (threshold_met) { Energy.power_history[phase][1] = active_power; // We only want one report so reset history Energy.power_history[phase][2] = active_power; jsonflg = true; } else { power_diff[phase] = 0; } } Energy.power_history[phase][0] = Energy.power_history[phase][1]; // Shift in history every second allowing power changes to settle for up to three seconds Energy.power_history[phase][1] = Energy.power_history[phase][2]; Energy.power_history[phase][2] = active_power; } if (jsonflg) { /* char power_diff_chr[Energy.phase_count][FLOATSZ]; for (uint32_t phase = 0; phase < Energy.phase_count; phase++) { dtostrfd(power_diff[phase], 0, power_diff_chr[phase]); } char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_chr[0], 1)); */ float power_diff_f[Energy.phase_count]; for (uint32_t phase = 0; phase < Energy.phase_count; phase++) { power_diff_f[phase] = power_diff[phase]; } char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_f, 0, 1)); } uint16_t energy_power_u = (uint16_t)(Energy.active_power[0]); if (Energy.power_on && (Settings->energy_min_power || Settings->energy_max_power || Settings->energy_min_voltage || Settings->energy_max_voltage || Settings->energy_min_current || Settings->energy_max_current)) { uint16_t energy_voltage_u = (uint16_t)(Energy.voltage[0]); uint16_t energy_current_u = (uint16_t)(Energy.current[0] * 1000); DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u); bool flag; if (EnergyMargin(false, Settings->energy_min_power, energy_power_u, flag, Energy.min_power_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Settings->energy_max_power, energy_power_u, flag, Energy.max_power_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(false, Settings->energy_min_voltage, energy_voltage_u, flag, Energy.min_voltage_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Settings->energy_max_voltage, energy_voltage_u, flag, Energy.max_voltage_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(false, Settings->energy_min_current, energy_current_u, flag, Energy.min_current_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Settings->energy_max_current, energy_current_u, flag, Energy.max_current_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } } if (jsonflg) { ResponseJsonEndEnd(); MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_MARGINS), MQTT_TELE_RETAIN); EnergyMqttShow(); } #ifdef USE_ENERGY_POWER_LIMIT // Max Power if (Settings->energy_max_power_limit) { if (Energy.active_power[0] > Settings->energy_max_power_limit) { if (!Energy.mplh_counter) { Energy.mplh_counter = Settings->energy_max_power_limit_hold; } else { Energy.mplh_counter--; if (!Energy.mplh_counter) { ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u); MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER); if (!Energy.mplr_counter) { Energy.mplr_counter = Settings->param[P_MAX_POWER_RETRY] +1; // SetOption33 - Max Power Retry count } Energy.mplw_counter = Settings->energy_max_power_limit_window; } } } else if (TasmotaGlobal.power && (energy_power_u <= Settings->energy_max_power_limit)) { Energy.mplh_counter = 0; Energy.mplr_counter = 0; Energy.mplw_counter = 0; } if (!TasmotaGlobal.power) { if (Energy.mplw_counter) { Energy.mplw_counter--; } else { if (Energy.mplr_counter) { Energy.mplr_counter--; if (Energy.mplr_counter) { ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1)); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR)); RestorePower(true, SRC_MAXPOWER); } else { ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0)); MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER); } } } } } // Max Energy if (Settings->energy_max_energy) { uint16_t energy_daily_u = (uint16_t)(Energy.daily_sum * 1000); if (!Energy.max_energy_state && (RtcTime.hour == Settings->energy_max_energy_start)) { Energy.max_energy_state = 1; ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1)); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR)); RestorePower(true, SRC_MAXENERGY); } else if ((1 == Energy.max_energy_state ) && (energy_daily_u >= Settings->energy_max_energy)) { Energy.max_energy_state = 2; ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &Energy.daily_sum); MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); SetAllPower(POWER_ALL_OFF, SRC_MAXENERGY); } } #endif // USE_ENERGY_POWER_LIMIT } void EnergyMqttShow(void) { // {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}} int tele_period_save = TasmotaGlobal.tele_period; TasmotaGlobal.tele_period = 2; ResponseClear(); ResponseAppendTime(); EnergyShow(true); TasmotaGlobal.tele_period = tele_period_save; ResponseJsonEnd(); MqttPublishTeleSensor(); } #endif // USE_ENERGY_MARGIN_DETECTION void EnergyEverySecond(void) { // Overtemp check if (Energy.use_overtemp && TasmotaGlobal.global_update) { if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) { // SetOption42 Device overtemp, turn off relays AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius); SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP); } } // Invalid data reset if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) { uint32_t data_valid = Energy.phase_count; for (uint32_t i = 0; i < Energy.phase_count; i++) { if (Energy.data_valid[i] <= ENERGY_WATCHDOG) { Energy.data_valid[i]++; if (Energy.data_valid[i] > ENERGY_WATCHDOG) { // Reset energy registers Energy.voltage[i] = 0; Energy.current[i] = 0; Energy.active_power[i] = 0; if (!isnan(Energy.apparent_power[i])) { Energy.apparent_power[i] = 0; } if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; } if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; } if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; } if (!isnan(Energy.export_active[i])) { Energy.export_active[i] = 0; } data_valid--; } } } if (!data_valid) { //Energy.start_energy = 0; AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data")); XnrgCall(FUNC_ENERGY_RESET); } } #ifdef USE_ENERGY_MARGIN_DETECTION EnergyMarginCheck(); #endif // USE_ENERGY_MARGIN_DETECTION } /*********************************************************************************************\ * Commands \*********************************************************************************************/ void EnergyCommandCalResponse(uint32_t nvalue) { snprintf_P(XdrvMailbox.command, CMDSZ, PSTR("%sCal"), XdrvMailbox.command); ResponseCmndNumber(nvalue); } void ResponseCmndEnergyTotalYesterdayToday(void) { char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex char value2_chr[FLOATSZ * ENERGY_MAX_PHASES]; char value3_chr[FLOATSZ * ENERGY_MAX_PHASES]; float energy_yesterday_ph[3]; for (uint32_t i = 0; i < Energy.phase_count; i++) { energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000; Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]) / 100000; } Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s}"), XdrvMailbox.command, EnergyFormat(value_chr, Energy.total, Settings->flag2.energy_resolution, true), EnergyFormat(value2_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, true), EnergyFormat(value3_chr, Energy.daily, Settings->flag2.energy_resolution, true)); } void CmndEnergyTotal(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) { uint32_t phase = XdrvMailbox.index -1; // Reset Energy Total RtcSettings.energy_kWhtotal_ph[phase] = values[0] * 100; Settings->energy_kWhtotal_ph[phase] = RtcSettings.energy_kWhtotal_ph[phase]; if (params > 1) { Settings->energy_kWhtotal_time = values[1]; } else { Settings->energy_kWhtotal_time = (!Energy.kWhtoday_offset[phase]) ? LocalTime() : Midnight(); } RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total[phase] * 1000); } ResponseCmndEnergyTotalYesterdayToday(); } void CmndEnergyYesterday(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) { uint32_t phase = XdrvMailbox.index -1; // Reset Energy Yesterday Settings->energy_kWhyesterday_ph[phase] = values[0] * 100; if (params > 1) { Settings->energy_kWhtotal_time = values[1]; } } ResponseCmndEnergyTotalYesterdayToday(); } void CmndEnergyToday(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) { uint32_t phase = XdrvMailbox.index -1; // Reset Energy Today Energy.kWhtoday_offset[phase] = values[0] * 100; Energy.kWhtoday[phase] = 0; Energy.kWhtoday_delta[phase] = 0; Energy.start_energy[phase] = 0; Energy.period[phase] = Energy.kWhtoday_offset[phase]; Settings->energy_kWhtoday_ph[phase] = Energy.kWhtoday_offset[phase]; RtcSettings.energy_kWhtoday_ph[phase] = Energy.kWhtoday_offset[phase]; Energy.daily[phase] = (float)Energy.kWhtoday_offset[phase] / 100000; if (params > 1) { Settings->energy_kWhtotal_time = values[1]; } else if (!RtcSettings.energy_kWhtotal_ph[phase] && !Energy.kWhtoday_offset[phase]) { Settings->energy_kWhtotal_time = LocalTime(); } } ResponseCmndEnergyTotalYesterdayToday(); } void ResponseCmndEnergyUsageExport(void) { float usage1_kWhtotal = (float)Settings->energy_usage.usage1_kWhtotal / 100000; float usage2_kWhtotal = (float)Settings->energy_usage.usage2_kWhtotal / 100000; float return1_kWhtotal = (float)Settings->energy_usage.return1_kWhtotal / 100000; float return2_kWhtotal = (float)Settings->energy_usage.return2_kWhtotal / 100000; Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"), XdrvMailbox.command, Settings->flag2.energy_resolution, &usage1_kWhtotal, Settings->flag2.energy_resolution, &usage2_kWhtotal, Settings->flag2.energy_resolution, &return1_kWhtotal, Settings->flag2.energy_resolution, &return2_kWhtotal); } void CmndEnergyUsage(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if (params > 0) { // Reset energy_usage.usage totals RtcSettings.energy_usage.usage1_kWhtotal = values[0] * 100; if (params > 1) { RtcSettings.energy_usage.usage2_kWhtotal = values[1] * 100; } Settings->energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal; Settings->energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal; } ResponseCmndEnergyUsageExport(); } void CmndEnergyExport(void) { uint32_t values[2] = { 0 }; uint32_t params = ParseParameters(2, values); if (params > 0) { // Reset energy_usage.return totals RtcSettings.energy_usage.return1_kWhtotal = values[0] * 100; if (params > 1) { RtcSettings.energy_usage.return2_kWhtotal = values[1] * 100; } Settings->energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal; Settings->energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal; } ResponseCmndEnergyUsageExport(); } void CmndTariff(void) { // Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time // Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time // Tariffx 1320, 1380 = minutes and also 22:00, 23:00 // Tariffx 22, 23 = hours and also 22:00, 23:00 // Tariff9 0/1 if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) { uint32_t tariff = XdrvMailbox.index -1; uint32_t time_type = 0; char *p; char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30 while ((str != nullptr) && (time_type < 2)) { char *q; uint32_t value = strtol(str, &q, 10); // 23 or 22 Settings->tariff[tariff][time_type] = value; if (value < 24) { // Below 24 is hours Settings->tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes char *minute = strtok_r(nullptr, ":", &q); if (minute) { value = strtol(minute, nullptr, 10); // 15 or 30 if (value > 59) { value = 59; } Settings->tariff[tariff][time_type] += value; } } if (Settings->tariff[tariff][time_type] > 1439) { Settings->tariff[tariff][time_type] = 1439; // Max is 23:59 } str = strtok_r(nullptr, ", ", &p); time_type++; } } else if (XdrvMailbox.index == 9) { Settings->flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF } Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\"}}"), XdrvMailbox.command, GetMinuteTime(Settings->tariff[0][0]).c_str(),GetMinuteTime(Settings->tariff[0][1]).c_str(), GetMinuteTime(Settings->tariff[1][0]).c_str(),GetMinuteTime(Settings->tariff[1][1]).c_str(), GetStateText(Settings->flag3.energy_weekend)); // CMND_TARIFF } void CmndPowerCal(void) { Energy.command_code = CMND_POWERCAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if (XdrvMailbox.payload > 999) { Settings->energy_power_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_power_calibration); } } void CmndVoltageCal(void) { Energy.command_code = CMND_VOLTAGECAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if (XdrvMailbox.payload > 999) { Settings->energy_voltage_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_voltage_calibration); } } void CmndCurrentCal(void) { Energy.command_code = CMND_CURRENTCAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if (XdrvMailbox.payload > 999) { Settings->energy_current_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_current_calibration); } } void CmndFrequencyCal(void) { Energy.command_code = CMND_FREQUENCYCAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if (XdrvMailbox.payload > 999) { Settings->energy_frequency_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_frequency_calibration); } } void CmndPowerSet(void) { Energy.command_code = CMND_POWERSET; if (XnrgCall(FUNC_COMMAND)) { // Watt EnergyCommandCalResponse(Settings->energy_power_calibration); } } void CmndVoltageSet(void) { Energy.command_code = CMND_VOLTAGESET; if (XnrgCall(FUNC_COMMAND)) { // Volt EnergyCommandCalResponse(Settings->energy_voltage_calibration); } } void CmndCurrentSet(void) { Energy.command_code = CMND_CURRENTSET; if (XnrgCall(FUNC_COMMAND)) { // milliAmpere EnergyCommandCalResponse(Settings->energy_current_calibration); } } void CmndFrequencySet(void) { Energy.command_code = CMND_FREQUENCYSET; if (XnrgCall(FUNC_COMMAND)) { // Hz EnergyCommandCalResponse(Settings->energy_frequency_calibration); } } void CmndModuleAddress(void) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4) && (1 == Energy.phase_count)) { Energy.command_code = CMND_MODULEADDRESS; if (XnrgCall(FUNC_COMMAND)) { // Module address ResponseCmndDone(); } } } void CmndEnergyConfig(void) { Energy.command_code = CMND_ENERGYCONFIG; if (XnrgCall(FUNC_COMMAND)) { ResponseCmndDone(); } } #ifdef USE_ENERGY_MARGIN_DETECTION void CmndPowerDelta(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32000)) { Settings->energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload; } ResponseCmndIdxNumber(Settings->energy_power_delta[XdrvMailbox.index -1]); } } void CmndPowerLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_min_power = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_min_power); } void CmndPowerHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_power = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power); } void CmndVoltageLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) { Settings->energy_min_voltage = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_min_voltage); } void CmndVoltageHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) { Settings->energy_max_voltage = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_voltage); } void CmndCurrentLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) { Settings->energy_min_current = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_min_current); } void CmndCurrentHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) { Settings->energy_max_current = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_current); } #ifdef USE_ENERGY_POWER_LIMIT void CmndMaxPower(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_power_limit = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power_limit); } void CmndMaxPowerHold(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power_limit_hold); } void CmndMaxPowerWindow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power_limit_window); } void CmndSafePower(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_power_safe_limit = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power_safe_limit); } void CmndSafePowerHold(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power_safe_limit_hold); } void CmndSafePowerWindow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) { Settings->energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_power_safe_limit_window); } void CmndMaxEnergy(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings->energy_max_energy = XdrvMailbox.payload; Energy.max_energy_state = 3; } ResponseCmndNumber(Settings->energy_max_energy); } void CmndMaxEnergyStart(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) { Settings->energy_max_energy_start = XdrvMailbox.payload; } ResponseCmndNumber(Settings->energy_max_energy_start); } #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION void EnergyDrvInit(void) { memset(&Energy, 0, sizeof(Energy)); // Reset all to 0 and false; for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) { Energy.apparent_power[phase] = NAN; Energy.reactive_power[phase] = NAN; Energy.power_factor[phase] = NAN; Energy.frequency[phase] = NAN; Energy.export_active[phase] = NAN; } Energy.phase_count = 1; // Number of phases active Energy.voltage_available = true; // Enable if voltage is measured Energy.current_available = true; // Enable if current is measured Energy.power_on = true; #ifdef USE_ENERGY_MARGIN_DETECTION Energy.power_steady_counter = 8; // Allow for power on stabilization #endif // USE_ENERGY_MARGIN_DETECTION TasmotaGlobal.energy_driver = ENERGY_NONE; XnrgCall(FUNC_PRE_INIT); // Find first energy driver } void EnergySnsInit(void) { XnrgCall(FUNC_INIT); if (TasmotaGlobal.energy_driver) { // Update for split phase totals (v9.5.0.9) if ((Settings->energy_kWhtotal > 0) && (0 == Settings->energy_kWhtotal_ph[0])) { Settings->energy_kWhtotal_ph[0] = Settings->energy_kWhtotal; Settings->energy_kWhtoday_ph[0] = Settings->energy_kWhtoday; Settings->energy_kWhyesterday_ph[0] = Settings->energy_kWhyesterday; RtcSettings.energy_kWhtoday_ph[0] = RtcSettings.energy_kWhtoday; RtcSettings.energy_kWhtotal_ph[0] = RtcSettings.energy_kWhtotal; Settings->energy_kWhtotal = 0; } // Energy.kWhtoday_offset = 0; // Do not use at Power On as Rtc was invalid (but has been restored from Settings already) if ((ResetReason() != REASON_DEFAULT_RST) && RtcSettingsValid()) { for (uint32_t i = 0; i < 3; i++) { Energy.kWhtoday_offset[i] = RtcSettings.energy_kWhtoday_ph[i]; } Energy.kWhtoday_offset_init = true; } for (uint32_t i = 0; i < 3; i++) { // Energy.kWhtoday_ph[i] = 0; // Energy.kWhtoday_delta[i] = 0; Energy.period[i] = Energy.kWhtoday_offset[i]; } EnergyUpdateToday(); ticker_energy.attach_ms(200, Energy200ms); } } #ifdef USE_WEBSERVER const char HTTP_ENERGY_SNS1[] PROGMEM = "{s}" D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}" "{s}" D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}" "{s}" D_POWER_FACTOR "{m}%s{e}"; const char HTTP_ENERGY_SNS2[] PROGMEM = "{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}" "{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}" "{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = , {m} = , {e} = const char HTTP_ENERGY_SNS3[] PROGMEM = "{s}" D_EXPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; #endif // USE_WEBSERVER void EnergyShow(bool json) { if (Energy.voltage_common) { for (uint32_t i = 0; i < Energy.phase_count; i++) { Energy.voltage[i] = Energy.voltage[0]; } } float apparent_power[Energy.phase_count]; float reactive_power[Energy.phase_count]; float power_factor[Energy.phase_count]; if (!Energy.type_dc) { if (Energy.current_available && Energy.voltage_available) { for (uint32_t i = 0; i < Energy.phase_count; i++) { apparent_power[i] = Energy.apparent_power[i]; if (isnan(apparent_power[i])) { apparent_power[i] = Energy.voltage[i] * Energy.current[i]; } if (apparent_power[i] < Energy.active_power[i]) { // Should be impossible Energy.active_power[i] = apparent_power[i]; } power_factor[i] = Energy.power_factor[i]; if (isnan(power_factor[i])) { power_factor[i] = (Energy.active_power[i] && apparent_power[i]) ? Energy.active_power[i] / apparent_power[i] : 0; if (power_factor[i] > 1) { power_factor[i] = 1; } } reactive_power[i] = Energy.reactive_power[i]; if (isnan(reactive_power[i])) { reactive_power[i] = 0; uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy.active_power[i] * 100)) / 10; if ((Energy.current[i] > 0.005) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) { // calculating reactive power only if current is greater than 0.005A and // difference between active and apparent power is greater than 1.5W or 1% //reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy.active_power[i] * Energy.active_power[i] * 100))) / 10; float power_diff = apparent_power[i] * apparent_power[i] - Energy.active_power[i] * Energy.active_power[i]; if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1) reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0))) / 10.0; else reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff))); } } } } } float active_power_sum = 0.0; float energy_yesterday_ph[Energy.phase_count]; for (uint32_t i = 0; i < Energy.phase_count; i++) { energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000; active_power_sum += Energy.active_power[i]; } bool energy_tariff = false; float energy_usage[2]; float energy_return[2]; if (Settings->tariff[0][0] != Settings->tariff[1][0]) { energy_usage[0] = (float)RtcSettings.energy_usage.usage1_kWhtotal / 100000; // Tariff1 energy_usage[1] = (float)RtcSettings.energy_usage.usage2_kWhtotal / 100000; // Tariff2 energy_return[0] = (float)RtcSettings.energy_usage.return1_kWhtotal / 100000; // Tariff1 energy_return[1] = (float)RtcSettings.energy_usage.return2_kWhtotal / 100000; // Tariff2 energy_tariff = true; } char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex char value2_chr[FLOATSZ * ENERGY_MAX_PHASES]; char value3_chr[FLOATSZ * ENERGY_MAX_PHASES]; if (json) { bool show_energy_period = (0 == TasmotaGlobal.tele_period); ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"), GetDateAndTime(DT_ENERGY).c_str(), EnergyFormatSum(value_chr, Energy.total, Settings->flag2.energy_resolution, json)); if (energy_tariff) { ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"), EnergyFormatIndex(value_chr, energy_usage, Settings->flag2.energy_resolution, json, 2)); } ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s"), EnergyFormatSum(value_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, json), EnergyFormatSum(value2_chr, Energy.daily, Settings->flag2.energy_resolution, json)); /* #if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP) if (!isnan(Energy.import_active[0])) { ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"), EnergyFormat(value_chr, Energy.import_active, Settings->flag2.energy_resolution, json)); if (energy_tariff) { ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"), EnergyFormatIndex(value_chr, energy_return, Settings->flag2.energy_resolution, json, 2)); } } #endif // SDM630_IMPORT || SDM72_IMPEXP */ if (!isnan(Energy.export_active[0])) { ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"), EnergyFormat(value_chr, Energy.export_active, Settings->flag2.energy_resolution, json)); if (energy_tariff) { ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"), EnergyFormatIndex(value_chr, energy_return, Settings->flag2.energy_resolution, json, 2)); } } if (show_energy_period) { float energy_period[Energy.phase_count]; for (uint32_t i = 0; i < Energy.phase_count; i++) { energy_period[i] = (float)(RtcSettings.energy_kWhtoday_ph[i] - Energy.period[i]) / 100; Energy.period[i] = RtcSettings.energy_kWhtoday_ph[i]; } ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"), EnergyFormat(value_chr, energy_period, Settings->flag2.wattage_resolution, json)); } ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"), EnergyFormat(value_chr, Energy.active_power, Settings->flag2.wattage_resolution, json)); if (!Energy.type_dc) { if (Energy.current_available && Energy.voltage_available) { ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s"), EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution, json), EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution, json), EnergyFormat(value3_chr, power_factor, 2, json)); } if (!isnan(Energy.frequency[0])) { ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"), EnergyFormat(value_chr, Energy.frequency, Settings->flag2.frequency_resolution, json, Energy.frequency_common)); } } if (Energy.voltage_available) { ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"), EnergyFormat(value_chr, Energy.voltage, Settings->flag2.voltage_resolution, json, Energy.voltage_common)); } if (Energy.current_available) { ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"), EnergyFormat(value_chr, Energy.current, Settings->flag2.current_resolution, json)); } XnrgCall(FUNC_JSON_APPEND); ResponseJsonEnd(); #ifdef USE_DOMOTICZ if (show_energy_period) { // Only send if telemetry char temp_chr[FLOATSZ]; if (Energy.voltage_available) { dtostrfd(Energy.voltage[0], Settings->flag2.voltage_resolution, temp_chr); DomoticzSensor(DZ_VOLTAGE, temp_chr); // Voltage } if (Energy.current_available) { dtostrfd(Energy.current[0], Settings->flag2.current_resolution, temp_chr); DomoticzSensor(DZ_CURRENT, temp_chr); // Current } dtostrfd(Energy.total_sum * 1000, 1, temp_chr); DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr); // PowerUsage, EnergyToday char energy_usage_chr[2][FLOATSZ]; char energy_return_chr[2][FLOATSZ]; dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100, 1, energy_usage_chr[0]); // Tariff1 dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100, 1, energy_usage_chr[1]); // Tariff2 dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100, 1, energy_return_chr[0]); dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100, 1, energy_return_chr[1]); DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (show_energy_period) { if (Energy.voltage_available) { KnxSensor(KNX_ENERGY_VOLTAGE, Energy.voltage[0]); } if (Energy.current_available) { KnxSensor(KNX_ENERGY_CURRENT, Energy.current[0]); } KnxSensor(KNX_ENERGY_POWER, active_power_sum); if (!Energy.type_dc) { KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]); } KnxSensor(KNX_ENERGY_DAILY, Energy.daily_sum); KnxSensor(KNX_ENERGY_TOTAL, Energy.total_sum); KnxSensor(KNX_ENERGY_YESTERDAY, Energy.yesterday_sum); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { if (Energy.voltage_available) { WSContentSend_PD(HTTP_SNS_VOLTAGE, EnergyFormat(value_chr, Energy.voltage, Settings->flag2.voltage_resolution, json, Energy.voltage_common)); } if (!Energy.type_dc) { if (!isnan(Energy.frequency[0])) { WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"), EnergyFormat(value_chr, Energy.frequency, Settings->flag2.frequency_resolution, json, Energy.frequency_common)); } } if (Energy.current_available) { WSContentSend_PD(HTTP_SNS_CURRENT, EnergyFormat(value_chr, Energy.current, Settings->flag2.current_resolution, json)); } WSContentSend_PD(HTTP_SNS_POWER, EnergyFormat(value_chr, Energy.active_power, Settings->flag2.wattage_resolution, json)); if (!Energy.type_dc) { if (Energy.current_available && Energy.voltage_available) { WSContentSend_PD(HTTP_ENERGY_SNS1, EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution, json), EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution, json), EnergyFormat(value3_chr, power_factor, 2, json)); } } WSContentSend_PD(HTTP_ENERGY_SNS2, EnergyFormatSum(value_chr, Energy.daily, Settings->flag2.energy_resolution, json), EnergyFormatSum(value2_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, json), EnergyFormatSum(value3_chr, Energy.total, Settings->flag2.energy_resolution, json)); if (!isnan(Energy.export_active[0])) { WSContentSend_PD(HTTP_ENERGY_SNS3, EnergyFormat(value_chr, Energy.export_active, Settings->flag2.energy_resolution, json)); } XnrgCall(FUNC_WEB_SENSOR); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv03(uint8_t function) { bool result = false; if (FUNC_PRE_INIT == function) { EnergyDrvInit(); } else if (TasmotaGlobal.energy_driver) { switch (function) { case FUNC_LOOP: XnrgCall(FUNC_LOOP); break; case FUNC_EVERY_250_MSECOND: if (TasmotaGlobal.uptime > 4) { XnrgCall(FUNC_EVERY_250_MSECOND); } break; case FUNC_EVERY_SECOND: XnrgCall(FUNC_EVERY_SECOND); break; case FUNC_SERIAL: result = XnrgCall(FUNC_SERIAL); break; #ifdef USE_ENERGY_MARGIN_DETECTION case FUNC_SET_POWER: Energy.power_steady_counter = 2; break; #endif // USE_ENERGY_MARGIN_DETECTION case FUNC_COMMAND: result = DecodeCommand(kEnergyCommands, EnergyCommand); break; } } return result; } bool Xsns03(uint8_t function) { bool result = false; if (TasmotaGlobal.energy_driver) { switch (function) { case FUNC_EVERY_SECOND: EnergyEverySecond(); break; case FUNC_JSON_APPEND: EnergyShow(true); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: EnergyShow(false); break; #endif // USE_WEBSERVER case FUNC_SAVE_BEFORE_RESTART: EnergySaveState(); break; case FUNC_INIT: EnergySnsInit(); break; } } return result; } #endif // USE_ENERGY_SENSOR