/*
xnrg_16_iem3000.ino - Schneider Electric iEM3000 series Modbus energy meter support for Tasmota
Copyright (C) 2022 Marius Bezuidenhout
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_IEM3000
/*********************************************************************************************\
* Schneider Electric iEM3000 series Modbus energy meter
* iEM3150 / iEM3155 / iEM3250 / iEM3255 / iEM3350 / iEM3355 / iEM3455 / iEM3555
* Important! Set meter Commnication -> Parity to None
\*********************************************************************************************/
#define XNRG_16 16
// can be user defined in my_user_config.h
#ifndef IEM3000_SPEED
#define IEM3000_SPEED 19200 // default IEM3000 Modbus address
#endif
// can be user defined in my_user_config.h
#ifndef IEM3000_ADDR
#define IEM3000_ADDR 1 // default IEM3000 Modbus address
#endif
#include
TasmotaModbus *Iem3000Modbus;
const uint16_t Iem3000_start_addresses[] {
// ID (reg count/datatype) [unit] Description
0x0bb7, // 0 . IEM3000_I1_CURRENT (2/Float32) [A] I1: phase 1 current
0x0bb9, // 1 . IEM3000_I2_CURRENT (2/Float32) [A] I2: phase 2 current
0x0bbb, // 2 . IEM3000_I3_CURRENT (2/Float32) [A] I3: phase 3 current
0x0bd3, // 3 . IEM3000_L1_VOLTAGE (2/Float32) [V] Voltage L1–N
0x0bd5, // 4 . IEM3000_L2_VOLTAGE (2/Float32) [V] Voltage L2–N
0x0bd7, // 5 . IEM3000_L3_VOLTAGE (2/Float32) [V] Voltage L3–N
0x0bed, // 6 . IEM3000_P1_POWER (2/Float32) [kW] Active Power Phase 1
0x0bef, // 7 . IEM3000_P2_POWER (2/Float32) [kW] Active Power Phase 2
0x0bf1, // 8 . IEM3000_P3_POWER (2/Float32) [kW] Active Power Phase 3
0x0c25, // 9 . IEM3000_FREQUENCY (2/Float32) [Hz] Frequency
0x0dbd, // 10 . IEM3000_L1_IMPORT (4/Int64) [Wh] Active Energy Import Phase 1
0x0dc1, // 11 . IEM3000_L1_IMPORT (4/Int64) [Wh] Active Energy Import Phase 1
0x0dc5, // 12 . IEM3000_L1_IMPORT (4/Int64) [Wh] Active Energy Import Phase 1
0x0c83, // 13 . IEM3000_IMPORT (4/Int64) [Wh] Total Active Energy Import
};
#define FLOAT_ParamLimit 10
struct IEM3000 {
uint8_t read_state = 0;
uint8_t send_retry = 0;
} Iem3000;
/*********************************************************************************************/
void IEM3000Every250ms(void)
{
bool data_ready = Iem3000Modbus->ReceiveReady();
uint8_t reg_count = 4;
if (Iem3000.read_state < FLOAT_ParamLimit) {
reg_count = 2;
}
if (data_ready) {
uint8_t buffer[16]; // At least 5 + sizeof(int64_t) = 13
uint32_t error = Iem3000Modbus->ReceiveBuffer(buffer, reg_count);
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, Iem3000Modbus->ReceiveCount());
if (error) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SDM: Iem3000 error %d"), error);
} else {
Energy.data_valid[0] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
float value;
int64_t value64;
if(Iem3000.read_state >= 0 && Iem3000.read_state < FLOAT_ParamLimit) {
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
} else {
((uint8_t*)&value64)[7] = buffer[3]; // Get int values
((uint8_t*)&value64)[6] = buffer[4];
((uint8_t*)&value64)[5] = buffer[5];
((uint8_t*)&value64)[4] = buffer[6];
((uint8_t*)&value64)[3] = buffer[7];
((uint8_t*)&value64)[2] = buffer[8];
((uint8_t*)&value64)[1] = buffer[9];
((uint8_t*)&value64)[0] = buffer[10];
}
switch(Iem3000.read_state) {
case 0:
Energy.current[0] = value;
break;
case 1:
Energy.current[1] = value;
break;
case 2:
Energy.current[2] = value;
break;
case 3:
Energy.voltage[0] = value;
break;
case 4:
Energy.voltage[1] = value;
break;
case 5:
Energy.voltage[2] = value;
break;
case 6:
Energy.active_power[0] = value*1000;
break;
case 7:
Energy.active_power[1] = value*1000;
break;
case 8:
Energy.active_power[2] = value*1000;
break;
case 9:
Energy.frequency[0] = value;
break;
case 10:
Energy.import_active[0] = value;
break;
case 11:
Energy.import_active[1] = value;
break;
case 12:
Energy.import_active[2] = value;
break;
case 13:
EnergyUpdateTotal();
break;
}
Iem3000.read_state++;
if (sizeof(Iem3000_start_addresses)/2 == Iem3000.read_state) {
Iem3000.read_state = 0;
}
}
} // end data ready
if (0 == Iem3000.send_retry || data_ready) {
Iem3000.send_retry = 5;
Iem3000Modbus->Send(IEM3000_ADDR, 0x03, Iem3000_start_addresses[Iem3000.read_state], reg_count);
} else {
Iem3000.send_retry--;
}
}
void Iem3000SnsInit(void)
{
Iem3000Modbus = new TasmotaModbus(Pin(GPIO_IEM3000_RX), Pin(GPIO_IEM3000_TX));
uint8_t result = Iem3000Modbus->Begin(IEM3000_SPEED);
if (result) {
if (2 == result) { ClaimSerial(); }
Energy.phase_count = 3;
Energy.frequency_common = true; // Use common frequency
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Iem3000DrvInit(void)
{
if (PinUsed(GPIO_IEM3000_RX) && PinUsed(GPIO_IEM3000_TX)) {
TasmotaGlobal.energy_driver = XNRG_16;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg16(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_250_MSECOND:
IEM3000Every250ms();
break;
case FUNC_INIT:
Iem3000SnsInit();
break;
case FUNC_PRE_INIT:
Iem3000DrvInit();
break;
}
return result;
}
#endif // USE_IEM3000
#endif // USE_ENERGY_SENSOR