/* xsns_61_Ml_BLE.ino - MI-BLE-sensors via nrf24l01 support for Tasmota Copyright (C) 2020 Christian Baars and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -------------------------------------------------------------------------------------------- Version yyyymmdd Action Description -------------------------------------------------------------------------------------------- 0.9.1.0 20200117 integrate - Added support for the LYWSD02 --- 0.9.0.0 20191127 started - further development by Christian Baars base - code base from cbm80amiga, floe, Dmitry.GR forked - from arendst/tasmota - https://github.com/arendst/Tasmota */ #ifdef USE_SPI #ifdef USE_NRF24 #ifdef USE_MIBLE #ifdef DEBUG_TASMOTA_SENSOR #define MIBLE_LOG_BUFFER(x) MIBLEshowBuffer(x); #else #define MIBLE_LOG_BUFFER(x) #endif /*********************************************************************************************\ * MIBLE * BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora * * Usage: Configure NRF24 \*********************************************************************************************/ #define XSNS_61 61 #include const char MIBLESlaveFlora[] PROGMEM = "Flora"; const char MIBLESlaveMJ_HT_V1[] PROGMEM = "MJ_HT_V1"; const char MIBLESlaveLYWSD02[] PROGMEM = "LYWSD02"; #pragma pack(1) // important!! struct MJ_HT_V1Header_t {// related to the payload uint8_t padding[3]; uint8_t mesSize; // 3 uint8_t padding2; uint16_t uuid; // 5,6 -> 0xFE95 uint16_t type; // 7,8 -> 0x2050 MI-TH-V1 uint8_t padding3[2]; uint8_t counter; // 11 - counts up with every sent record uint8_t serial[6]; // 12 - 17 uint8_t mode; // 18 uint8_t padding5; uint8_t effectiveDataLength; }; struct FlowerHeader_t { // related to the payload uint8_t padding[4]; uint8_t padding2; uint16_t uuid; // 5,6 -> 0xFE95 uint8_t mesSize; uint8_t padding22; uint16_t uuid2; // 9,10 -> 0xFE95 uint16_t type; // 11,12 -> 0x7120 Flowercare uint8_t padding3[2]; uint8_t counter; // 15 - counts up with every sent record uint8_t serial[6]; // 16 - 21 uint8_t padding4; //22 uint8_t mode; // 23 }; union floraPacket_t { // related to the whole 32-byte-packet/buffer struct { uint16_t idWord; uint8_t padding; uint8_t serial[6]; uint8_t padding4; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; // 1 uint16_t data; } T; // mode 04 struct { uint16_t idWord; uint8_t padding; uint8_t serial[6]; uint8_t padding4; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; // 3 uint16_t data; uint8_t data2; // unknown meaning, maybe it is a real uint24_t (data with data2) } L; // mode 07 struct { uint8_t padding[3]; uint8_t serial[6]; uint8_t padding4; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; // 1 uint8_t data; } M; // mode 08 struct { uint8_t padding[3]; uint8_t serial[6]; uint8_t padding4; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; // 2 uint16_t data; } F; // mode 09 }; union MJ_HT_V1Packet_t { // related to the whole 32-byte-packet/buffer struct { uint16_t idWord; uint8_t padding; uint8_t serial[6]; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; // 4 uint16_t temp; uint16_t hum; } TH; // mode 0d struct { uint8_t padding[3]; uint8_t serial[6]; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; // 1 uint8_t battery; } B; // mode 0a // We do NOT need the isolated T and H packet }; union LYWSD02Packet_t { // related to the whole 32-byte-packet/buffer struct { uint16_t idWord; uint8_t padding; uint8_t serial[6]; uint8_t padding4; uint8_t mode; uint8_t valueTen; uint8_t effectiveDataLength; uint16_t data; } TH; // mode 04 or 06 }; struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24 uint8_t pduType; uint8_t payloadSize; uint8_t mac[6]; union { uint8_t payload[24]; MJ_HT_V1Header_t header; FlowerHeader_t flowerHeader; struct { uint8_t padding[21]; uint16_t temp; uint8_t hum_lb; // the high byte does not fit into the RX_buffer } TH; // mode 0d struct { uint8_t padding[21]; uint16_t temp; } T; // mode 04 struct { uint8_t padding[21]; uint16_t hum; } H; // mode 06 struct { uint8_t padding[21]; uint8_t battery; } B; // mode 0a struct { uint8_t padding[2]; uint8_t mode; uint16_t size; // 2 uint16_t data; } F_T; // mode 04 struct { uint8_t padding[2]; uint8_t mode; uint16_t size; // 3 uint16_t data; uint8_t data2; // unknown meaning, maybe it is a real uint24_t (data with data2) } F_L; // mode 07 struct { uint8_t padding[2]; uint8_t mode; uint16_t size; // 1 uint8_t data; } F_M; // mode 08 struct { uint8_t padding[2]; uint8_t mode; uint16_t size; // 2 uint16_t data; } F_F; // mode 09 }; }; union FIFO_t{ bleAdvPacket_t bleAdv; floraPacket_t floraPacket; MJ_HT_V1Packet_t MJ_HT_V1Packet; LYWSD02Packet_t LYWSD02Packet; uint8_t raw[32]; }; #pragma pack(0) struct { const uint8_t channel[3] = {37,38,39}; // BLE advertisement channel number const uint8_t frequency[3] = { 2,26,80}; // real frequency (2400+x MHz) uint16_t timer; uint8_t currentChan=0; FIFO_t buffer; uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - special "flora"-packet, 2 - special "MJ_HT_V1"-packet #ifdef DEBUG_TASMOTA_SENSOR uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes uint8_t lsfrBuffer[sizeof(buffer)]; // correpsonding lfsr-bytes for the buffer, probably only useful for a BLE-packet #endif // DEBUG_TASMOTA_SENSOR } MIBLE; struct mi_sensor_t{ uint8_t type; //flora = 1; MI-HT_V1=2; LYWSD02=3 uint8_t serial[6]; uint8_t showedUp; union { struct { float temp; float moisture; float fertility; uint16_t lux; } Flora; struct { float temp; float hum; uint8_t bat; } MJ_HT_V1; struct { float temp; float hum; } LYWSD02; }; }; std::vector MIBLEsensors; /********************************************************************************************/ bool MIBLEinitBLE(uint8_t _mode) { NRF24radio.begin(pin[GPIO_SPI_CS],pin[GPIO_SPI_DC]); NRF24radio.setAutoAck(false); NRF24radio.setDataRate(RF24_1MBPS); NRF24radio.disableCRC(); NRF24radio.setChannel( MIBLE.frequency[MIBLE.currentChan] ); NRF24radio.setRetries(0,0); NRF24radio.setPALevel(RF24_PA_MIN); // we only receive NRF24radio.setAddressWidth(4); // NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171) // NRF24radio.openWritingPipe( 0x6B7D9171); // not used ATM NRF24radio.powerUp(); if(NRF24radio.isChipConnected()){ DEBUG_SENSOR_LOG(PSTR("MIBLE chip connected")); MIBLEchangePacketModeTo(_mode); return true; } DEBUG_SENSOR_LOG(PSTR("MIBLE chip NOT !!!! connected")); return false; } void MIBLEhopChannel() { MIBLE.currentChan++; if(MIBLE.currentChan >= sizeof(MIBLE.channel)) { MIBLE.currentChan = 0; } NRF24radio.setChannel( MIBLE.frequency[MIBLE.currentChan] ); } /** * @brief Read out FIFO-buffer, swap buffer and whiten * * @return true - If something is in the buffer * @return false - Nothing is in the buffer */ bool MIBLEreceivePacket(void) { if(!NRF24radio.available()) { return false; } while(NRF24radio.available()) { // static uint8_t _lsfr = 0; //-> for testing out suitable lsfr-start-values for yet unknown packets // _lsfr++; NRF24radio.read( &MIBLE.buffer, sizeof(MIBLE.buffer) ); #ifdef DEBUG_TASMOTA_SENSOR memcpy(&MIBLE.streamBuffer, &MIBLE.buffer, sizeof(MIBLE.buffer)); #endif // DEBUG_TASMOTA_SENSOR MIBLEswapbuf( sizeof(MIBLE.buffer) ); // MIBLE_LOG_BUFFER(); switch (MIBLE.packetMode) { case 0: MIBLEwhiten((uint8_t *)&MIBLE.buffer, sizeof(MIBLE.buffer), MIBLE.channel[MIBLE.currentChan] | 0x40); break; case 1: MIBLEwhiten((uint8_t *)&MIBLE.buffer, sizeof(MIBLE.buffer), 0x17); // "flora" mode 0x17 break; case 2: MIBLEwhiten((uint8_t *)&MIBLE.buffer, sizeof(MIBLE.buffer), 0x72); // "MJ_HT_V1" mode 0x72 break; case 3: MIBLEwhiten((uint8_t *)&MIBLE.buffer, sizeof(MIBLE.buffer), 0x17); // "LYWSD02" mode 0x17 break; } // DEBUG_SENSOR_LOG(PSTR("MIBLE: LSFR:%x"),_lsfr); // if (_lsfr>254) _lsfr=0; } // DEBUG_SENSOR_LOG(PSTR("MIBLE: did read FIFO")); return true; } #ifdef DEBUG_TASMOTA_SENSOR void MIBLEshowBuffer(uint8_t (&buf)[32]){ // we use this only for the 32-byte-FIFO-buffer, so 32 is hardcoded // DEBUG_SENSOR_LOG(PSTR("MIBLE: Buffer: %c %c %c %c %c %c %c %c" // " %c %c %c %c %c %c %c %c" // " %c %c %c %c %c %c %c %c" // " %c %c %c %c %c %c %c %c") DEBUG_SENSOR_LOG(PSTR("MIBLE: Buffer: %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x ") ,buf[0],buf[1],buf[2],buf[3],buf[4],buf[5],buf[6],buf[7],buf[8],buf[9],buf[10],buf[11], buf[12],buf[13],buf[14],buf[15],buf[16],buf[17],buf[18],buf[19],buf[20],buf[21],buf[22],buf[23], buf[24],buf[25],buf[26],buf[27],buf[28],buf[29],buf[30],buf[31] ); } #endif // DEBUG_TASMOTA_SENSOR /** * @brief change lsfrBuffer content to "wire bit order" * * @param len Buffer lenght (could be hardcoded to 32) */ void MIBLEswapbuf(uint8_t len) { uint8_t* buf = (uint8_t*)&MIBLE.buffer; while(len--) { uint8_t a = *buf; uint8_t v = 0; if (a & 0x80) v |= 0x01; if (a & 0x40) v |= 0x02; if (a & 0x20) v |= 0x04; if (a & 0x10) v |= 0x08; if (a & 0x08) v |= 0x10; if (a & 0x04) v |= 0x20; if (a & 0x02) v |= 0x40; if (a & 0x01) v |= 0x80; *(buf++) = v; } } /** * @brief Whiten the packet buffer * * @param buf The packet buffer * @param len Lenght of the packet buffer * @param lfsr Start lsfr-byte */ void MIBLEwhiten(uint8_t *buf, uint8_t len, uint8_t lfsr) { while(len--) { uint8_t res = 0; // LFSR in "wire bit order" for (uint8_t i = 1; i; i <<= 1) { if (lfsr & 0x01) { lfsr ^= 0x88; res |= i; } lfsr >>= 1; } *(buf++) ^= res; #ifdef DEBUG_TASMOTA_SENSOR MIBLE.lsfrBuffer[31-len] = lfsr; #endif //DEBUG_TASMOTA_SENSOR } } /** * @brief Set packet mode and fitting PDU-type of the NRF24L01 * * @param _mode The internal packet mode number */ void MIBLEchangePacketModeTo(uint8_t _mode) { switch(_mode){ case 0: // normal BLE advertisement NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171) break; case 1: // special flora packet NRF24radio.openReadingPipe(0,0xef3b8730); // 95 fe 71 20 -> flora, needs lfsr 0x17 break; case 2: // special MJ_HT_V1 packet NRF24radio.openReadingPipe(0,0xdbcc0cd3); // 95 fe 50 20 -> MJ_HT_V1, needs lsfr 0x72 break; case 3: // special LYWSD02 packet NRF24radio.openReadingPipe(0,0xef3b0730); // 95 fe 70 20 -> LYWSD02, needs lfsr 0x17 break; } DEBUG_SENSOR_LOG(PSTR("MIBLE: Change Mode to %u"),_mode); MIBLE.timer = 0; MIBLE.packetMode = _mode; } /** * @brief Return the slot number of a known sensor or return create new sensor slot * * @param _serial BLE address of the sensor * @param _type Type number of the sensor * @return uint32_t Known or new slot in the sensors-vector */ uint32_t MIBLEgetSensorSlot(uint8_t (&_serial)[6], uint8_t _type){ DEBUG_SENSOR_LOG(PSTR("MIBLE: vector size %u"), MIBLEsensors.size()); for(uint32_t i=0; i600){ // Change read mode every n/10 seconds if(++_purgeCounter>8){ // happens every 8 x 600 = 4800 seconds DEBUG_SENSOR_LOG(PSTR("MIBLE: check for FAKE sensors")); MIBLEpurgeFakeSensors(); } DEBUG_SENSOR_LOG(PSTR("MIBLE: Change packet mode after 60 seconds, MIBLE.timer: %u"),MIBLE.timer); if (MIBLE.packetMode == 3){ MIBLEinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0 } else { MIBLEinitBLE(MIBLE.packetMode + 1); } } MIBLE.timer++; if (!MIBLEreceivePacket()){ MIBLEhopChannel(); NRF24radio.startListening(); return; } if(MIBLE.buffer.bleAdv.header.uuid==0xfe95){ // XIAOMI-BLE-Packet MIBLE_LOG_BUFFER(MIBLE.streamBuffer); MIBLE_LOG_BUFFER(MIBLE.lsfrBuffer); MIBLE_LOG_BUFFER(MIBLE.buffer.raw); DEBUG_SENSOR_LOG(PSTR("MIBLE: Type: %x"), MIBLE.buffer.bleAdv.header.type); switch(MIBLE.buffer.bleAdv.header.type){ case 0x2050: DEBUG_SENSOR_LOG(PSTR("MIBLE: MJ_HT_V1 Packet")); break; case 0x1613:case 0x1614:case 0x1615: DEBUG_SENSOR_LOG(PSTR("MIBLE: Flora Packet")); break; default: DEBUG_SENSOR_LOG(PSTR("MIBLE: unknown Packet")); break; } } if (MIBLE.packetMode == 1){ // "flora" mode MIBLEhandleFloraPacket(); } if (MIBLE.packetMode == 2){ // "MJ_HT_V1" mode MIBLEhandleMJ_HT_V1Packet(); } if (MIBLE.packetMode == 3){ // "LYWSD02" mode MIBLEhandleLYWSD02Packet(); } MIBLEhopChannel(); NRF24radio.startListening(); } const char HTTP_MIBLE_SERIAL[] PROGMEM = "{s}%s" " Address" "{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}"; const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u%%{e}"; const char HTTP_MIBLE_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%sus/cm{e}"; void MIBLEShow(bool json) { if (json) { if (!MIBLEsensors.size()) { return; } for (uint32_t i = 0; i < MIBLEsensors.size(); i++) { char slave[33]; switch(MIBLEsensors.at(i).type){ case 1: if(MIBLEsensors.at(i).showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MIBLE: sensor not fully registered yet")); break; } sprintf_P(slave,"%s-%02x%02x%02x",MIBLESlaveFlora,MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]); char temperature_flora[33]; dtostrfd(MIBLEsensors.at(i).Flora.temp, Settings.flag2.temperature_resolution, temperature_flora); char lux_flora[33]; dtostrfd((float)MIBLEsensors.at(i).Flora.lux, 0, lux_flora); char moisture_flora[33]; dtostrfd(MIBLEsensors.at(i).Flora.moisture, 0, moisture_flora); char fertility_flora[33]; dtostrfd(MIBLEsensors.at(i).Flora.fertility, 0, fertility_flora); ResponseAppend_P(PSTR(",\"%s\":{"),slave); if(MIBLEsensors.at(i).Flora.temp!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature_flora); } if(MIBLEsensors.at(i).Flora.lux!=0xffff){ // this is the error code -> no temperature ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%s"), lux_flora); } if(MIBLEsensors.at(i).Flora.moisture!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%s"), moisture_flora); } if(MIBLEsensors.at(i).Flora.fertility!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR(",\"Fertility\":%s"), fertility_flora); } ResponseAppend_P(PSTR("}")); break; case 2: if(MIBLEsensors.at(i).showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MIBLE: sensor not fully registered yet")); break; } sprintf_P(slave,"%s-%02x%02x%02x",MIBLESlaveMJ_HT_V1,MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]); char temperature[33]; dtostrfd(MIBLEsensors.at(i).MJ_HT_V1.temp, Settings.flag2.temperature_resolution, temperature); char humidity[33]; dtostrfd(MIBLEsensors.at(i).MJ_HT_V1.hum, 1, humidity); ResponseAppend_P(PSTR(",\"%s\":{"),slave); if(MIBLEsensors.at(i).MJ_HT_V1.temp!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature); } if(MIBLEsensors.at(i).MJ_HT_V1.hum!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity); } if(MIBLEsensors.at(i).MJ_HT_V1.bat!=0xff){ // this is the error code -> no temperature ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors.at(i).MJ_HT_V1.bat); } ResponseAppend_P(PSTR("}")); break; case 3: if(MIBLEsensors.at(i).showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MIBLE: sensor not fully registered yet")); break; } sprintf_P(slave,"%s-%02x%02x%02x",MIBLESlaveLYWSD02,MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]); dtostrfd(MIBLEsensors.at(i).LYWSD02.temp, Settings.flag2.temperature_resolution, temperature); dtostrfd(MIBLEsensors.at(i).LYWSD02.hum, 1, humidity); ResponseAppend_P(PSTR(",\"%s\":{"),slave); if(MIBLEsensors.at(i).LYWSD02.temp!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature); } if(MIBLEsensors.at(i).LYWSD02.hum!=-1000.0f){ // this is the error code -> no temperature ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity); } ResponseAppend_P(PSTR("}")); break; } } #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_NRF24, NRF24type, NRF24.chipType); if (!MIBLEsensors.size()) { return; } for (uint32_t i = 0; i < MIBLEsensors.size(); i++) { switch(MIBLEsensors.at(i).type){ case 1: if(MIBLEsensors.at(i).showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MIBLE: sensor not fully registered yet")); break; } char temperature_flora[33]; dtostrfd(MIBLEsensors.at(i).Flora.temp, Settings.flag2.temperature_resolution, temperature_flora); char lux_flora[33]; dtostrfd((float)MIBLEsensors.at(i).Flora.lux, 0, lux_flora); char fertility_flora[33]; dtostrfd(MIBLEsensors.at(i).Flora.fertility, 0, fertility_flora); WSContentSend_PD(HTTP_MIBLE_SERIAL, F("Flora "), MIBLEsensors.at(i).serial[5], MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]); if(MIBLEsensors.at(i).Flora.temp!=-1000.0f){ // this is the error code -> no temperature WSContentSend_PD(HTTP_SNS_TEMP, MIBLESlaveFlora, temperature_flora, TempUnit()); } if(MIBLEsensors.at(i).Flora.lux!=0xffff){ // this is the error code -> no temperature WSContentSend_PD(HTTP_SNS_ILLUMINANCE, MIBLESlaveFlora, MIBLEsensors.at(i).Flora.lux); } if(MIBLEsensors.at(i).Flora.moisture!=-1000.0f){ // this is the error code -> no temperature WSContentSend_PD(HTTP_SNS_MOISTURE, MIBLESlaveFlora, MIBLEsensors.at(i).Flora.moisture); } if(MIBLEsensors.at(i).Flora.fertility!=-1000.0f){ // this is the error code -> no temperature WSContentSend_PD(HTTP_MIBLE_FLORA_DATA, MIBLESlaveFlora, fertility_flora); } break; case 2: if(MIBLEsensors.at(i).showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MIBLE: sensor not fully registered yet")); break; } char temperature[33]; dtostrfd(MIBLEsensors.at(i).MJ_HT_V1.temp, Settings.flag2.temperature_resolution, temperature); char humidity[33]; dtostrfd(MIBLEsensors.at(i).MJ_HT_V1.hum, 1, humidity); WSContentSend_PD(HTTP_MIBLE_SERIAL, MIBLESlaveMJ_HT_V1, MIBLEsensors.at(i).serial[5], MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]); if(MIBLEsensors.at(i).MJ_HT_V1.temp!=-1000.0f){ WSContentSend_PD(HTTP_SNS_TEMP, MIBLESlaveMJ_HT_V1, temperature, TempUnit()); } if(MIBLEsensors.at(i).MJ_HT_V1.hum!=-1.0f){ WSContentSend_PD(HTTP_SNS_HUM, MIBLESlaveMJ_HT_V1, humidity); } if(MIBLEsensors.at(i).MJ_HT_V1.bat!=0xff){ WSContentSend_PD(HTTP_BATTERY, MIBLESlaveMJ_HT_V1, MIBLEsensors.at(i).MJ_HT_V1.bat); } break; case 3: if(MIBLEsensors.at(i).showedUp < 3){ DEBUG_SENSOR_LOG(PSTR("MIBLE: sensor not fully registered yet")); break; } dtostrfd(MIBLEsensors.at(i).LYWSD02.temp, Settings.flag2.temperature_resolution, temperature); dtostrfd(MIBLEsensors.at(i).LYWSD02.hum, 1, humidity); WSContentSend_PD(HTTP_MIBLE_SERIAL, MIBLESlaveLYWSD02, MIBLEsensors.at(i).serial[5], MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]); if(MIBLEsensors.at(i).LYWSD02.temp!=-1000.0f){ WSContentSend_PD(HTTP_SNS_TEMP, MIBLESlaveLYWSD02, temperature, TempUnit()); } if(MIBLEsensors.at(i).LYWSD02.hum!=-1.0f){ WSContentSend_PD(HTTP_SNS_HUM, MIBLESlaveLYWSD02, humidity); } break; } } } #endif // USE_WEBSERVER } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns61(uint8_t function) { bool result = false; if (NRF24.chipType) { switch (function) { case FUNC_INIT: MIBLEinitBLE(1); AddLog_P2(LOG_LEVEL_INFO,PSTR("MIBLE: started")); break; case FUNC_EVERY_100_MSECOND: MIBLE_EVERY_100_MSECOND(); break; case FUNC_JSON_APPEND: MIBLEShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: MIBLEShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_MIBLE #endif // USE_NRF24 #endif // USE_SPI